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Abstract. Mass spectrometry based methods have made significant progress in 

characterizing post-translational modifications in peptides and proteins; however, certain 

aspects regarding fragmentation methods must still be improved. A good technique is 

expected to provide excellent sequence information, locate PTM sites and retain the labile 

PTM groups. To address these issues, we investigate 10.6 μm IRMPD, 213 nm UVPD and 

combined UV and IR photodissociation, known as HiLoPD (High-Low Photodissociation), 

for phospho-, sulfo- and glyco-peptide cations. IRMPD shows excellent backbone 

fragmentation and produces equal numbers of N-and C-terminal ions. The results reveal that 

213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing 

a/x, b/y and c/z ions with excellent sequence coverage, locate PTM sites and offer reasonable 

retention efficiency for phospho- and glycol-peptides. Excellent sequence coverage is 

achieved for sulfo-peptides and the position of the SO3 group can be pinpointed; however, 

widespread SO3 losses are detected irrespective of the methods used herein. Based on the 

overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as 

alternative options to collision activation and electron transfer dissociations for phospho- and 

glyco-proteomics.  

Keywords: Photofragmentation, Post-transnational modifications, Fragmentation method, 

UVPD, IRMPD 
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Introduction 
 

The identification and mapping of post-translational modifications (PTMs) in peptides 

and proteins is challenging because of their low abundance, lability and unique chemical 

properties [1, 2]. Mass spectrometry based analysis of phosphorylation [3], sulfonation [4], 

and glycosylation [5] plays an important role in understanding  their diverse biological 

functions. Phosphorylation by protein kinases regulates signal transduction for diverse 

intracellular processes [6, 7]. Many diseases such as cancer, inflammation, metabolic 

disorders, and neurodegenerative diseases are also linked to kinase protein phosphorylation 

[8]. The key functions of tyrosine sulfation are protein-protein interaction regulation, 

hormonal regulation and hemostasis [9, 10]. It is difficult to characterize the sulfo-proteome 

due to its very acidic nature and labile sulfo-ester bond [11]. In glycoproteins, an 

oligosaccharide chain (glycan) is covalently attached to the polypeptide side-chain [12]. 

Glycosylation is associated with plasma-membrane and secretory proteins [13]. Moreover, 

proteins that have an extracellular segment are often glycosylated. Glycosylation has been 

linked with several human diseases such as inflammation [14], cancer [15], genetic disorders 

[16] and neurodegenerative disorders [17, 18]. Glycoproteins are difficult to characterize due 

to the low-abundance, complexity and heterogeneity of glycan structures [19]. 

Tandem Mass Spectrometry (MS/MS) has emerged as an indispensable tool for 

analyzing the PTMs of proteins as it can provide structural information with high accuracy, 

relative speed and sensitivity [20, 21]. Fragmentation methods are crucial to obtain precise 

structural information. Collision induced dissociation (CID) is frequently applied for 

fragmenting peptide ions. Although CID can recognize the presence of phosphate (especially 

from pSer and pThr) in a peptide or protein, by identifying the loss of a phosphate (-80 HPO3 

or -98 H3PO4) group from the precursor ion, identifying the exact site is a challenging 

problem [22]. The neutral loss of phosphate groups from tyrosine is not always observed due 

to the strong phosphate-tyrosine binding energy and lower abundance of pTyr 

phosphorylation compared to pSer and pThr [23, 24]. Moreover, as sulfonation (SO3) and 

phosphorylation (HPO3) both result in the loss of 80 Da it makes PTM identification even 

more challenging. One inherent problem with CID is that the excitation of precursor ions 

requires increasing internal energy, which increases neutral loss and in turn provides limited 

structural information [22]. However, metastable atom-activated dissociation (MAD) and 
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higher-energy collision dissociation (HCD) experiments on phosphorylated and sulfonated 

peptides in negative ion mode have led to significant improvements [25, 26]. Recently, using 

dual spray ion/ion reactions, traditional collision induced dissociation (CID) underwent 

significant improvement in terms of phosphate group fragmentation and retention [27]. 

