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Abstract

A growing number of studies indicate a widening of socioeconomic inequalities in mortality over
the past decades. It has therefore become crucially important to understand the impact of
heterogeneity and its evolution on the future mortality of heterogeneous populations. In particular,
recent developments in multi-population mortality have raised a number of questions, among
which is the issue of evaluating cause-of-death reduction targets set by national and international
institutions in the presence of heterogeneity.
The aim of this paper is to show how the study of the population data and the population dynamics
framework contribute to addressing these issues, by providing a new viewpoint on the evolution
of aggregate mortality indicators in the presence of heterogeneity. Our findings rely on two
unique datasets on the English population and cause-specific number of deaths by socioeconomic
circumstances, over the period 1981-2015.
The analysis of the data first highlights the complexity of recent demographic developments,
characterized by significant composition changes in the population, with considerable variations
according to the age class or cohort, along with a widening of socioeconomic inequalities. We
then introduce a dynamic framework for studying the impact of composition changes on the
mortality of the global population. In particular, we are interested in quantifying the impacts of
cause-of-death mortality reduction in comparison with changes of composition in a heterogeneous
population. We show how a cause of death reduction could be compensated for in the presence
of heterogeneity, which could lead to misinterpretations when assessing public policies impacts
and/or for the forecasting of future trends.
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1 Introduction

Large populations such as national populations usually present some heterogeneity, in the
sense that individuals with different characteristics (gender, social characteristics, neigh-
borhood, etc.) exhibit different demographic behaviors. Whenever possible, taking into
account these characteristics can provide useful information, but at the same time, mod-
eling the population in the presence of heterogeneity is much more complex.
Research on the relationship between socioeconomic status and mortality can be traced
back as far as the nineteenth century (see e.g. Villermé (1830), or reports of the General
Registrar Office in England). Since then, an important body of work has investigated the
links between socioeconomic status (SES) or neigborhood, and mortality and causes of
death (Pamuk (1985), Marmot et al. (1991), Mackenbach et al. (1997)). More recently,
a growing number of studies have shown that the socioeconomic gradient in mortality
is increasing in a number of countries including England (Elo (2009), National Research
Council (2011), Office for National Statistics (2015b), El Karoui et al. (2018)). These
gaps are even been forecast to increase further (Villegas and Haberman (2014)).
The widening of these socioeconomic gaps has led a number of pension funds and insur-
ance companies to rethink their models in order to tackle this heterogeneity issue and
to understand the potential impact of socioeconomic inequalities. For instance, the Life
& Longevity Markets Association (LLMA) and the Institute and Faculty of Actuaries
(IFoA) have recently commissioned a series of reports on longevity basis risk (Haberman
et al. (2014), Li et al. (2017)). Indeed, not taking into account socioeconomic differences
can have substantial impacts for insurance companies or governments, by leading, for
instance, to errors in funding of annuity and pension obligations (see e.g. Meyricke and
Sherris (2013); Villegas and Haberman (2014)) or increasing the basis risk. Consequently,
a growing literature, facilitated by the recent release of data at a finer level, has recently
taken an interest in the joint modeling and forecasting of the mortality of socioeconomic
subgroups (Jarner and Kryger (2011); Villegas and Haberman (2014); Li et al. (2015);
Cairns et al. (2016)). However, there are still many open questions regarding the impact
of heterogeneity on mortality modeling. The classical approach developed in actuarial
science focuses on mortality data only, but the information contained in the population
age-structure is crucial in order to understand the effects of heterogeneity on aggregate
mortality trends. Thus, we argue in this paper that, in order to address these questions,
it is necessary to consider the population evolution over time: namely, the population
dynamics.
The population heterogeneity also raises issues concerning the evaluation of public health
policies. Indeed, a number of institutions have defined public health goals in terms of
cause-of-death mortality reduction (Department of Health (2003), World Health Organi-
zation (2013)). However, at the national level, the interpretation of standard indicators
such as the period life expectancy can be complex in the presence of heterogeneity, since
individuals with different socioeconomic status are affected differently by diseases (Ba-
jekal et al. (2013b), National Research Council (2011), Villegas (2015)). For instance,
by studying recommendations from the World Health Organization, Alai et al. (2017)
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have shown that these recommendations could actually increase life expectancy gaps in
England, despite an increase of the national life expectancy. More generally, it is difficult
to evaluate if changes in cause-of-death mortality have occurred by only analyzing data
aggregated at the national level, since the population age-structure and socioeconomic
composition change at the same time.
The aim of this paper is to show how the study of the population data and the population
dynamics framework shed new light on the evolution of aggregate mortality patterns and
longevity indicators in the presence of heterogeneity.
Our first goal is not to provide a new multi-population or cause-of-death mortality model,
but rather to use the population dynamics point of view in order to represent the data dif-
ferently than what is usually done. The study is based on two datasets obtained from the
UK Office for National Statistics (ONS) and the Department of Applied Health Research
(DAHR), University College London1, containing data on the English population and
cause-specific number of deaths by age, gender and socioeconomic circumstance over the
period 1981-2015. Our analysis reveals significant variations of the population’s socioe-
conomic composition, across the different age classes and over time. This heterogeneity
is combined with an increase in mortality differences, confirming observations of Lu et al.
(2014) and Villegas and Haberman (2014) over the period 1981-2007, which magnifies the
impact of population composition changes on aggregated mortality. Our second goal is
to provide a dynamic framework in order to study these composition changes and their
effect on aggregated mortality over time. In particular, we are interested in studying
cause-of-death mortality reduction in the presence of heterogeneity. In the demographic
literature, Shkolnikov et al. (2006) and Jasilionis et al. (2011) have studied the contribu-
tion of compositional changes to mortality evolution, but rather with a static approach
based on decomposition methods. By introducing an heterogeneous McKendrick-Von Fo-
erster population dynamics model, we adopt a dynamic approach to test the impact of
cause-of-death mortality reduction under different demographic scenarios. The framework
used in this study is not aimed at being a predictive tool, but rather a tool for experiment-
ing and simulating different scenarios. This framework allows us to isolate demographic
changes of different natures (cause-of-death reduction, adverse compositional changes)
and to quantify how they interact when they are combined. In particular, we show that
the reduction of a cause of death may not necessarily result in an improvement in aggre-
gate mortality rates or life expectancy, if the composition of the population changes at
the same time. Thus, the effect of public health policies could be misinterpreted if only
aggregated data are studied.
The remainder of this paper is organized as follows. In Section 2, we introduce the
data used to carry out our study. Particular emphasis is being placed on presenting the
main features of the age structures of the subpopulations grouped by socioeconmic cir-
cumstances, and their evolution over time. In Section 3, we present the deterministic
population dynamics model used in Section 4. Section 4 presents our numerical results.
We first show how different socioeconomic composition of the age classes can impact

