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Abstract

Despite large efforts, datasets with few sightings are often available for rare species of

marine megafauna that typically live at low densities. This paucity of data makes modelling

the habitat of these taxa particularly challenging. We tested the predictive performance of

different types of species distribution models fitted to decreasing numbers of sightings. Gen-

eralised additive models (GAMs) with three different residual distributions and the presence

only model MaxEnt were tested on two megafauna case studies differing in both the number

of sightings and ecological niches. From a dolphin (277 sightings) and an auk (1,455 sight-

ings) datasets, we simulated rarity with a sighting thinning protocol by random sampling

(without replacement) of a decreasing fraction of sightings. Better prediction of the distribu-

tion of a rarely sighted species occupying a narrow habitat (auk dataset) was expected com-

pared to the distribution of a rarely sighted species occupying a broad habitat (dolphin

dataset). We used the original datasets to set up a baseline model and fitted additional mod-

els on fewer sightings but keeping effort constant. Model predictive performance was

assessed with mean squared error and area under the curve. Predictions provided by the

models fitted to the thinned-out datasets were better than a homogeneous spatial distribu-

tion down to a threshold of approximately 30 sightings for a GAM with a Tweedie distribution

and approximately 130 sightings for the other models. Thinning the sighting data for the

taxon with narrower habitats seemed to be less detrimental to model predictive performance

than for the broader habitat taxon. To generate reliable habitat modelling predictions for

rarely sighted marine predators, our results suggest (1) using GAMs with a Tweedie distribu-

tion with presence-absence data and (2) implementing, as a conservative empirical mea-

sure, at least 50 sightings in the models.

Introduction

The rarity of a species can be described in many different ways depending on a combination of

criteria such as the extent of its geographic range, the specificity of its habitat and its local

abundance (Table 1; [1,2]). According to these criteria, only species that are widely distributed,
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live in diversified habitats and are abundant, are considered common. Other species are

defined as rare because they show a restricted range, a specific habitat, low abundance, or any

combination of these criteria.

Many species are naturally rare, but others become rare as a result of man induced pres-

sures; in any case a species rarity contributes to its vulnerability. Therefore, rare species often

benefit of a variety of management, conservation or recovery plans to maintain or restore their

populations and habitats [3]. Determining the abundance, distribution and habitat use of these

species are generally key elements of these plans [4], yet gathering enough high quality data

(e.g., sighting and effort data) is often a challenge.

Rare species usually result in a low number of sightings per unit effort [2]. This scarcity of

sighting data renders difficult to fit species distribution models (SDM) because the reliability of

predictions largely depends on the number of sightings on which the models are fitted [2,5,6].

Although some studies have addressed the use of models for rare species datasets [2,5,7], the

reliability of the predictions produced by these models, and the uncertainty associated with

these predictions remain pending issues. To address these issues, one option is to examine how

the performance of a species distribution model changes when sighting data become scarcer.

The aim of the present study was to suggest an empirical rule-of-thumb for the minimum

sighting number needed to provide reliable predictions for different types of SDMs. This num-

ber is expected to be lower for specialist species using a narrow habitat than for more generalist

species. It may also vary with the type of residual distribution functions (that is, the likelihood)

used when fitting SDM. We thus conducted a sighting thinning experiment using two large

datasets (with respect to effort) of marine megafauna collected in the eastern North Atlantic

Ocean: small delphinid and auk datasets. Small delphinids are a generalist taxon, and are pres-

ent at depths between 50–5000 m. In contrast, auks represent a more specialised taxon, as they

are present at depths between 10–150 m. Hence, thinning the number of sightings of small del-

phinids would generate datasets of a rare non-specialist species living in a large geographic

range, and the thinning of the number of auk sightings would simulate a rare more specialised

species living in a more restricted geographic range. These datasets represent two forms of rare

species defined by Rabinowitz ([1]; Table 1). By thinning real datasets, this approach aimed to

help habitat modellers circumvent the difficulty associated with assessing the predictive capac-

ity of models fitted to rare species datasets.

Materials and methods

Datasets

Data collection. Marine megafauna sightings were recorded during the two aerial SAMM

surveys (Suivi Aérien de la Mégafaune Marine–Aerial Census for Marine Megafauna)

Table 1. The three characteristics that defined the rarity of a species: The habitat specificity, the local abundance and the geographic range (from [1,2]). Each cell

defines a form of species rarity except for the top left cell, which characterises a common species.

Habitat specificity

Non-specialist Specialist

Local

abundance

High Common

species

Abundant but localised

population in several habitats

Abundant and widespread

population in specific habitats

Abundant and localised

population in specific habitats

Low Scarce and widespread

population in several habitats

Scarce and localised population

in several habitats

Scarce and widespread population

in specific habitats

Scarce and localised population

in specific habitats

Large Limited Large Limited

Geographic range

https://doi.org/10.1371/journal.pone.0193231.t001
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conducted in the English Channel and the Bay of Biscay (Fig 1). Surveys were conducted dur-

ing the winter of 2011–2012 (from mid-November to early February; 28,068 km of transects)

and the summer of 2012 (from mid-May to early August; 31,427 km of transects). Transects

were sampled at a ground speed of 167 km.h-1 and an altitude of 182 m. Survey platforms were

high-wing aircraft, equipped with bubble windows, allowing observation right under the

plane. Sightings and group size were recorded, alongside observation conditions (Beaufort

sea-state, glare severity, turbidity, and cloud cover). Transects were subdivided into 10 km-

long segments of homogeneous conditions.