Electron-driven methods based on ‘ion-electron’ activation in electron capture 

dissociation (ECD) [28] and ‘ion-ion’ activation in electron transfer dissociation (ETD) [29] 

have been developed as an alternative to CID.  In ECD and ETD, low energy electrons (~1 

eV) are captured (or transferred) by precursor ions [30]. After receiving an electron, the 

activated precursor ions specifically break the N–Cα bonds and yield c and z ions without 

abundant side-chain loss, making it possible to identify the locations of PTM sites [31, 32]. 

However, ECD and ETD methods require multiply charged ions, which is difficult to form for 

the acidic phosphate and sulfonate groups in PTMs [30, 33, 34]. Incorporating metal ions in 

phospho and sulfo sites can improve localization and fragmentation by generating  multiple 

charge states [35, 36]. Due to the acidic nature of phospho- and sulfo- groups in the PTM 

peptide, they can present improved ionization when negative polarity is used in ESI 

(Electrospray Ionization) and provide good fragmentation while retaining the PTM groups 

[37–39]. However, irrespective of activation methods peptide anions produce more complex 

MS/MS spectra caused by manifold fragmentation events with widespread side chain losses, 

making it difficult to process, interpret and analyze the resulting complex data-sets [40–45].  

Alternatives to ‘ion-ion’ activation technique are also available, such as various UV 

photon-based methods including 157 nm [46], 193 nm [47–50], 220 nm [51], 266 nm [52] 

ultraviolet photodissociation (UVPD), and electron detachment dissociations (EDD) [53].  

Kim et al observed series of a/x ions in 157 nm VUVPD on phospho-peptides and noticed the 

retention of  the phosphate group [46]. They also found that phospho-tyrosine is more stable 

compared to phosphoserine or phosphothreonine. 193 nm UVPD with negative polarity is 

capable of providing interesting features, such as excellent sequence coverage and the 

retention of H3PO4 and SO3 groups from product ions of phospho- and sulfo- peptides [50, 54, 

55]. 220 nm UVPD on protonated tyrosine containing phospho-peptides showed characteristic 

aromatic side chain losses of the tyrosine residue [51]. Aromatic side chain loss was also 

observed at 266 nm for electron detachment dissociation (EDD) for peptide anions [53]; 

however, this loss was suppressed for phospho-peptide cations [52]. Compared to high-energy 

UV photodissociation, few studies have been performed using 10.6 μm infrared multiphoton 

dissociation (IRMPD) [56–59] for PTM characterization. Despite several challenges and 
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difficulties, the potential of IRMPD is similar to certain other photoexcitation techniques [60–

62]  since this method: i) requires no alternation of the stable trajectory or kinetic energy of 

the trapped ion for excitation; ii) is not associated with low cutoff m/z; iii) can provide 

reasonable fragmentation efficiency; iv) can operate without collision gas; v) and it is 

compatible with the vibrational modes of PO43- and SO3 groups present in PTMs.  

Although various wavelengths between 157-266 nm were employed in ultraviolet 

photodissociation for characterizing post-translational modifications, 213 nm UVPD [41, 63] 

has never been used before for this purpose. A single high energy UV photon is sufficient to 

promote the dissociation of a peptide and protein, cleaving mainly Cα–C bonds and producing 

abundant a/x ions with some y and z ions. On the other hand, the multiple absorption of low 

energy IR photons is required to increase the internal energy and cleave the labile C–N bonds, 

generating mainly b/y ions. In general, the key advantages of coupling high and low energy 

photon-based activation are that they provide a balanced and diverse array of fragment ions 

and an even distribution of the fragment ions across the entire m/z range. Although 213 nm 

UVPD and other methods (157 nm and 193 nm UVPD) provide large numbers of fragment 

ions, the latter are usually highly charged and are thus observed at m/z very close to that of the 

precursor ion, hence crowding the MS/MS spectra. In this study, we employ a new method 

called HiLoPD (high-low photodissociation) [64], that combines high-energy UV and low-

energy IR lasers with a high resolution Q-Exactive mass spectrometer encompassing high and 

low photoactivation channels for PTM characterization. We also evaluate the performance of 

10.6 μm IRMPD, 213 nm UVPD and HiLoPD for phospho-, sulfo- and glyco-peptide cation 

characterization in view to achieving three goals: i) obtain adequate backbone fragmentation 

with good sequence coverage; ii) identify the exact position of PTMs groups; and iii) compare 

the loss and retain events of the labile PTMs groups in the fragment ions. 