1The authors thank Madhavi Bejekal, Senior Research Fellow at the Department of Applied Health
Research (DAHR), University College London, for her assistance in obtaining the dataset from the DAHR.
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the life expectancy and mortality improvement rates. Then, we show how a cause of
death reduction could be compensated for by adverse compositional changes, induced by
heterogeneity in fertility rates.

2 What can be learned from the data

In this section, we present the two datasets used in this paper. Particular emphasis is
made on the evolution of the age structure of the subpopulations grouped by deprivation
level, which we consider to be an important contribution of the study.

2.1 Datasets

The data we use provide mid-year population estimates in England by age class and
socioeconomic circumstances for the years 1981-2015, combined with the number of deaths
by age, cause and socioeconomic circumstance. Our study is based on two data sources:
(i) The first dataset was provided to us by the Department of Applied Health Research
(DAHR) at University College London in the UK, and is based on the Index of Multiple
Deprivation 2007 (IMD 2007) for the 1981-2006 period.
(ii) The second dataset was released in 2017 by the Office for National Statistics (ONS)2,
and is based on the IMD 2015 for the 2001-2015 period.

Deprivation Criterion In both datasets, socioeconomic circumstances are measured
by the Index of Multiple Deprivation (IMD). The IMD is a geographically based index,
created in order to provide an official measure of multiple deprivation dimensions at the
level of small areas called LSOAs3, each composed of about 1500 individuals (see Noble
et al. (2007) and Department for Communities and Local Government (2015) for more
details). The IMD is based on the measure of seven broad socioeconomic factors: income,
employment, health, education, barriers to housing and services, living environment and
crime. The IMD score of a LSOA is used as a SES proxy for individuals living in the
small area. The index also includes information on the physical and social environment of
individuals (by including, for instance, the road distance to a GP surgery and supermarket,
or crime statistics), which can have a significant influence on health outcomes (Diez Roux
and Mair (2010); Nandi and Kawachi (2011)).
One limitation of using area-based measurements is that they apply the same level of
deprivation to all individuals living in an area. However, LSOAs are rather small areas
and geographical data are often more available on a large scale than multiple individual
socioeconomic measurements. We also note that the IMD is computed at fixed dates,
while being applied to a longer time period (e.g. IMD 2007 applied to the period 1981-
2007). The implications of using a fixed IMD quintile allocation have been discussed
comprehensively in Bajekal et al. (2013a) and in Appendix D of Lu et al. (2014), based

2Publicly available on the ONS website (www.ons.gov.uk) under the reference number 006925.
3In 2007, there were 32,482 Lower Layer Super Outupt areas (LSOAs) in England (34,753 in 2011)

(Office for National Statistics (2012)).
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on the period 1981-2001. Our comparison of data computed with the IMD 2007 and IMD
2015 for the overlapping period 2001-2006 also gives very similar results. See Appendix
A for a more detailed discussion on this issue.

Structure of data Our two data sources are based on a relative measurement of depri-
vation. LSOAs are ranked by their IMD scores and grouped into five deprivation quintiles
numbered from 1 to 5: IMD quintile 1 (IMD Q1) for the least deprived quintile, to IMD
quintile 5 (IMD Q5) for the most deprived quintile. It is worth noting that for each year,
the five deprivation quintiles based on the LSOAs’ ranking comprise approximately the
same number of individuals. Specific features of each datasets are summarized in Table 1
and 24.