In the study, the aim was to use datasets containing enough sightings to implement a data-

thinning approach in a realistic and meaningful way. To perform the analysis, we used datasets

that were previously exploited and described in various publications [8,9,10,11]. Two taxa with

abundant sightings (> 250) and contrasted distributions were selected. The first taxon was

composed of small delphinids (hereafter called “dolphins”) including the common (Delphinus
delphis) and striped (Stenella coeruleoalba) dolphins, both of which showing overall offshore

distributions. The second taxon was composed of auks (hereafter called “auks”) and mostly

consisted of the common guillemot (Uria aalge) and, to a much lower extent, the razorbill

(Alca torda) and the Atlantic puffin (Fratercula arctica), all of which showing a more coastal

distribution (Fig 1). A total of 277 dolphin sightings accounting for 14,477 individuals and

1,455 auk sightings representing 16,658 individuals were recorded in good observation condi-

tions (sea state <4 and medium to excellent observation conditions, as defined in [8]) and

used in the analyses.

A line-transect methodology was used to record all cetacean sightings [12], while seabird

sightings were recorded using a strip-transect methodology [13]. In the line-transect method-

ology, the angle between the sighting and the track line was measured to determine the effec-

tive strip width (ESW; see the detection functions and estimated ESW in [8]) on each side of

the plane. In the strip-transect methodology, the sightings were gathered from a 200-m strip

on either side of the plane, and it was assumed that all animals within the strip were detected.

Environmental predictors. Two categories of environmental predictors at a 10 km reso-

lution were used to model the habitats of the two taxa (Table 2). Static (or physiographic)

Fig 1. Study area (A) with dolphin (B) and auk (C) sightings recorded during the survey. The study area expands through the Bay of Biscay and the English

Channel. The surveys were carried out along transects (dotted lines) following a zig-zag pattern across bathymetric strata. The sightings are classified by group sizes,

with each point representing one group of individuals.

https://doi.org/10.1371/journal.pone.0193231.g001
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predictors relate to the bathymetry and included depth and slope, whereas dynamic (or ocean-

ographic) predictors describe the water masses and included the mean, variance and gradient

of sea surface temperature (SST); the mean and standard deviation of sea surface height (SSH),

and the maximum intensity of general currents (mostly referring to tidal currents in the study

area; S1 Fig). To avoid gaps in remotely sensed oceanographic variables, we used a 7-day reso-

lution. All available data were averaged over the 6 days prior to each sampled day (details in

[10, 14]).

Statistical analyses

Analytical strategy. We tested the predictive capacity of various SDMs fitted to datasets

on rarely sighted species (Fig 2). Two categories of SDMs can be used to predict a species

distribution and model its habitats: presence-absence and presence-only models [16]. By

establishing the functional relationships between sightings and environmental conditions,

presence-absence models (e.g., Generalised Linear Models, GLMs, or Generalised Additive

Models, GAMs) can predict areas of high species occurrence [16–18]. In contrast, with pres-

ence-only models (e.g., Ecological Niche Factor Analysis, ENFA, or Maximum Entropy

Modelling, MaxEnt), only sites with environmental conditions similar to those of the sites

where the taxon was recorded can be identified [19,20]. Presence-only models are the default

option when data on absence (effort data) are not available [21], but the accuracy of presence-

only model outputs largely relies on the representativeness of the sampled habitats [22].

Because of its ease-of-use, MaxEnt model is widely used by managers and environmental agen-

cies to help prioritising conservation areas [23–25]. Consequently, assessing the predictive per-

formance of these presence-only models, compared to that of the presence-absence models, is

relevant for rare species for which few sightings are typically available unless a considerable

amount of effort is deployed.

Three presence-absence models and one presence-only model were tested. We used a GAM

with a negative binomial distribution (NB-GAM), a GAM with a Tweedie distribution

Table 2. Environmental predictors used for habitat modelling.

Environmental predictors Sources Effects on pelagic ecosystems of potential interest to top

predators

Physiographic

Depth (m) A Shallow waters could be associated with high primary production

Slope (˚) A Associated with currents, high slope induce prey aggregation and/

or primary production increasing

Oceanographic

Mean of SST (˚C) B Variability over time and horizontal gradients of SST reveal front

locations, potentially associated to prey aggregationsVariance of SST (˚C) B

Mean gradient of SST (˚C) B

Mean of SSH (m) C High SSH is associated with high mesoscale activity and prey

aggregation and/or primary production increaseStandard deviation of SSH (m) C

Daily maximum intensity of the

currents (m.s-1)

D High currents induce water mixing and prey aggregation

A: Depth and slope were computed from the GEBCO-08 30 arc-second database (http://www.gebco.net/). B: Mean,

variance and gradient of sea surface temperature (SST) were calculated from the ODYSSEA products from

Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu/). C: The MARS 3D model from

Previmer ([15]; www.previmer.org) was used to compute mean and standard deviation of sea surface height (SSH).

D: Daily maximum current intensity was computed from the MARS 2D model ([15]; www.previmer.org).

https://doi.org/10.1371/journal.pone.0193231.t002
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(TW-GAM), a GAM with a zero-inflated Poisson distribution (ZIP-GAM), and a MaxEnt

model. These SDMs were first fitted to the original dolphin and auk datasets in order to select

the four most important predictors for each taxon (hereafter referred to as ‘baseline models’).