Materials and Methods 
 
Sample Preparation 
 

Phospho-, sulfo-, and glyco-peptides such as RRLIEDAEY(H2PO4) AARG from 

tyrosine kinase peptide, FFKNIVTPRT(H2PO4)PPPSQGK, RDY(SO3)TGWLDF and 

EAISPPDAAS(GalNAc)AAPLR  from GalNAc-Ser Erythropoietin (177-131) were obtained 

from GeneCust Europe. All the peptides were used without any further purification. All the 

peptide samples were prepared at 2 µM concentration in 50/49/1 (v/v/v) 

methanol/water/acetic acid. 
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Mass Spectrometry 

All the experiments were performed on a hybrid quadrupole-Orbitrap Q-Exactive® 

mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with an HESI 

ion source. Positive polarity was used for all the peptides. All the mass spectra were acquired 

using a mass range of 200-2000 m/z and resolving power of 140000 at m/z 400. Spray voltage, 

capillary temperature, and sheath gas flow rate were set to 3.5-4.0 kV, 320˚C and 5-10 

respectively. The AGC (Automatic Gain Control) target was set to 5x106 and the maximum 

injection time was set at 250 ms. The isolation width was 1-2 Th. To avoid collisions and CID 

contamination, the HCD collision energy was set to the minimum 2 eV. All the experiments 

were performed for 3 microscans with averaging for 50 scans. 

Photodissociation  

IRMPD experiments were performed with a 50 W continuous-wave CO2 laser (Model 

ULR-50, Universal Laser System®, Scottsdale, AZ). To compare backbone fragmentation and 

retaining PTM groups, various nominal laser powers from 10-60% were used. However, we 

noticed that 10-30% laser power is enough to achieve excellent fragmentation and comparable 

PTM loss and retention events. Although high laser power can provide a significant number 

of fragment ions, it is difficult to retain the PTM groups. Compared to protein samples, 

peptides generally required shorter irradiation times from 50 ms to 500 ms. For the IRMPD 

experiment, N2 gas pressure in the HCD cell had to be lowered to reduce collisional cooling 

and obtain fragmentation [64]. For the PTM peptides, the pressure controller was set to ~0.1-

0.15 MPa to obtain reasonable trapping and good signals.    

For the UVPD experiments, which were similar to the previous experiment [41, 63], 

the fifth harmonic (λ=213 nm, ~1 mJ/pulse) of a 20 Hz BrillantB solid-state Nd:YAG laser 

(Quantel, Les Ulis, France) was used. In brief, to generate 213 nm UV light, the fundamental 

1064 nm light is passed through the non-linear crystal to generate the second harmonic at 532 

nm. Then the second harmonic is sent through the second crystal where the fourth harmonic at 

266 nm is generated. The remaining fundamental light is then allowed to interact with the 

fourth harmonic (266 nm) to produce the fifth harmonic at 213 nm by sum-frequency 

generation (SFG). A mechanical shutter (SH05/TSC001, Thorslab) was used to control the 
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UV beam in the HCD cell. For PTM peptides, the optimal shutter opening time used here was 

50-100 ms (1-2 laser shots), as these peptides require few UV laser shots.  

HiLoPD experiments were performed with combined IRMPD and UVPD irradiation 

in the HCD cell of a hybrid quadrupole-Orbitrap mass spectrometer. The detailed set up was 

described elsewhere [64]. In brief, the generated fifth harmonic 213 nm laser beam passes 

through two dichroic mirrors, lenses, optical mirrors and is then introduced into the HCD cell. 