Dataset 1 Dataset 2
Deprivation index IMD 2007 IMD 2015
Time period 1981-2006 2001-2015
Ages 25-85+ 0-90+
Population age group 5 years 1 year
Deaths age group 5 years 1 year

5 years
per cause

Table 1: Datasets

Datasets
1 2

Cardiovascular diseases ˆ ˆ

Neoplasms ˆ ˆ

Respiratory diseases ˆ ˆ

External causes ˆ ˆ

Diabetes ˆ

Digestives diseases ˆ

Mental diseases ˆ

Neonatal deaths ˆ

Table 2: Causes of death in each dataset

The compilation method of Dataset 1 is described in Lu et al. (2014). See also Labit Hardy
(2016) for a detailed description of the dataset. Those data have also been used in
papers focusing on the study of mortality improvements and healthy life expectancy by
deprivation level (e.g. Bajekal (2005), Lu et al. (2014)) or in mortality modeling (e.g.
Villegas and Haberman (2014) and Li et al. (2017)).
In addition to updating the data for years 2007-2015, Dataset 2 provides disaggregated
data by single year of age as well as data for ages below 25. This constitutes an important
contribution to our paper, by allowing for a more precise analysis of the population by
deprivation level.

2.2 Data analysis

The following analysis of the data shows an important heterogeneity in the composition
of different age classes for both males and females, combined with significant temporal
changes in composition by age, such as the striking evolution of the composition of older
age classes (in particular for the age group 65-74). In particular, one might also wonder

4In Dataset 2, cardiovascular diseases are divided in ischemic heart diseases, strokes and other cardio-
vascular diseases; external causes in intentional and unintentional injuries.
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how the increase in deprivation observed among younger cohorts will impact future mor-
tality in England. While significant changes of composition occurred in the population,
the gaps in mortality by deprivation level have widened. Thus, heterogeneity impacts
mortality rates differently according to age or time, and generates additional complexity
in the study of aggregated death rates. When results are similar, only data for males are
presented for conciseness.

2.2.1 Population composition

Age Pyramids In order to illustrate differences in the composition of populations per
deprivation quintile at all ages, age pyramids of the least deprived quintile (IMD Q1) and
most deprived quintile (IMD Q5) are represented in Figure 1 for years 20015 and 2015,
along with the age pyramid of England. By reading Figure 1 vertically, we can see that
for each year, the form of the age pyramids vary significantly between the deprivation
quintiles and the English population. IMD Q5 represented in Figure 1e and 1f, is much
younger on average than IMD Q1, which is represented in Figure 1c and 1d. For instance,
the median age in 2015 was 33 years (mean 35.5) in IMD Q5, while the median in IMD
Q1 was 44.2 (42.6) and 39 years (39.7) in England. One factor explaining these differences
could be the natural life-course trajectory of individuals, with young adults (around 20-
35) typically living in rented housing in inner-city areas and with older households (older
than 35) moving out to less deprived neighbourhoods.
Some cohorts are also more represented among a particular subpopulation. For instance,
the English baby-boom generation (born in the years after World War II) are strikingly
more represented among IMD Q1.
The horizontal reading of Figure 1 shows that in addition to this heterogeneity in age,
significant temporal changes in the age pyramids occurred from 2001 to 2015. These
changes are caused by population ageing, but likely also by changes in birth patterns,
coupled with internal and external migrations6. Furthermore, changes over time in popu-
lation age-structure are quite different according to the level of deprivation. For instance,
the median age in IMD Q5 has dropped over 1%, from 33.4 to 33 years, while it has in-
creased more than 9% in IMD Q1, from 40 to 44, and about 5% in the general population,
from 37.1 to 39. Thus, IMD Q5 has become more youthful from 2001 the 2015, despite a
general population ageing.

5Data by deprivation level are not available before year 2001 for ages younger than 25 years old.
6Here, we refer to internal migrations as the migration of individuals in between IMD quintiles (linked

here to residential mobility), whereas external migrations correspond to the migration of individuals
from/to places outside of England.
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(a) English population, 2001
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(b) English population, 2015
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(c) Least deprived quintile (IMD Q1), 2001
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(d) Least deprived quintile (IMD Q1), 2015
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(e) Most deprived quintile (IMD Q5), 2001
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(f) Most deprived quintile (IMD Q5), 2015