These baseline models served as a reference to compare models fitted to the thinned-out data-

sets (hereafter referred to as the ‘experimental models’). The original datasets were thinned

of sightings by randomly removing 25–99% of the sightings. For each thinning-out level, the

four SDMs were fitted with the same explanatory variables as in the baseline model. Finally,

Fig 2. Flowchart of the methods used in the study. NB-GAM: generalised additive model with a negative binomial distribution; TW-GAM: generalised additive model

with a Tweedie distribution; ZIP-GAM: generalised additive model with a zero-inflated Poisson distribution; MaxEnt: maximum entropy model; GCV: generalised

cross-validation; ind: individuals; MSE: mean squared error; stand.: standardised; pred.: prediction; mat.: matrix; ref: reference; AUC: area under the curve.

https://doi.org/10.1371/journal.pone.0193231.g002
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predictions from experimental models were compared to those of the baseline models to deter-

mine the minimum number of sightings to reliably predict rare species distribution. Although

model performance is largely determined by its selected variables [26], we used the same speci-

fication for each experimental model in this study to assess how the results were affected by

the sighting thinning alone. This choice reflects current practice in marine spatial planning is

which the same SDM specification is frequently used by end-users (e.g. managers) but updated

at a much lower frequency by researchers.

Baseline models. To fit GAMs, we used the ‘gam,’ ‘nb,’ ‘tw’ and ‘ziP’ functions within the

‘mgcv’ package [27,28] (See S1 Additional for more details about the models). A log function

linked the response variable to the additive predictors; the curve smoothing functions were

restricted to three degrees of freedom [29]; finally an offset that considered the variation of

effort per segment [30] was included and calculated as segment length multiplied by 2�ESW

(see Laran et al. [8]). After removing all combinations of variables with correlation coefficients

higher than |0.7|, the models with combinations of 1 to 4 variables were tested [31,32], and the

best models were selected, i.e., the models with the lowest generalised cross-validation score

(GCV; [33]), which estimates the mean prediction error using a leave-one-out cross-validation

process [34]. For both taxa, the selected variables for NB-GAM, TW-GAM and ZIP-GAM

were identical so that it was straightforward to compare the different models.

For each fitted model, predicted densities (in individuals per km2) were mapped on a

0.05˚x0.05˚ resolution grid. We computed the predictions for each day of the surveys and aver-

aged the predictions over the entire survey period. To limit extrapolation, the covariates were

constrained within the range of the covariate values used when fitting the models. Finally, we

provided uncertainty maps by computing the variance around the predictions as the sum of

the variance around the mean prediction and the mean of the daily variances. Then, the coeffi-

cient of variation was calculated as

CV ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvariance

p
over the survey periodÞ=mean over the survey period:

We also tested the effect of thinning-out on a presence-only model: MAXENT (version 3.3.3,

http://www.cs.princeton.edu/~schapire/maxent/; [24]). In this model, environmental relation-

ships are estimated using the background samples of the environment instead of absence

locations [35]. For both taxa, we first removed all absences from the input files used for the

presence-absence models to obtain a file with only presence locations that would be compati-

ble with the software. We used the four environmental variables determined by the selection

procedure for the GAMs to allow for comparisons between the different models. Finally, we

selected a “hinge” feature as a model parameter to generate models with smooth functions sim-

ilar to GAMs with a default prevalence of 0.5 and a logistic output format to obtain a probabil-

ity of presence of the species groups [35–37]. Table 3 summarises the tested models and their

characteristics.

Thinning-out of the sightings. To generate datasets of rare species, we thinned the origi-

nal auk and dolphin sightings at different rates to simulate rare species datasets with about

ten sightings. We aimed to obtain a decreasing number of sightings, simulating thereby an

increasing rarity of the two taxa under a constant sampling effort. In the dolphin dataset, we

randomly replaced 25, 50, 75, 90, 92 and 95% of the sightings with zeros, and in the auk data-

set, we randomly replaced 25, 50, 75, 90, 92, 95, 97 and 99% of the sightings with zeros

(Table 4 and S2 and S3 Figs show examples of thinning-out). For each thinning rate, sightings

to be replaced with zero were randomly sampled without replacement. To ensure a homoge-

neous sighting thinning in the sampling area, 100 datasets were randomly created from the

complete datasets for each degradation rate, hence producing 100 randomly thinned or

Habitat modelling for rare marine species
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experimental datasets for each thinning rate. This procedure simulates different levels of spe-

cies rarity as observed under a constant sampling effort. Removing part of survey effort (e.g.,
whole transects) would not have generated a greater rarity of the species but only a lower sight-

ing effort; and would have led to similar results of the baseline models because encounter rates

had remained similar on average.

Assessment of the predictive performance of the model. The baseline SDMs were

selected using the minimum GCV score, and a leave-one-out cross-validation process was used

to estimate mean prediction error and explained deviances [31,32]. However, for experimental

models, we based the assessment of the predictive performance of the presence-absence models

on two criteria: mean squared error (MSE; [37,38]) and maps of the predicted densities. The

MSE directly compared the prediction matrices of the experimental models to the prediction

matrix of the baseline model. Each cell of the matrices provides the densities predicted by the

model over the entire prediction area. The MSE is given by MSE ¼ mean ð
P
ðŶ exp � Ŷ baselineÞ

2
Þ

[39,40]. Here, “Ŷ exp” represents the prediction matrix of an experimental model, and “Ŷ baseline”
represents the prediction matrix of the baseline model. For each type of model and thinning

rate, we averaged the MSEs of all the experimental models to obtain an averaged MSE (called

MSEmean). Then, we investigated whether the predictions provided by the models fitted to

Table 3. Details of the models used in the study.