In addition, the IR beam is directed at the HCD cell using gold mirrors and a half-moon (D-

shaped) mirror. The IR beam is gated on an external TTL signal. To combine the irradiating 

UV and IR beams, a BaF2 window (wavelength range 0.2-12 μm, Ø 25.4 mm, thickness 5 

mm) is placed at the rear of the HCD cell. This window can transmit both IR (10.6 µm) and 

UV (213 nm) beams with an efficiency of 90 and 85%, respectively. Coupling schemes 

between IR and UV are implemented by simultaneous irradiation of the CO2 laser (50-200 

ms) with 10-30% of nominal laser power and 1-2 shots of UV laser.  

Data Analysis 
Manual interpretation of the IRMPD, UVPD and HiLoPD data was performed with 

the assistance of Protein Prospector V5.14.4. 

(http://prospector.ucsf.edu/prospector/mshome.htm). All the major ion types (a, a+1, a+2, b-1, 

b, b+1, b+2, c-1, c, c+1, x-1, x, x+1, x+2, y, y-1, y-2, z-1, z, z+1) were considered. To identify 

PTM loss, the exact masses of the labile groups were subtracted from the precursor and 

fragment ions and a mass list was created in Excel manually. These values were then searched 

throughout the spectra. H2O and NH3 losses from the fragment ions were also considered.  

For the PTM loss and retention assessments, the position of the PTM sites relative to 

the N- and C-terminal ions of a/b/c and x/y/z, respectively, were considered (Scheme 1). Only 

fragment ions that contained the modified amino acid were taken into account. The losses of 

similar groups (such as H3PO4 and HPO3) from the same fragment ion were counted as a ‘one 

loss’ event. For instance, if both H3PO4 and HPO3 were lost from the y5 ion, this was counted 

as a ‘one loss’ event and not ‘two losses’. In addition, the detection of several y-1, y, y+1 or a, 

a+2 ions from the same backbone position was counted as a ‘one retain’ event rather than 

several events. PTM retention specificity was calculated by the following equation: 
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%	𝑅𝑒𝑡𝑎𝑖𝑛 = 	
∑𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑	𝑃𝑇𝑀𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

∑𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑃𝑇𝑀	𝑙𝑜𝑠𝑠𝑒𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + ∑𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑	𝑃𝑇𝑀𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

× 100 

 

Results and Discussion 

IRMPD, UVPD and HILOPD on RRLIEDAEY(H2PO4)AARG 
The IRMPD, UVPD and HiLoPD photodissociation spectra of the triply-protonated 

[M+3H]3+ (m/z 533.9346) of peptide RRLIEDAEY(H2PO4)AARG are presented in Figure 1. 

Theoretical m/z, observed m/z and assignments for fragment ions detected in the IRMPD, 

UVPD and HiLoPD experiments on this peptide are summarized in Table S1. The abundance 

of fragment ions, excluding phosphate losses, in all three methods is compared in Figure 2a. 

Since the stretching of the P–O bond (9.6–11 μm or 1042-909 cm-1) is in resonance 

with the 10.6 μm wavelength, the phosphate group can stimulate chromophore-driven 

efficient dissociation [65]. The IRMPD spectrum provided a good overall sequence coverage 

of 75%, including sequence information in the low m/z region. IRMPD showed similar 

sequence coverage with N- terminal ions and C-terminal ions (66%). The neural losses of 

98.0118 Da and 79.9986 Da, which corresponded to the elimination of H3PO4 and HPO3 

groups, were observed from the precursor ions at m/z 501.2637 and 507.2681, respectively. 

The neutral loss of H2O was detected at m/z 527.9238. In addition, IRMPD exhibited 

substantial backbone fragmentation (excluding phosphate losses) producing 30 b ions and 13 

y ions (Figure 2a). Regarding site-specific PTM losses, 5 were detected from yn ions (n=5-9) 

while only 2 were identified from bn ions (n = 9, 10) (Table 1). However, phosphate groups 

were retained in 4 yn ions (n=5, 6, 7, 8). The overall phosphate retention efficiency in IRMPD 

was 36.4%.  