Figure 1: Age pyramids in 2001 and 2015
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Fixed age classes As shown in Figure 2a, the composition of age class 65-74 varied
significantly from 1981 to 2015, to the benefit of the least deprived populations. In par-
ticular, the total proportion of males in the two least deprived quintiles (IMD Q1 and
Q2) increased from 38% in 1981 to 46% in 2015. On the contrary, the total proportion of
males in the two most deprived quintiles (IMD Q4 and Q5) decreased from 41% to 32%.
This could be explained by an improvement over time of living conditions for older indi-
viduals (which could be partly due to improvements in home ownership, financial security
or employment for the elderly), and also, as noted above, by a baby-boom cohort effect7.
Indeed, over the observed period and regardless of global improving trends, individuals
born during the English baby-boom are less deprived than the immediately preceding and
following cohorts.
Figure 2b shows that the average level of deprivation is higher in the age class 25-34 than
in the age class 65-74, this being true for the whole period 1981-2015. Moreover, the
composition of age class 25-34 also varied from 1981 to 2015 (Figure 2b), with the relative
deprivation of this age class increasing over time. For instance, the proportion of males in
age class 25-34 for IMD Q1 and Q2 has decreased from 36% to 31%, while the proportion
of males in IMD Q4 and Q5 has increased from 43% to 49%.
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Figure 2: Proportion of males by age class and IMD quintile (1981, 1990, 2005, 2015)

Fixed cohorts As shown in Figure 38, the average level of deprivation of the 1956-60
and 1976-80 cohorts decreased over time, due to internal and external migrations9 and
differing mortality rates. However, the improvement in deprivation level for the older
cohort (Figure 3a) is much higher than that of the younger cohort (Figure 3b), which
confirms remarks made above regarding of Figure 2b. The proportion of males in the

7For more details, see e.g. Kontopantelis et al. (2018), Office for National Statistics (2018a) and Office
for National Statistics (2018b).

8The 1976-80 cohort could only be represented up to ages 35-39.
9Internal migrations correspond to residential mobility.
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1956-60 cohort at age 35-39, for the two most deprived quintiles, was 39%, against 43%
for the 1976-80 cohort at the same age (in 2015). Similarly, the proportion in the two
least deprived quintiles was about 41% in the oldest cohort (1956-60) against 37% in the
youngest cohort (1976-80).
Due to differences in mortality rates, less deprived individuals naturally survive longer,
and therefore at older ages the cohorts become progressively less deprived (Figure 17 in
Appendix B.1).
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Figure 3: Proportion of males by cohort and IMD quintile

2.2.2 Mortality

As mortality data are more commonly studied, we only give here a brief overview of the
main stylized facts, with a particular focus on Dataset 2. For more details on the mortal-
ity data, we refer to Bajekal (2005), Lu et al. (2014) or Villegas (2015) for Dataset 1 and
Li et al. (2017) for Dataset 2.
Both levels and shapes of central death rates vary with the deprivation level, with mor-
tality higher at all ages for IMD Q5 (Figure 18, Appendix B.2). Before age 35-40 (with
the exception of age 0), differences are less pronounced and central death rates in all IMD
quintiles are lower than 1%�. When infant mortality is not taken into account, central
death rates first attain the level of 10%� at age 58 for males in IMD Q5 (62 for females),
while this value is only attained at age 68 for males in IMD Q1 (72 for females).
Despite a common improvement for all IMD quintiles, the gap in life expectancy between
IMD quintiles appears to have widened over time (Figure 4). For instance, the gap in life
expectancy between IMD Q1 and Q5 has grown from 2.2 years for females and 2.9 years
for males in 1981, to 4.2 and 3.9 years in 2015, respectively.
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(b) Females

Figure 4: Period life expectancy at age 65 over 1981-2015

Improvement rates Figure 510 shows that at all ages above 25, IMD Q5 has expe-
rienced lower rates of improvement in mortality than IMD Q1 (with the exception of
age group 25-34 for females). Males experienced overall higher improvement in mortality
than females, with the highest differentials in deprivation being at ages 40-44 and 45-50.
Females experienced the highest differentials in the rate of mortality improvement at ages
35-39 and 40-44. Figures 6a and 6b illustrate a clear widening of the gap in annual mor-
tality improvement at older ages, which is consistent with the observations of Lu et al.
(2014) and Villegas and Haberman (2014) over the period 1981-2007 and Li et al. (2017)
over the period 2001-2015 for ages above 60.
Over the period 1981-1995, males in the two most deprived quintiles (IMD Q4 and Q5)
actually experienced a deterioration of mortality at ages under 40 (negative average an-
nual rate of improvement in mortality), while improvements in mortality over the period
2001-2015 are positive (and higher for IMD Q5 under age 30). At ages above 60, the gap
in mortality improvement rates increased significantly, with the highest differentials being
at ages 75-79 and 80-84 for the period 2001-2015 (30-34 and 35-39 over the period 1981-
1995). Improvement rates in mortality at younger ages have also changed significantly.
It is worth noting that over the period 2001-2015 and for females aged above 65, the
gap in mortality improvement rates between IMD Q1 and Q5 was higher than for males
(see Appendix B.3 Figure 19). This can be explained by a sharp deceleration of mor-
tality improvement for females in IMD Q5, already reported by Villegas and Haberman
(2014) for the period 1981-2007. A discussion on the potential drivers of these widening
socioeconomic gaps can be found in El Karoui et al. (2018) or Lu et al. (2014).