Models Used

names

Data Settings and details

Generalised Additive Model with Negative

Binomial distribution

NB-GAM Over-

dispersed

PA

Used R-3.1.2�, package mgcv, function GAM, Negative Binomial distribution, log-link

function, included an offset, 3 degrees of freedom for the smoothing curve functions

Generalised Additive Model with Tweedie

distribution

TW-GAM Over-

dispersed

PA

Used R-3.1.2�, package mgcv, function GAM, Tweedie distribution, log-link function,

included an offset, 3 degrees of freedom for the smoothing curve functions

Generalised Additive Model with Zero-

Inflated Poisson distribution

ZIP-GAM Zero-

inflated

PA

Used R-3.1.2�, package mgcv, function GAM, ZIP distribution, log-link function, included

an offset, 3 degrees of freedom for the smoothing curve functions

Maximum Entropy Modelling MaxEnt Presence-

only

Used MaxEnt software version 3.3.3, hinge feature, default prevalence of 0.5, logistic output

format

GAM: generalised additive model; GLM: generalised linear model; PO: Poisson; NB: negative binomial; TW: Tweedie; ZIP: zero-inflated Poisson; PA: presence-absence

data; AIC: Akaike information criterion.

� R Core Team [38]

https://doi.org/10.1371/journal.pone.0193231.t003

Table 4. Number of sightings contained in the thinned or experimental datasets for each thinning rate and each species group.

Thinning rates

Species groups Original 25% 50% 75% 90% 92% 95% 97% 99%

Dolphins nsigh 277 208 139 69 28 23 14 - -

nz 3043 3112 3181 3250 3292 3297 3306 - -

%z 91.7 93.7 95.8 97.9 99.2 99.3 99.6 - -

Auks nsigh 1455 1091 728 364 146 116 73 44 15

nz 2046 2409 2773 3137 3355 3384 3428 3457 3486

%z 56 66 76 85.9 91.9 92.7 94 94.7 95.5

nsigh: number of sightings; nz: number of segments with a zero; %z: percentage of zeros; Original: initial (and complete) datasets. “–”indicates that the sighting thinning

was not performed.

https://doi.org/10.1371/journal.pone.0193231.t004

Habitat modelling for rare marine species

PLOS ONE | https://doi.org/10.1371/journal.pone.0193231 March 12, 2018 7 / 21

https://doi.org/10.1371/journal.pone.0193231.t003
https://doi.org/10.1371/journal.pone.0193231.t004
https://doi.org/10.1371/journal.pone.0193231


sighting thinned-out datasets were better than those from a homogeneous process. For this pur-

pose, we compared the MSE of each fitted model and the MSEmean to a reference threshold,

called the MSEref, which was calculated as the MSE between the prediction matrix of the baseline

model (NB-GAM, TW-GAM or ZIP-GAM) and the prediction matrix of a null NB-GAM,

TW-GAM or ZIP-GAM (which described a homogeneous spatial distribution). We assumed

that if the MSE was higher than the MSEref, it was more appropriate to consider a homogeneous

spatial distribution rather than taking into account the predictions provided by the experimental

model.

To assess the predictive performance of the MaxEnt models, we used the area under the

receiver operating characteristic curve (AUC; [19]). AUC allows for the direct comparison of

SDM predictive performance but can only be used on binary data. An AUC of 1 indicates a

perfect discrimination between the sites where the species is present and absent, an AUC of

0.5 indicates a discrimination equivalent to a random distribution, and an AUC lower than 0.5

indicates that the model performance is worse than a random guess [19]. We compared the

AUC of each fitted model and the AUCmean (averaged over the 100 fitted models) to the AUC

of the baseline model and used a threshold value of 0.5 to assess the performance of the experi-

mental models.

Finally, we compared the prediction maps of the models fitted to the thinned datasets to the

prediction maps of the baseline models in order to determine the lowest sample size that did

not change predicted distribution patterns. For each model type and each thinning rate, we

averaged the predictions over the 100 models fitted to the thinned datasets and produced aver-

aged prediction maps that we compared to the prediction maps of the baseline models. We

averaged the predictions over the 100 fitted models to ensure a uniform data deletion through-

out the area. In practice, habitat modellers only have one real dataset (not 100); hence, we com-

pared the MSE or AUC of each fitted model to the MSEref or AUCref to determine the

proportion of the model that provided good predictions.

Results

Model selection and predictions of the baseline models

Small delphinids. The explained deviances in the dolphin dataset were moderate to fairly

high: 38.4% for the NB-GAM, 37.3% for the TW-GAM and 17.1% for the ZIP-GAM. Densities

were best predicted from SST mean and variance and SSH mean and standard deviation (Fig

3). All models showed similarly-shaped smooth functions, with the highest densities of delphi-

nids predicted at temperatures of approximately 16˚C (variance close to 0˚C) and low average

altimetry (SSH, approximately -0.5 m, standard error approximately 0.5 m). Small delphinids

were predicted to be distributed in offshore waters from the continental shelf to oceanic waters

with higher densities along the slope and a peak north of Galicia (Fig 3). There was a strong

match between sightings and model predictions (Figs 1 and 3) with high predicted densities

associated with low coefficients of variation (S4 Fig). With an AUC of 0.822, the MaxEnt

model correctly predicted the presence probabilities of delphinids. Similar to the other fitted

models, the highest presence probabilities were predicted along the slope of the Bay of Biscay

and were evenly distributed elsewhere (Fig 3).

Auks. The explained deviances in the auk dataset reached 44.9% for the NB-GAM, 40.9%

for the TW-GAM and 33.6% for the ZIP-GAM. The variables selected by the three baseline

models were depth, mean and gradient of SST and mean SSH (Fig 4). Greater auk densities

were associated with colder and shallower waters, stronger gradients of temperature and

higher positive altimetry. The predicted distribution ranged from the coast to the edge of the

continental shelf and predicted densities were particularly high in the eastern English Channel
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(Fig 4). There was a good match between the sightings and the predictions of the model (Figs 1

and 4) with high predicted densities associated with low coefficients of variation (S4 Fig). The

MaxEnt model, with an AUC of 0.842, generally predicted the same distribution as the other

models with higher concentrations along the coast (Fig 4).