The UVPD experiment on the +3 ion of this peptide allowed the detection of a total of 

87 fragment ions (excluding phosphate losses) with 1 laser pulse, which is nearly twice the 

number of fragment ions detected with IRMPD (Figure 2a and Table S1). The neutral loss 

peaks at m/z 527.9256, 506.9291 and 501.2650 correspond to the elimination of H2O, HPO3 

and H3PO4 from the precursor ion [M+3H]3+. The neutral loss of CH3CH2 noticed at m/z 

524.2445, represents the side chain of Ile [66]. The peak at m/z 498.5760 corresponds to the 

loss of O=C6H4=CH2 (106.0836 Da) from tyrosine [67]. However, in comparison to IRMPD 

only 14 b ions were identified in UVPD. Besides the traditional a/x, y and c/z ions, a+1/x+1, 
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x+2, y-1, y-2, c-1, and c+1 ions of this peptide were also detected. Despite the absence of a 

proline residue, we observed y-1 and y-2 ions from the secondary detachment of the x+1 

radical [38,18]. The UVPD spectrum provided 83% overall sequence coverage, with a 

significant number of fragment ions. However, the same sequence coverage (66%) was 

observed with N- and C-terminal ions. 

For UVPD, the neutral losses of H3PO4 and HPO3 groups from the fragment ions 

were observed from yn ions at positions n = 5-9. Only two such losses were identified for zn 

ions (n = 5,7). Surprisingly, no such phosphate loss was detected for a, b, c or x ions. A 

significant number of preserved phosphate groups were observed for xn (n=5,6,7), yn 

(n=5,6,7,8), zn (n=5,6) and an (n=9) ions (Table 1). An overall phosphate retention efficiency 

of 58.8% was obtained for UVPD. 

HiLoPD on the same peptide produced a wider range of fragmentation types, a, b, c, x, 

y, and z, owing to its high and low activation channels combining UV and IR 

photodissociation. While UVPD and HiLoPD had the same sequence coverages (83%), 

HiLoPD presented a diverse array of fragment ions from the N and C-terminals. “UV-type” 

fragment ions (i.e. a/c and x/z) allowed increasing the sequence coverage in HiLoPD 

compared to IRMPD. A significant number of b ions (31 fragments) were identified in 

HiLoPD, similar to IRMPD, whereas many of them were absent in UVPD (Figure 2a). 

However, compared to UVPD, the number of a/x ions was lower in HiLoPD. In addition to 

the traditional ion types, the spectrum also contained highly abundant ions corresponding to 

neutral losses of water and ammonia from the fragment ions (Table S1). As with UVPD, 

phosphate losses were observed for yn (n = 5-9) and zn (n=5, 7) ions (Table 1). Interestingly, 

it appeared that the loss of HPO3 from y ions was more frequent in HiLoPD and UVPD 

compared to IRMPD. In general, the activation of phospho-peptide molecular ion by collision 

induced the cleavage of the C–O‒P ester bridge. If the cleavage of C–O bond occurred with 

hydrogen transfer, this led to phosphoric acid (H3PO4) loss, whereas breaking the O‒P bond 

promoted the loss of the HPO3 group. In the collision activation of tyrosine phosphorylated 

peptide, neutral loss of the HPO3 (79.9657 Da) group is usually observed [69] and  the loss of 

the H3PO4 group is less likely to occur, since the bond dissociation energy of a C–O bond 

adjacent to an aromatic ring is quite high compared to that of a P‒O bond and the second 

aromatic group does not promote E2-elimination or SN2-neighbouring group participation 

reaction [70]. Previous studies reported that the H3PO4 group can be removed from 

phosphorylated tyrosine through the concurrent or sequential loss of HPO3 from the tyrosine 
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residue and of H2O from elsewhere in the peptide [71, 72]. Moreover, 7 x and y ions, still 

containing the phosphate groups were also detected (Table 1). The overall phosphate 

retention efficiency in HiLoPD was 50.0%. 