10Improvement rates are computed as the yearly improvement rates of central death rates over 5-year
age classes. In these graphs, improvement rates are smoothed for visualization purpose only.
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(b) Females

Figure 5: Average annual rates of improvement in mortality, 1981-2015
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(a) 1981-1995
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(b) 2001-2015

Figure 6: Average annual rates of improvement in mortality, males

Causes of death In average, cardiovascular diseases (CVD) constituted the leading
cause of death for ages above 25 over the period 1981-2015, followed by cancers (neo-
plasms) and respiratory diseases. However, recent changes in cause of death trends have
been observed since the early 2000s, with neoplasms becoming the leading cause of death,
ahead of CVD. The speed of this evolution has differed by deprivation degree, gender and
age class. For example, for males of age 25-85 in IMD Q1, neoplasms became the leading
cause of death in 2005, while it only became the leading cause of death in 2010 for males
in the same age class in IMD Q5.
Differences in cause-of-death mortality by deprivation level can mainly be observed for
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neoplasms, CVD and respiratory diseases. For example, in 1981, differences between IMD
Q1 and Q5 were mainly in CVD for ages 25-85 (52% of all deaths for IMD Q1 and 48% for
Q5, see Figure 7), while differences were mostly in neoplasms in 2015 (40% of all deaths
for IMD Q1 and 32% for Q5). For respiratory diseases, differences in the proportion of
deaths remained rather stable during the whole period. Plots for females are available in
Appendix B.4.
It is interesting to note as well that at young ages, the most deprived quintiles are more
affected by neonatal deaths and accidents (see e.g. Oakley et al. (2009); Guildea et al.
(2001) for more details on mortality at younger ages). We also refer to Villegas (2015)
for more details on trends in cause-of-death mortality by deprivation level over the period
1981-2007.
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Figure 7: Male deaths by cause and IMD quintile for ages 25-85

3 Population dynamics model

Based on the data analysis, modeling the population dynamics appears to be instrumen-
tal to better understand the impact of heterogeneity and its evolution on the aggregate
mortality. Age-structured population dynamics models take into account the information
contained in the population age-structure and model its evolution.
In this study, joint evolution of the subpopulations (IMD quintiles in our case) is modeled
by a linear and deterministic McKendrick-Von Foerster (McKendrick (1926); Von Foer-
ster (1959)) with time-dependent fertility and mortality rates. We first recall briefly the
McKendrick-Von Foerster model for a two-sex population, then then describe the joint
evolution of the subpopulations and of the population on aggregate, and finally discuss
model validation and limitations.
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3.1 McKendrick-Von Foerster population dynamics model

The McKendrik-Von Foerster model is a classical age-structured deterministic population
model, which can be easily adapted into a two-sex model with time dependent parameters.
The model is continuous in age and time, and the population is described at time t by
the function of gender and age pgpε, a, tqq, for a P r0, a:r and ε “ f or m respectively for
females and males. gpε, a, tq should be understood as the number of individuals of gender
ε between age a and a` da at time t. It follows that

şa:

0
gpε, a, tqda is the total number of

individuals of gender ε in the population at time t. Demographic rates are considered as
parameters of the model. Coupled to an initial age pyramid, they are the determinants
of the future shape of the age pyramid.

3.1.1 Demographic rates

(i) Mortality rates: For each gender ε, the mortality rate (or force of mortality) at age a
and time t is denoted by µpε, a, tq. Two types of mortality indicators are usually computed,
cohort indicators and period indicators:
- The period survival function is denoted Spε, a, tq “ e´

şa
0 µpε,x,tqdx and represents the

probability to survive to age a, in the mortality conditions of time t. The period life
expectancy at age a and time t is given by:

epε, a, tq “

ż a:

a

e´
şx
a µpε,s,tqdsdx “

1

Spε, a, tq

ż a:

a

Spε, x, tqdx.

- The cohort survival function is denoted by Scpε, a, tq “ e´
şa
0 µjpε,s,t´a`sqds, and represents

the probability for an individual born at time t´ a to survive until age a. The cohort life
expectancy, which is the average time that individuals born at time t ´ a will live after
age a, conditional to surviving to this age, is denoted by:

Ecpε, a, tq “
ż a:

a

e´
şx
a µpε,s,t´a`sqdsdx “

1

Scpε, a, tq

ż a:

a

Scpε, x, tqdx.