Predictive performance of the experimental models

Small delphinids. As expected, a decrease in the number of sightings led to an increase

in MSEmean (Fig 5). Predictions with 208 sightings (the lowest thinning rate) were closer to

those of the baseline models than the predictions with only 14 sightings (the highest thinning

rate). The comparison of MSEmean with MSEref (representing the MSE between the baseline

predictions and the null models), suggested that for less than 139 sightings, MSEmean values

for NB-GAMs and ZIP-GAMs were higher than MSEref. In contrast, MSEmean values for

Fig 3. Estimated smooth functions for the selected covariates and predicted distribution of dolphins in individuals.km-2 (Ind/km2) for each presence-absence

model and in presence probabilities (Pr.prob) for the Maxent model. The solid line in each plot is the estimated smooth function, and the shaded regions represent

the approximate 95% confidence intervals. The y-axis indicates the number of individuals on a log scale, and a zero indicates no effect of the covariate. The best model

fits are between the vertical lines indicating the 10th and 90th quantiles of the data. The dotted lines represent the bathymetric strata of the survey area. The white areas

on certain maps represent the absence of predictions beyond the range of covariates used in fitted models.

https://doi.org/10.1371/journal.pone.0193231.g003
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TW-GAMs were lower than MSEref, except for the most extreme thinning rates that yielded as

few as 14 sightings. Consequently, below 139 sightings, it was better to predict a homogeneous

spatial distribution rather than to use the predictions provided by the NB-GAMs and the ZIP--

GAMs. For the TW-GAMs, this threshold was under 23 sightings. Furthermore, the number

of experimental models in which the MSE was higher than the MSEref varied among model

types (Fig 6). With a decrease in the number of sightings, the proportion of experimental mod-

els in which predictions were better than a homogeneous spatial distribution decreased

(MSE<MSEref; Fig 6). For example, with 23 sightings, only 51% NB-GAMs and 6% ZIP-GAMs

predicted better than a homogeneous spatial distribution compared to 75% TW-GAMs. For

MaxEnt, AUCmean values of the experimental models were high (>0.82) and very similar and

higher than the AUCref, which predicted a homogeneous distribution of the sites occupied by

the species.

Fig 4. Estimated smooth functions for the selected covariates and predicted distribution of auks in individuals.km-2 (Ind/km2) for each presence-absence model

and in presence probabilities (Pr.prob) for the Maxent model. The solid line in each plot is the estimated smooth function, and the shaded regions represent the

approximate 95% confidence intervals. The y-axis indicates the number of individuals on a log scale, and a zero indicates no effect of the covariate. The best model fits

are between the vertical lines indicating the 10th and 90th quantiles of the data. The dotted lines represent the bathymetric strata of the survey area.

https://doi.org/10.1371/journal.pone.0193231.g004
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We noticed an important variation in the prediction maps among experimental models

(Fig 7; S5 and S6 Figs). Despite a decrease in the number of sightings, the distribution patterns

of the baseline models were maintained down to 139 sightings for NB-GAMs and ZIP-GAMs.

Beyond this threshold, the pattern disappeared or became unrealistic. Predictions from TW-

GAM were similar to the distribution pattern of the baseline model with as few as 28 sightings.

Beyond this threshold, the pattern started to fade out. When compared to the baseline, the

highest densities predicted by NB-GAM, TW-GAM and ZIP-GAM were associated with the

highest uncertainties (S7 and S8 Figs).

Relative presence probability predicted by MaxEnt model became more uniform in area

when the number of sightings decreased, with high probability areas located along the slope,

and low probability areas located near the Aquitaine coast gradually fading out (Fig 7).

Auks. MSEmean values increased with decreasing numbers of sightings (Fig 5). As

expected, predictions with 1,091 sightings (the lowest thinning level) were closer to those of

the baseline model (1,455 sightings) than were the predictions with only 15 sightings (the high-

est thinning level). When the number of sightings was lower than 73, MSEmean values of

NB-GAMs and ZIP-GAMs were higher than MSEref, whereas MSEmean for TW-GAMs was

higher than MSEref with only 15 sightings. Consequently, with less than 73 sightings, the pre-

dictions provided by NB-GAMs and ZIP-GAMs were worse than a homogeneous spatial

Fig 5. Evaluation of the predictive performance of the models using MSE and AUC. MSEmean: mean squared error averaged over 100 models; AUCmean: area under

the curve averaged over 100 models; Ref: reference index (i.e., a homogeneous spatial distribution). A log scale is applied on the y-axis. The vertical bars on each point

represent the standard error calculated from 100 models.

https://doi.org/10.1371/journal.pone.0193231.g005
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distribution. For TW-GAMs, this threshold was below 44 sightings. Similar to the results for

dolphins, the number of models in which the MSE was higher than the MSEref varied (Fig 6).

With 15 sightings, only 42% NB-GAMs compared to 54% TW-GAMs and ZIP-GAMs pre-

dicted better than a homogeneous spatial distribution. The AUCmean values for the MaxEnt

model were very high (>0.85) and slightly increased with a decreasing number of sightings.

Overall, the AUCmean values were higher than AUCref (Fig 5).