Although significant losses of phosphate groups from the product ions are not 

desirable, some of these losses along with high sequence coverage can certainly confirm the 

phosphate location on a phospho-peptide. In IRMPD, the elimination of the H3PO4 group was 

identified from b9-10 as well as from y5-9 ions (Table 1). In UVPD and HiLoPD, the neutral 

losses of H3PO4 and HPO3 groups were observed only from y5-9, z5 and z7 fragment ions. As 

evidenced by these results, no phosphate loss was detected from y1-4 and b1-8 ions, confirming 

that the phosphate group was attached to the tyrosine at position 9 from the N-terminal.  

 

IRMPD, UVPD and HILOPD on FFKNIVTPRT(H2PO4)PPPSQGK 
The IRMPD, UVPD and HiLoPD photodissociation spectra of the triply-protonated 

[M+3H]3+ (m/z 665.3544) of peptide FFKNIVTPRT(H2PO4)PPPSQGK is presented in Figure 

3. Theoretical m/z, observed m/z and assignments for fragment ions detected in IRMPD, 

UVPD and HiLoPD experiments on this peptide are summarized in Table S2. Losses of 

HPO3 and H3PO4 groups from the precursor ion were detected at m/z 638.6534 and 632.6923, 

respectively. Neutral losses of water and ammonia were also observed in these spectra. 

The abundance of fragment ions excluding phosphate losses in all three methods is 

compared in Figure 2b.The IRMPD, UVPD and HiLoPD spectra provided excellent sequence 

coverage (94%-100%) and with a substantial number of fragment ions. Nearly equal numbers 

of b (27) and y (25) ions were detected in IRMPD (Figure 2b). In UVPD, a significant 

number of fragment ions were observed compared to IRMPD and HiLoPD.  

With IRMPD, the losses of H3PO4/HPO3 groups were detected from b10-12, b15 and b16 

ions as well as from y8-12, y14 and y16 ions (Table 2). However, bn (n=10, 12-16) and yn (n=8-

14) fragment ions retained the phosphate groups. The overall phosphate retention efficiency 

achieved with IRMPD is 52%. In UVPD, significant numbers (42) of fragment ions such as an 

(n = 10-16), bn (n = 10-16), cn ( n=13-16), xn (n = 8-16), yn (n=8-16) and zn (n=11-16) retain 

the phosphate groups (Table 2). However, phosphate losses occurred only from 29 fragment 

ions. The phosphate retention efficiency attained in UVPD was higher (59%) than that for 

IRMPD (52%) and HiLoPD (52%). For this phospho-threonine peptide, no phosphate loss 
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was detected from x1-7/y1-7/z1-7 and a1-9/b1-9/c1-9 ions, which confirmed that the phosphate 

group is attached to the threonine at position 10 from the N-terminal.  

 IRMPD, UVPD and HiLoPD on RDY(SO3)TGWLDF 
The IRMPD, UVPD and HiLoPD photodissociation spectra of the doubly-protonated 

[M+2H]2+ (m/z 626.7492) of peptide RDY(SO3)TGWLDF are presented in Figure 4. The 

observed m/z and assignments of fragment ions of this peptide are summarized in Table S3. 

The numbers of fragment ions (excluding sulfonate loss) detected by IRMPD, UVPD and 

HiLoPD are summarized in Figure 2c. Singly and doubly protonated precursor ions provided 

nearly the same fragment ions in UVPD; however, the singly protonated ion was not stable 

and was difficult to isolate prior to MS/MS activation in IRMPD and HiLoPD methods. 

Similar events were also witnessed in a previous study [47]. In contrast, the doubly-

protonated ion of this peptide was easier to analyze with all three methods. Moreover, earlier 

studies reported that higher charge states can increase the sulfonate retention [39]. In all cases, 

the neutral loss of SO3 (79.9573 Da) was observed at m/z 1172.5388 from the [M+H]+ ions 

and at m/z 586.7710 from the precursor ion, respectively. Moreover, the sequential loss of 

SO3 and H2O was detected at m/z 577.7677 from the precursor ion. 