We also denote by Spε, a ´ x, a, tq and Scpε, a ´ x, a, tq the respective period and cohort
survival probabilities from age a ´ x to age a at time t, with Spε, 0, a, tq “ Spε, a, tq (the
same holds for Sc).
The period and cohort indicators do not provide the same information. The cohort life
expectancy is “real”, in the sense that it gives information on particular individuals living
in the population. On the contrary, the period life expectancy is only an indicator which
aggregates information on all individuals living in a given population at a specific date t.
It can be interpreted as “the average duration of life of a representative individual living
in the mortality conditions of time t”.
(ii) Fertility rate: The fertility rate for an individual with gender ε and age a at time t
is denoted by bpε, a, tq. In a two-sex population, modelling births can be quite complex
(Iannelli et al. (2005), Boumezoued et al. (2018)). In this article, we adopt the usual
assumption that only women give births, so that bpm, a, tq “ 0. Females are assumed to
give birth to a female with a probability pf “ p and to a male with probability pm “ 1´p.
For sake of simplicty, the female birth rate bpf, a, tq is now denoted by bpa, tq.
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3.1.2 McKendrick-Von Foerster transport equation

The evolution of the population is given by the solution of the following transport partial
differential equation:

pBt ` Baqgpε, a, tq “ ´µpε, a, tqgpε, a, tq, @a, t ą 0 (balance law) (1)

gpε, 0, tq “ pε
ż a:

0

bpa, tqgpf, a, tqda (birth law) (2)

gpε, a, 0q “ g0pε, aq (initial population)

Intuitively, a proportion µpε, a, tqdt of individuals of age a and gender ε dies time t and
t` dt, and women of age in ra, a` dar give birth to bpa, tqgpf, a, tqda individuals at t.
Equations (1)-(2) are usually solved along its characteristic curves, or cohorts lines. The
resolution method can be interpreted as counting the number of survivors at time t in
each cohort. Two regimes can be distinguished:
(i) Individuals present in the initial population (a ě t): At time t, individuals who were
already present in the initial population are individuals of age a ě t. Their number at
time t is the number of individuals of age a ´ t in the initial population who survived
until time t:

gpε, a, tq “ g0pε, a´ tqScpε, a´ t, a, tq, a ě t. (3)

(ii) Individuals born after the initial time (a ă t): At time t, individuals born after t “ 0

are individuals of age a ă t. Their number at time t is thus the number of individuals
born at time t´ a and who survived until time t:

gpε, a, tq “ pεBpt´ aqScpε, a, tq, a ă t, (4)

where Bptq is the number of individuals born at time t:

Bptq “

ż a:

0

bpa, tqgpf, a, tqda. (5)

Thus, if we look at the population at a small time t, the age pyramid will be mostly
shaped by the time translated initial age pyramid, and will follow the idea that “today’s
youths give us most of the information on tomorrow’s seniors”. On a longer term, the
initial population is naturally erased and the shape of the future age pyramid is only
characterized by the birth function B and survival functions.

Stable solution of the McKendrick-Von Foerster equation The stable theory
defines a stable age profile, given a fixed regime of time-independent age-specific demo-
graphic rates (see Keyfitz and Caswell (2005), Inaba (2017), or Webb (1985) for a more
general framework). Similarly to the period life expectancy, the stable age profile gives
information on a fictive population, living in the mortality and fertility conditions of a
given time. For instance its comparison with the real age profile of the population allows
us to observe if strong changes in birth or mortality rates have occurred in the past.
A stable solution (for females) of the McKendrick-Von Foerster evolution Equation (1)-(2)
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with time independent demographic rates µpε, aq and bpε, aq, is a solution which can be
expressed as a product function e´λ

˚a´
şa
0 µpf,xqdxC0e

λ˚t, where λ˚ is the unique solution
of:

1 “ pf
ż a:

0

bpaqe´λ
˚a´

şa
0 µpf,xqdxda. (6)

The previous equation is called the characteristic equation and λ is called the intrinsic
growth rate of the population. A solution of this type is called stable because its age
profile, or age distribution, remains constant over time, in the sense that the proportion
of individuals in each age class remains constant.
An important property is that the solution of (1-2) with time independent demographic
rates behaves asymptotically as a stable solution. After a long period of time, the popu-
lation increases or decreases exponentially at rate λ˚, and

gpε, a, tq „
tÑ8

pεCpλ˚, g0qe
λ˚pt´aqSpε, aq. (7)

Equation (7) can be interpreted as follows: at a given time t0, the right hand side of the
equation is the shape that the age pyramid at t0 would have if the demographic rates had
been constant in the past, equal to µpa, t0q and bpa, t0q.

3.2 Joint evolution of the subpopulations

3.2.1 Subpopulations evolution

In the sequel, we consider the evolution of p socioeconomic subpopulations (for instance
IMD quintiles). For each j “ 1...n, the population j is described by the solution gj
of the McKendrick-Von Foerster Equations (1)-(2) with initial population gj0 and demo-
graphic rates µjpa, tq and bjpa, tq, where gjpε, a, tq is the number of individuals at time t
in population j, gender ε and between age a and a` da.

3.2.2 Aggregated population

We call aggregated population the global population composed of all subpopulations,
denoted by gpε, a, tq with:

gpε, a, tq “
n
ř

j“1

gjpε, a, tq.

The aggregated population dynamics is thus defined by

pBt ` Baqgpε, a, tq “ ´
řn

1 µjpε, a, tqgjpε, a, tq, gpε, 0, tq “ pε
şa:

0
p
řp

1 bjpa, tqgjpf, a, tqqda.