We noticed clear distinctions in averaged prediction maps between experimental models

(Fig 8; S9 and S10 Figs). For NB-GAMs, the prediction patterns were maintained down to

116 sightings, but under this threshold, patterns gradually disappeared. Despite a decrease

in predicted densities, the distribution patterns predicted by the TW-GAMs remained the

same down to 15 sightings. The distribution patterns predicted by ZIP-GAMs progressively

disappeared below 364 sightings. Higher densities predicted by NB-GAMs, TW-GAMs and

ZIP-GAMs fitted to thinned datasets were associated with lower uncertainties (S11 and S12

Figs). Furthermore, uncertainties of TW-GAMs were lower than those of NB-GAMs and ZIP-

GAMs. The MaxEnt models showed some homogenisation of the distribution patterns with a

decreasing number of sightings, but the general pattern was maintained no matter the number

of sightings (Fig 8).

Discussion

General considerations

To determine the model that would best predict the distribution of a rare species, we compared

different types of models, both presence-absence and presence-only models. We assessed

the predictive performance of a known model using a reduced amount of available sighting

data. Our findings suggest that the habitats for species that are rare or seldom seen are best

described using a GAM with a Tweedie distribution (if effort data are available). GAMs with a

negative binomial or zero-inflated Poisson distribution and MaxEnt models became inade-

quate for dataset under 130 sightings while TW-GAMs kept performing well down to a sample

size of 30 sightings.

Fig 6. Proportion of experimental models better than a homogeneous spatial distribution. Each bar represents, the proportion of the experimental

models out of the 100 fitted in which the MSE is lower than the MSEref for each number of sightings, i.e., the model that is better than a homogeneous

spatial distribution. Each colour represents a different model type.

https://doi.org/10.1371/journal.pone.0193231.g006
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Biological systems. Dolphins, including common and striped dolphins, and auks, includ-

ing common guillemot, razorbill and Atlantic puffin, were used as biological models for two

reasons. First, sightings of these taxa were large enough to allow both standard statistical analy-

ses and thinning to be conducted (277 dolphin sightings and 1,455 auk sightings). Second, dol-

phins and auks in the Bay of Biscay show well-defined and distinct patterns of distribution

[10], which allows evaluating the predictive accuracy of the models.

Species groups pooled different species because of the difficulty to distinguish individuals at

a species level from air. Pooling species into groups probably create categories with a broader

habitat than the habitat of any of the constituting species, resulting in slightly larger sample

size recommendations. However, the auk taxon is mainly dominated by the common

Fig 7. Prediction maps of dolphins averaged over 100 models fitted to thinned datasets for each type of model in the Bay of Biscay and the English Channel. The

rows represent the different types of generic models, and the columns represent the number of sightings used to fit the models. The numbers in the right corner of each

map represent the number of sightings used to fit the model. The scale is in individuals.km-2 (Ind/km2) for the NB-GAM, the TW-GAM and the ZIP-GAM and in the

probability of presence (Pr.prob) for MaxEnt. This figure only shows the results for which a change was observed compared with the other predictions. All maps are

presented in S5 and S6 Figs. The dotted lines represent the bathymetric strata of the survey area.

https://doi.org/10.1371/journal.pone.0193231.g007
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guillemot and distribution patterns obtained in the study would mainly represent the common

guillemot winter distribution. Indeed, auks wintering in the Bay of Biscay mostly originate

from colonies located in the British Isles, where breeding populations of razorbill amount

to 187,000 individuals, Atlantic puffin to 580,000 individuals and common guillemot to

1,416,000 individuals [41]. Concerning dolphins, combining the two species resulted in a

bimodal habitat. Indeed, shipboard surveys (CODA; partly SCANS-II and SCANS-III)

revealed how the two species are present in all offshore habitats, yet the common dolphin pre-

dominates over the shelf and the shelf-break, whereas the striped dolphin is more frequent in

oceanic waters. Consequently, this species complex would reflect some kind of bimodal habitat

Fig 8. Prediction maps of auks averaged over the 100 models fitted to thinned datasets for each type of model in the Bay of Biscay and the English Channel. The

rows represent the different types of generic models, and the columns represent the number of sightings used to fit the models. The numbers in the right corner of each

map represent the number of sightings used to fit the model. The scale is in individuals.km-2 (Ind/km2) for the NB-GAM, the TW-GAM and the ZIP-GAM and in the

probability of presence (Pr.prob) for the MaxEnt model. This figure only shows the results for which a change was observed compared with the other predictions. All

maps are presented in S9 and S10 Figs. The dotted lines represent the bathymetric strata of the survey area.

https://doi.org/10.1371/journal.pone.0193231.g008
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characteristics that can be found in natura, as for instance in some delphinids like the bottle-

nose dolphin (Tursiops truncatus) with its pelagic and coastal ecotypes [42].

Auks and dolphins differ widely in their habitat specificity, particularly regarding depth,

an environmental variable of major importance to characterise marine habitats. Hence, the

sighting thinning experiment conducted in both taxa simulated two different cases of rarity

(Table 1). Thinning small delphinid sightings simulate a rare non-specialist species living in a

broad habitat (row 2, column 1 of Table 1) while thinning auk sightings generate a rare special-

ist species living in a narrower habitat (row 2 and column 4 in Table 1). Modelling the habitat

of the species described in the first row of Table 1 is not challenged by the number of sightings

as the species is locally abundant, but is challenged by the location of the survey (if the survey

was outside the core distribution of a species, sighting data would be scarce). Consequently,

only habitat modelling for rare species of the second row of Table 1 remain an issue. To pro-

vide a more complete answer regarding the sample sizes needed to characterise pelagic animal

distributions, further analyses and meta-analyses with multiple and diversified datasets should

be conducted to obtain robust recommendations. We are aware that determining the number

of data needed to model the rare species habitats is an important challenge, for example to

inform field efforts, but that a single study cannot consider all possible cases. An alternative

research avenue would be to use virtual species instead of real species [43], which would allow

to control all the conditions of the procedure but would not reflect the complex reality of the

ecosystems. A methodology can work with a virtual species but fail in a real case.