The vibrational frequencies of C‒O(SO3) and symmetrical O=S=O were in the range 

9.4-10 μm [73] which is very close to the wavelength of the CO2 laser (10.6 μm). The IRMPD 

spectrum provided 87% sequence coverage and was dominated by series of y-ions, as well as 

minor contributions from b-ions (Figure 2c). Although more fragment ions were generated 

from the C-terminal, higher sequence coverage was observed for the N-terminal (87.5%) 

compared to the C-terminal (62.5%). Most of the y ions were formed close to the aspartic acid 

at position 2. Previous collision induced dissociation (CID) studies have shown that acidic 

residues near the C-terminus may promote the formation of y ions in sulfonated peptides [74]. 

Some y ions in IRMPD eliminated a molecule of water (18 Da) in secondary fragmentation. 

Interestingly, the loss of SO3 was seen predominantly from b3-8 ions but no such loss was 

detected from y ions (Table 3), probably due to the location of the PTM close to the N-

terminal. 

UVPD and HiLoPD of the doubly protonated precursor ion provided 100% sequence 

coverage with a/x, b/y and c/z ions. 20 and 28 fragment ions (excluding SO3 loss) were 

detected in UVPD and HiLoPD, respectively. In addition to the typical fragment ions types, 

the UVPD and HiLoPD spectra also showed abundant ions corresponding to consecutive 
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neutral losses of water and ammonia. The losses of 171.0099 and 129.0141 Da from the 

precursor ions corresponded to the removal of the related ion of tryptophan at m/z 541.2400 

and the immonium ion of arginine at m/z 562.2380, respectively (Table S3). Hydrogen 

deficient and hydrogen rich fragment ions were prevalent with UVPD and HiLoPD. The loss 

of SO3 from the backbone a/b/c fragment ions in UVPD and HiLoPD could be observed 

(Table 3). Only few a and c ions still containing the SO3 group were detected. As with 

IRMPD, the overall SO3 retention efficiency obtained by these two methods was very poor 

(12.5%). 

In addition to sequence coverage and retention efficiency, the actual site of sulfation 

had to be pinpointed. Although the CID method has routinely been utilized to confirm the 

presence of sulfo groups detecting the neural loss of SO3 from the precursor ion, backbone 

fragment ions are required to confirm the position [47]. In IRMPD, UVPD and HiLoPD, no 

SO3 loss was detected from a1-2/b1-2/c1-2 and this loss was noticed only from a3/b3/c3 and 

onward. In addition, no loss of SO3 was witnessed from x1-6/y1-6/z1-6 ions and such losses 

began to occur only from y7 and x8/z8 ions, which confirmed the presence of the SO3 group on 

tyrosine at position 3 from the N-terminal.  

IRMPD, UVPD and HiLoPD on EAISPPDAAS (GalNAc) AAPLR 
High throughput and residue-specific investigation of the O-glycosylation is 

challenging since the O-glycan core structure is very heterogeneous compared to that of N-

glycan and there is no straightforward protein sequence available for O-glycan [5, 75, 76]. In 

a given protein, O-glycan can be found with several serine/threonine residues. The collision 

induced dissociation (CID) technique is routinely used for deducing glycan composition; 

however, determining the exact position of glycosylation and the peptide sequence is difficult 

to achieve. Although IRMPD provides quite similar fragment ions to CID, a previous study 

demonstrated that a low photon energy based method can detect informative side chain losses 

from non-glycosylated serine and threonine residues, which indirectly implicates glycan 

attachment sites [75].  

The IRMPD photodissociation spectrum obtained for the triply-protonated [M+3H]3+ 

(m/z 556.9529) of peptide EAISPPDAAS(GalNAc)AAPLR is presented in Figure 5. 

Theoretical and observed m/z values of fragment ions of this peptide are summarized in Table 

S4. The abundance of fragment ions excluding glycan losses in all three methods is compared 

in Figure 2d. The sequence coverage obtained by IRMPD is 86%. The neutral losses of 
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GalNAc (221.0999 Da) and GalNAc-H2O (203.0899 Da) from the precursor ion were 

observed at m/z 483.2556 and 489.2591, respectively.  For all the methods, the sequential 

losses of GalNAc and H2O were observed specifically from positions b10-b12. In IRMPD, 

nearly equal numbers of b and y ions could be seen (Figure 2d). The neutral losses of 

GalNAc and GalNAc-H2O from b10-12 ions are apparent whereas for yn ions these occurred 

from n=7, 8, 10, and 12 (Table 4). No such neutral losses were observed for b1-9 and y1-5, 

which unambiguously confirmed that the GalNAc group is attached to serine at position 10 

from the N-terminal. Some GalNAc groups were also preserved in y/b ions (Table 4). 