Aggregated mortality The mortality rate at age a in the aggregated population cor-
responds to the intensity of individuals aged a (for each gender) dying between a short
interval of time dt. Here, the previous partial differential equation can be rewritten as:

pBt ` Baqgpε, a, tq “ ´

˜

n
ÿ

1

µjpε, a, tq
gjpε, a, tq

gpε, a, tq

¸

gpε, a, tq.
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The mortality rate of the aggregated population is thus:

dpε, a, tq “
n
ÿ

j“1

µjpε, a, tqwjpε, a, tq, with ωjpε, a, tq “
gjpε, a, tq

gpε, a, tq
. (8)

Actually, the mortality rate in the aggregated population should be denoted by dpε, a, t, pgjqj“1..pq,
since it depends on the age pyramids of all subpopulations. The time dependence of the
aggregate mortality rate is caused not only by the time-dependence of the specific mor-
tality rates in each subpopulation, but also by the evolution of the proportions wjpε, a, tq
of individuals in each subpopulation and age class.
In order to better understand how these weights could impact the aggregated population,
let us again make the distinction between the two cases a ě t and a ă t. In order to
simplify notations, we consider for the remainder of this section that the aggregated pop-
ulation is composed of two subpopulations (p “ 2). When there is no ambiguity, we also
omit the gender variable ε.

Aggregated mortality over the short term For individuals present in the initial
population (of age a ě t at time t), the age pyramid of the subpopulations are mostly
shaped by the initial subpopulations and Equation ((3)) yields for a ě t:

dpa, tq “
g10pa´ tqSc1pa´ t, a, tqµ1pa, tq ` g

2
0pa´ tqSc2pa´ t, a, tqµ2pa, tq

g10pa´ tqSc1pa´ t, a, tq ` g20pa´ tqSc2pa´ t, a, tq.
(9)

For small times t, the previous equation holds for most ages and the aggregated mortality
depends on three factors:
- The subpopulations mortality rates µ1 and µ2.
- The initial subpopulations g10 and g20: the aggregated mortality rate at age a depends
on the initial composition of the age class a´ t, since individuals are assumed to stay in
the same subpopulation. In particular, if the initial age pyramid is very heterogeneous
in age, i.e. if the age classes are composed very differently, aggregate death rates could
experience significant changes (for instance if younger individuals are more deprived than
older ones, this could lead to an increase in aggregated mortality rates).
- Cohorts survival: if the initial age pyramids in each subpopulation are equal (g10 “ g20)
Equation ((9)) becomes:

dpa, tq “
Sc1pa´ t, a, tqµ1pa, tq ` Sc1pa´ t, a, tqµ2pa, tq

Sc1pa´ t, a, tq ` Sc2pa´ t, a, tq
a ě t.

This illustrates a well known “selection” effect which is that if a subpopulation, say sub-
population 2, experiences a higher overall mortality, Subpopulation 1 will have more and
more weight at older ages and the aggregated mortality will tend to the mortality rate of
Subpopulation 1.

Aggregated mortality over the long-term On a longer term, the subpopulations
evolution are mainly governed by the birth functions B1 and B2 and for t ą a:

dpa, tq “ pε
B1pt´ aqSc1pa, tqµ1pa, tq `B2pt´ aqSc2pa, tqµ2pa, tq

B1pt´ aqSc1pa, tq `B2pt´ aqSc2pa, tq
. (10)
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Thus, if the subpopulations experience heterogeneity in birth patterns for a certain period
of time, this can induce a temporary variation in the aggregated mortality rates and
generate a so-called cohort effect.

3.3 Model validation and limitations

Details on the numerical implementation of the model can be found in Appendix C.
Due to the lack of data availability, internal and external migrations are not taken into
account in the modeling, which can be unrealistic for young adults, but appears plausi-
ble for older age classes. In order to test this hypothesis, we have simulated population
evolution using the historical demographic time-dependant rates and compared the final
simulated pyramid with the actual historical pyramid available from the data. Subpop-
ulation evolution was first (Case 1) simulated from years 1981 to 2011, using 5-year age
class inputs (initial pyramid and demographic rates available only after age 25)11. Sec-
ondly (Case 2), we simulated subpopulation evolution for all ages from years 2001 to
2015, using 1-year age class inputs12. We compared individuals after age 40, for which
migrations are less significant. This corresponds for Case 1 to individuals aged between
70 and 85 in 2011 (40 and 55 in 1981), and to individuals aged between 54 and 85 in
2015 (40 and 71 in 2001) for Case 2. For Case 1, the average relative difference in the
number of individuals by gender, deprivation quintile and age class, between the simu-
lated and historical pyramids, is at most 4%, except for females in IMD Q5, for which it
is 6.8%. For Case 2, it is at most 3%, except for females in IMD Q5, for which it is 5.2%.
For both Cases 1 and 2, relative differences in the proportions of individuals within each
subpopulation have similar magnitudes as the average relative differences in the number
of individuals in each subpopulation. However, when considered at aggregate level, the
average relative difference in the number of individuals per age class is only 1.5% for males
and 0.5% for females in Case 1, and 1% for males and 0.7% for females in Case 2. The
additional deviation that arises when looking at subpopulation differences could be partly
attributed to the absence of a mechanism capturing small existing internal migrations at
ages above 40. Even without accounting for this, the simulated and historical pyramids
remain largely consistent at both aggregate and subpopulation levels, for ages initially
above 40. Moreover, using 1-year age class inputs lowers the differences between the
simulated and historical pyramids (Case 2). Indeed, even though the simulation period
is shorter in Case 2, the age range tested is wider than when using the 5-year age class
inputs in Case 1.
Thus in its current implementation, the model can predict well the population evolution
of individuals older than 40 years old at initial year of simulation. However, it would
require extension to accurately project for individuals younger than 40 years old. For
these individuals, migrations should be considered, as well as a birth rates forecasting
model for newborns. Currently, the model does not account for the full complexity of

