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ABSTRACT
Optimizing traffic lights in road intersections is a mandatory step to
achieve sustainable mobility and efficient public transportation in
modern cities. Several mono or multi-objective optimization meth-
ods exist to find the best traffic signals settings, such as evolutionary
algorithms, fuzzy logic algorithms, or even particle swarm opti-
mizations. However, they are generally dedicated to very specific
traffic configurations. In this paper, we introduce the SIALAC bench-
mark bringing together about 24 real-world based study cases, and
investigate fitness landscapes structure of these problem instances.
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1 INTRODUCTION
Mobility represents an increasing challenge in modern cities. By
2030, United Nations accord to say that 60 percent of the world’s
population will live in urban areas [1]. This growing rate constantly
requires cities to improve their travelers’ mobility, by making a bet-
ter use of their existing road infrastructure, which can be achieved
by an accurate setting of traffic lights systems. Researching such set-
tings would not only help to streamline urban traffic flows, but also
to reduce travelers’ individual carbon footprint and pollutant emis-
sions. However, simulation of synthetic mobility plans constitutes
a very costly and computationally expensive task.

Therefore, urban planners are usually restricted to optimize small
and specific parts of the urban area. Most of the time in the literature,
one specific optimization algorithm is used to solve one specific
mobility problem [2, 3, 9, 10]. Thus algorithms’ performances are
difficult to compare, as they are often employed on heterogeneous
mobility case studies. That points the lack of a general comparison
tool for real-world mobility problems.

In this work, we introduce the Scenario Investigations of Agents
Localizations for Algorithm Conception (sialac) Benchmark, bring-
ing together 24mobility scenarios.We experiment these case studies
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on the Calais city (76,402 inhabitants), France, and model the mo-
bility of a simulated population on an area of 35 km2. From a city
planner point of view, such a benchmark could help to anticipate
future evolution of cities. From a more fundamental perspective,
sialac benchmark would promote the understanding of real-world
mobility problems search space, in order to design suitable opti-
mization algorithms.

2 FITNESS LANDSCAPE
From the point of view of local search algorithms, fitness landscape
(FL) provides a metaphorical picture of the search space geometry
(peaks, valley, plateaus, . . . ). Such an analysis brings as well a por-
trait of the problem structure with a set of metric features, in order
to quantify and compare the search difficulty of different possible
representations, local search operators, or objective functions.

More formally, a FL [11] is a triplet (X,N , f ) where X is the set
of the potential solutions, f : X → IR is the objective function of
the optimization problem, and N : X → 2X is the neighborhood
relation between solutions, which associates to each solution a set
of neighboring solutions.

In optimization, the two main fitness landscape geometries are
neutral ones dominated by plateaus, and multi-modal ones, dom-
inated by local optima. For neutral geometries, features are com-
puted during neutral random walks, and bring information about
neutral networks, as graphs induced by the neighborhood relation
on plateaus. For multi-modal geometries, the fitness distance corre-
lation value [6], and the autocorrelation length [12] give a measure
of the landscape ruggedness.

Although such analyses are well suited for black-box optimiza-
tion problems, where an analytic definition of the fitness function
is not required, only few works [8] have used FL on real-world
problems. For a broader overview, see the review of Malan [7] on
the existing FL analyzing methods.

3 PROPOSITION
3.1 Model and Case Studies
The considered simulation system in this work is the Multi-agent
Transport Simulation, MATSim [5]. Mobility plans are synthesized
from census data, and consist in a round trip between home and an
activity (work, study, leisure). Thus, we define home and activity
clusters inside the network, and distribute individuals’ departure
and arrival locations amongst these. Finally, individuals are assigned
a random departure time between 7AMand 9AM.Activity durations
are set to 4 hours.To run a simulation with traffic lights, MATSim
microscopically simulates road intersections signal systems using

https://doi.org/10.1145/3205651.3205776
https://doi.org/10.1145/3205651.3205776


GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Florian Leprêtre, Cyril Fonlupt, Sébastien Verel, and Virginie Marion

fixed-time controls [4]. Traffic lights systems settings are modeled
as in Armas et. al works [2].

SIALAC benchmark offers 24 different instances of mobility case
studies in order to compare average travel duration of synthetic
population flows. It takes into account 3 parameters, listed below.

Number of agents {5, 10, 15, 20} × 103
Home {1 cluster, 4 clusters, uniform1}

Activity {1 cluster, 4 clusters

3.2 Importance of a Variable
Intuitively, importance of a variable quantifies its ability to alter the
fitness value of a solution. In the context of expensive black-box
optimization problems, we assume a variable is important when the
mutation of its value implies a large modification in the fitness value
of the solution. More formally, let opi be the local search operator
that modifies the variable i of a solution. At a given threshold ϵ > 0,
the variable is important when | f (opi (x)) − f (x)| > ϵ . Importance
of a variable can be estimated during a random walk that modifies
one variable at each step. In that case, a random walk is a sequence
of solutions (x1,x2, . . . ,xn ) where for all t ∈ [1,n − 1], it exists i
such as xt+1 = opi (xt ). The importance of a variable i is defined
by the number of times that the difference of fitness between two
successive solutions in the walk is important: Iϵ (i) = ♯{xt : t ∈
[1,n − 1] and | f (xt+1) − f (xt )| > ϵ}.

4 EXPERIMENTS
SIALAC instances are run on the Calais city road network, on which
we modeled 33 intersections with traffic lights. The fitness function
f is given by the average trip duration to be minimized, which
represents one of the main measures of congestion within the city
from a planner perpective. In order to investigate fitness landscape
structures, 20 random walks of 50 steps are performed on every
instance : a randomly chosen traffic light system is mutated each
step. A mutation is defined by an alteration of a signal system’s
cycle time, offset time, or green times – by adding or withdrawing
a random amount of seconds to these durations. The choice of the
used mutation operator depends on respective mutation rates [2].

Then, ruggedness of the landscapes can be estimated, using
the autocorrelation of fitness. Although the lengths are short and
indicate a rugged landscape, surprisingly from a planner expert
perspective, the difficulty of underlying optimization problems are
similar according to ruggedness. Indeed, the Fig. 1 shows examples
of random walks on two different instances. The walks are similar
for every instances. The fitness displays sudden rapid jumps up-
wards or downwards, which suggests to analyze the importance of
variables across instances.

Figure 1 shows the absolute value of the normalized fitness values
difference δt across all walks on all instances. All the differences
δ are similar across the instances, but the tail of the distribution
for high value of |δt | is large. This allows us to define a meaningful
threshold for the importance metrics across the instances. The
threshold ϵ is defined such that 10% of the |δt | are considered to be
a significant difference.
1Uniform distribution will be the basic reference when no or few data are known about
population distribution.

Figure 1: Example of random walks for 20000 agents and 2
study cases (left). Distribution of |δt | where δt = f̂ (xt+1) −
f̂ (xt ) is the difference of normalized travel duration (right).

5 DISCUSSION
These landscapes analyses, driven from variousmobility benchmark
instances, reveal that some variables of such a real world class of
problem appears to be critical in an optimization perspective. That
leads our future works to design adaptive optimization algorithms
able to take advantage of these previous experiments.
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