Overall, IRMPD showed 41.6% PTM retention efficiency, which was better than the sulfo-

peptide. 

The UVPD spectrum provided a wealth of fragment ions with a sequence coverage of 

86%. A significant number of a/x and b/y ions retaining the GalNAc group were detected. 

Compared to IRMPD (23 ions), the UVPD spectrum provided more fragment ions (63 ions) 

(Figure 2d). In addition, some c and z ions were also observed. Moreover, the neutral losses 

of GalNAc (221.0999Da) and GalNAc-H2O (203.0899 Da) groups were observed from all the 

series of ions (Table S4). More losses were detected from y/b ions compared to other 

fragment ions. However, several a/x, b/y and z fragment ions containing the PTM were 

detected (Table 4). The overall PTM retention efficiency was 46.6 %. 

In HiLoPD, a significant number of a/x, b/y and c/z ions were identified with similar 

sequence coverage (86%) from the N- and C-terminals. The number of b ions detected in 

HiLoPD was higher than in UVPD and IRMPD. As in our previous studies, the number of a 

ions was lower in comparison to UVPD, possibly due to the secondary fragmentation of these 

ions [64]. Interestingly, very few x ions were generated in HiLoPD or in UVPD. Compared to 

UVPD, the neutral losses of GalNAc and GalNAC-H2O groups were significantly reduced in 

HiLoPD. Such losses were only observed for b/y and c ions (Table 4). All a and z ions 

retained glycan groups. As with UVPD and IRMPD, neutral losses started to occur from 

positions 10 and 7 from the N- and C-terminals, respectively, which confirms the position of 

the glycan group (in serine at position 10 from the N-terminal) in this peptide. The retention 

efficiency of GalNAc in HiLoPD was 55.0%, which was the highest efficiency compared to 

IRMPD (41.6%) and UVPD (46.6%).  

 
Conclusion 
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In this work, we reported the use of IRMPD, UVPD and HiLoPD to characterize 

phospho-, sulfo- and glyco-peptides in the gas phase. These results showed the proof-of-

principal of 213 nm UVPD and HiLoPD methods for PTM characterization. Compared to a 

whole protein, the characterization of these PTM peptides requires lower CO2 laser power and 

fewer UV laser shots. Controlled and tunable parameters can improve the performance of 

these techniques. The IRMPD results demonstrated that sufficient backbone fragmentation 

and sequence coverage can be obtained. The IRMPD sequence coverage for phospho-

tyrosine, phospho-threonine, sulfo- and glyco-peptides was 75, 94%, 87 and 86%, 

respectively. The exact location of the PTM groups in a peptide can be pinpointed. However, 

fragment-specific and overall PTM retention efficiency in IRMPD was somewhat reduced for 

all peptides. Compared to phospho- and glyco-peptides, the SO3 group was very prompt to 

dissociate in IRMPD, which may have been due to the low bond dissociation energy 

associated with the O–S bond or strong absorption of 10.64 μm IR photons by the SO3 group. 

This is the first study of 213 nm UVPD and HiLoPD used to characterize different PTM 

peptides. UVPD and HiLoPD gave excellent sequence coverage of 83, 100, 100 and 86%, for 

phospho-tyrosine, phospho-threonine, sulfo- and glyco-peptides. PTM retention efficiencies 

were better than in IRMPD (up to 59% for the phospho-peptides). Photodissociation at 213 

nm UVPD and HiLoPD on peptide cations offers several promising benefits including: i) the 

production of more arrays of fragment ions with excellent sequence coverage; ii) the 

identification of the exact PTM position; iii) balanced PTM loss and retention events; and iv) 

no widespread side-chain losses. Our first set of results show that UVPD and HiLoPD prove 

to be promising methods for characterizing phospho- and glyco-proteomics. 
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