Baseline models. To assess the effect of the number of sightings, we tested three presence-

absence models, NB-GAM, TW-GAM and ZIP-GAM, and one presence-only model, the Max-

Ent model. All models tested in this study can handle datasets with many zeros but in different

ways. We also wanted to test a presence-only model because in the case of rare and elusive spe-

cies, opportunistic data, which represent a common example of presence-only data, often rep-

resent the majority of available data [44]. The MaxEnt model is able to model complex

interactions between the response and the predictor variables [19,35,45], has been reported to

be appropriate for presence-only datasets [46] and is widely used in species conservation plan-

ning due to its simplicity of use [23–25].

Variable selection was only performed on the baseline models. As the performance of a

model is largely controlled by its selected variables [26], the models that used thinned-out

sightings might be biased and are suboptimal (because some sighting data are ignored).

Indeed, variables selected by a model fitted to few data could differ from models fitted to much

larger datasets. However, we did not attempt to find the best model fit but to test the robust-

ness of model predictions to thinning; variable selection was, to a certain extent, secondary to

our purposes. In an ideal situation, the habitat of the species is known a priori. In practice, this

is rarely the case, but in realistic situations, a SDM is first developed and then used repeatedly

until the need to update it becomes an imperative. Thus the same SDM specification may be

used without undergoing rounds of variable selection each time a new datum is added to an

existing dataset. In a similar fashion, while MSE give guarantee on the predictive performance

on average (i.e. under repeated use of the same model with different data generated from the

same process), more often than not a single dataset is available for a given area. Consequently,

to approximate a real situation in which one needs to model rare species habitats from a single

dataset, the predictive capacity of each experimental model has been assessed in order to deter-

mine the probability for a single experimental model to reproduce the baseline model

predictions.

Thinning-out sighting data. Thinning rates applied in this study were arbitrarily deter-

mined to obtain, in the most extreme scenario, as few as 15–20 sightings, which is a threshold

commonly observed for very rare species, particularly in marine megafauna [47,48].
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Overfitting can be an issue with small datasets, i.e., the selected model becomes too complex

compared to the number of implemented sightings [49,50]. Particularly, overfitting could have

occurred in the models with the highest thinning rates. Nonetheless, the NB-GAM, the

TW-GAM and the ZIP-GAM performed differently with the same small number of sightings

(14–15 sightings). The NB-GAM and the ZIP-GAM did not manage to predict distribution

patterns consistent with the baseline models, whereas the TW-GAM did.

Predicting habitats of rare species. Our aims were to assess the robustness of predictions

from different SDMs by assessing prediction invariance under increasing levels of thinning

of sightings used in model fitting. Overall, predictive robustness differed between SDMs. All

distributions predicted by the MaxEnt model were better than a homogeneous spatial distribu-

tion. There was, however, a gradual homogenisation of predicted dolphin presence probabilities

over the whole area with increasing thinning rates. With very few sightings (approximately 28),

MaxEnt was no longer able to distinguish key areas of either high or low presence probabilities.

In contrast, despite some homogenisation of the predicted probabilities, auk distribution pat-

terns were correctly predicted, even with as few as 15 sightings. Consequently, thinning affected

model predictive performance differently whether the studied taxon was a generalist or special-

ist one. However, these results not be truly representative of the empirical performance of Max-

Ent. Our data were collected with a standard protocol that ensured a balanced coverage over the

Bay of Biscay, which conforms to the assumptions underlying the appropriate use of presence-

only models [22]. This may not be the general case with presence-only data, where survey effort

is often biased. Despite a balanced sampling effort in the field, MaxEnt did not provide satisfac-

tory results for the highest thinning rates, calling into question its use for rare species.

Because thinning sightings emulate false absences (that is a zero observation due for exam-

ple to imperfect detection in a nevertheless suitable habitat), we expected a better performance

by the ZIP-GAM. However, the results were less reliable than those obtained with a TW-

GAM. Below approximately 130 sightings, the predicted distributions of the ZIP-GAM were

unreliable compared to the predictions of the baseline model, whereas this threshold was as

low as approximately 30 sightings for the TW-GAM. This difference is likely due to the current

parametrisation of the ZIP family in the ‘mgcv’ package [27,28]. In fact, the current parametri-

sation uses the linear predictors and linearly scales them on a logit scale to generate extra zero

observations (see the help pages in mgcv v1.8–9; [28]). This parametrisation implicitly assumes

that the areas with lower densities have a higher probability of non-detection. However, the

parameterisation does not allow for incorporating detection-specific covariates, which may

better explain the non-detection patterns. Similarly, the NB-GAM provided less convincing

results and unreliable predicted distribution patterns compared to the baseline model below

approximately 130 sightings.

Even if the TW-GAM provided good results with approximately 20–25 sightings, the results

were based on the averages of 100 fitted models and hid substantial variations. In practice, hab-

itat modellers have only one dataset. Therefore, we assessed the individual performance of

each experimental model by computing the number of models in which the MSE was higher

than the MSEref and by examining the explained deviances of each experimental model (results

not shown). It appeared that with 20 sightings, approximately 50 of the 100 experimental

TW-GAMs predicted better than a homogeneous spatial distribution of the two species groups

whereas with 40 sightings, 90 of the 100 experimental models provided reliable results (Fig 6).

Moreover, by examining the explained deviances for each experimental Tweedie model

(results not shown), we found that explained deviances of the experimental models fitted to 28

and 69 sightings for dolphins were good (30–50%). For the smallest number of data (15 and 23

sightings), the explained deviances were very high (>50%) which suggested overfitting. Conse-

quently, to obtain robust predictions, a number of 50 sightings would represent a conservative
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empirical measure under a homogeneous sampling effort over the study area. However, this

number is only valid for the TW-GAM because with the NB-GAM and the ZIP-GAM, the

threshold for which all experimental models provided good results (better than a homoge-

neous spatial distribution) was 100 sightings (Fig 6).

Finally, this study provided a first answer to the question commonly asked by habitat model-

lers: “What model should be used when studying rare species?" If modellers only have presence

data, MaxEnt could be used but with great caution and preferably for specialist species with

restricted distributions. With effort data, we would recommend using a GAM with a Tweedie

distribution and a minimum of 50 sightings, which is a conservative empirical measure.
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S1 Fig. Maps of averaged covariates over the entire survey.

(TIF)

S2 Fig. Sighting thinning example for the dolphin dataset. Sightings are classified by group

sizes (1; 2–20; 20–100 and 100–700 individuals) with each point representing a group of indi-

viduals.
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S3 Fig. Sighting thinning example for the auk dataset. Sightings are classified by group sizes

(1; 2–10; 10–100 and 100–350 individuals) with each point representing a group of individuals.

(TIF)

S4 Fig. Uncertainty maps of baseline models. Uncertainty maps representing the coefficient

of variation in % associated with the predictive relative density of dolphin and auk groups.

Dotted lines represent the survey area.

(TIFF)

S5 Fig. Prediction maps of dolphins averaged over 100 models fitted to thinned datasets

for each type of model from 25 to 75% of sighting thinning. The rows represent the different

types of generic models, and the columns represent the number of sightings used to fit the

models. The numbers in the right corner of each map represent the number of sightings used

to fit the model. The scale is in individuals.km-2 (Ind/km2) for the NB-GAM, the TW-GAM

and the ZIP-GAM and in the probability of presence (Pr.prob) for MaxEnt.

(TIFF)

S6 Fig. Prediction maps of dolphins averaged over 100 models fitted to thinned datasets

for each type of model from 90 to 95% of sighting thinning. The rows represent the different

types of generic models, and the columns represent the number of sightings used to fit the

models. The numbers in the right corner of each map represent the number of sightings used

to fit the model. The scale is in individuals.km-2 (Ind/km2) for the NB-GAM, the TW-GAM

and the ZIP-GAM and in the probability of presence (Pr.prob) for MaxEnt.

(TIFF)

S7 Fig. Averaged uncertainty maps representing the coefficient of variation of each data-

thinning rate in % associated with the averaged predictive density of dolphin group, from

25 to 75% of sighting thinning. The rows represent the different types of generic models, and

the columns represent the number of sightings used to fit the models. The numbers in the

right corner of each map represent the number of sightings used to fit the model. Due to very
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high isolated values, the maps were not contrasted so each coefficient of variation value beyond

the 99% quantile were truncated. Dotted lines represent the survey area.

(TIFF)

S8 Fig. Averaged uncertainty maps representing the coefficient of variation of each data-

thinning rate in % associated with the averaged predictive density of dolphin group, from

90 to 95% of sighting thinning. The rows represent the different types of generic models, and

the columns represent the number of sightings used to fit the models. The numbers in the

right corner of each map represent the number of sightings used to fit the model. Due to very

high isolated values, the maps were not contrasted so each coefficient of variation value beyond

the 99% quantile were truncated. Dotted lines represent the survey area.

(TIFF)

S9 Fig. Prediction maps of auks averaged over 100 models fitted to thinned datasets for

each type of model from 25 to 90% of sighting thinning. The rows represent the different

types of generic models, and the columns represent the number of sightings used to fit the

models. The numbers in the right corner of each map represent the number of sightings used

to fit the model. The scale is in individuals.km-2 (Ind/km2) for the NB-GAM, the TW-GAM

and the ZIP-GAM and in the probability of presence (Pr.prob) for MaxEnt.

(TIFF)

S10 Fig. Prediction maps of auks averaged over 100 models fitted to thinned datasets for

each type of model from 92 to 99% of sighting thinning. The rows represent the different

types of generic models, and the columns represent the number of sightings used to fit the

models. The numbers in the right corner of each map represent the number of sightings used

to fit the model. The scale is in individuals.km-2 (Ind/km2) for the NB-GAM, the TW-GAM

and the ZIP-GAM and in the probability of presence (Pr.prob) for MaxEnt.

(TIFF)

S11 Fig. Averaged uncertainty maps representing the coefficient of variation of each thin-

ning rate in % associated with the averaged predictive density of auk group, from 25 to

90% of sighting thinning. The rows represent the different types of generic models, and the

columns represent the number of sightings used to fit the models. The numbers in the right

corner of each map represent the number of sightings used to fit the model. Due to very high

isolated values, the maps were not contrasted so each coefficient of variation value beyond the

99% quantile were truncated. Dotted lines represent the survey area.

(TIFF)

S12 Fig. Averaged uncertainty maps representing the coefficient of variation of each thin-

ning rate in % associated with the averaged predictive density of auk group, from 92 to

99% of sighting thinning. The rows represent the different types of generic models, and the

columns represent the number of sightings used to fit the models. The numbers in the right

corner of each map represent the number of sightings used to fit the model. Due to very high

isolated values, the maps were not contrasted so each coefficient of variation value beyond the

99% quantile were truncated. Dotted lines represent the survey area.

(TIFF)
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