11This simulation period is used for one application presented in Section 4.1
12Due to the databases characteristics, the largest possible period to simulate with a 1-year age class

inputs for all ages is 2001-2015, see the databases characteristics in Table 1.
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the population evolution; however, it is worth repeating that the framework used in this
study is not intended to be a predictive tool, but rather a tool for experimenting and
simulating different scenarios. Indeed, even in this streamlined framework, we are able to
reproduce composition changes and capture non-trivial effects of the heterogeneous pop-
ulation dynamics, presented in Section 4. Moreover, this framework allows the derivation
of quasi-explicit formula and asymptotic results for a number of indicators, allowing for
easier interpretation.

4 Numerical Results

In order to illustrate different potential impacts of heterogeneity on the mortality experi-
enced by the aggregated population, we now apply the model presented in Section 3.
We first show in Section 4.1 how within-age heterogeneity (of, in our case, deprivation
levels) can impact the aggregate population mortality. Then, in Section 4.2, we show
how the effects of a cause of death reduction could be compensated for by population
composition changes induced by a cohort effect, and thus how it could be misinterpreted
when the population heterogeneity is not taken into account.
For illustrative purposes, we consider in the remainder of this section the evolution of a
synthetic heterogeneous population composed of two subpopulations: the most and least
deprived IMD quintiles (denoted by 1 and 5 in the following). Only results for males are
presented for conciseness, as results for females are similar.

4.1 Impact of heterogeneity in the initial age pyramid

As seen in Section 2.2, the English population presents a strong heterogeneity in age,
meaning that the population composition varies substantially according to age class, and
that age classe composition has also varied significantly over time. In the following, we
illustrate how heterogeneity in age can impact two indicators: the period life expectancy
at age 65, and mortality improvement rates above age 65.

Demographic scenario (Scenario A) In order to isolate the influence of changes
in population composition, we assume for this first scenario that mortality rates in each
subpopulation are time-independent. The population is simulated “on the short term” (30
and 40 years) in two cases: the initial age pyramids and mortality rates are first based on
the data for year 1981, and secondly on the data for year 201513. Thus, the aggregated
death rate defined in Equation (8) is

dpε, a, tq “
ÿ

j“1,5

µ̂jpε, a, yqwjpε, a, tq, and g0pε, aq “
ÿ

j“1,5

ĝjpε, a, yq, (11)

where µ̂jpε, ¨, yq and ĝjpε, ¨, yq are the mortality rates and age pyramid of subpopulation
j fitted to the data for year y “ 1981 or 2015.

13Remembering that data are structured by 5-year age classes in Dataset 1 (1981-2007), and by single
year of age in Dataset 2 (2001-2015).
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Remark. Note that there is no available data for ages younger than 25 in Dataset 1 (i.e.
for y “ 1981). Hence, when y “ 1981, individuals younger than 25 are assumed to be
identically distributed in each subpopulation, based on the English age pyramid. However,
this hypothesis has no influence on our results since only indicators at ages above 65 are
considered, over a period of 30 or 40 years. Thus, only individuals who were initially more
than 25 years old are taken into account in the computation of the aggregated indicators,
and therefore fertility rates have no influence on the results either. Computations for the
aggregated death rates are thus based on Equation (9), which justifies our terminology
“short term”.

The evolution of the aggregated populations are represented in Figure 8 (y=1981) and
9 (y=2015). Each age class is represented by the addition of individuals in the most
deprived subpopulation (IMD Q5, in red) and in the least deprived subpopulation (IMD
Q1, in green). The green line in each graph represents the shape of the least deprived
subpopulation age pyramid. Furthermore, the two regimes in the population evolution
described in Section 3.1 are distinguished by the black dashed line in the age pyramids
at t=30 years (Figures 8b and 9b). Individuals aged over 30 were initially present in the
population, and the corresponding age pyramids defined by Equation (3). Individuals
aged under 30 were born after the initial time, and the corresponding age pyramid is
defined by Equation (4).
As discussed in Section 2.2, older individuals are more deprived in the 1981 synthetic
initial age pyramid than in the 2015 age pyramid. For the population based on the 1981
inputs (Figure 8), a decrease in deprivation can be observed for individuals over age 60,
due to the fact that younger cohorts were initially less deprived than older ones. Indeed,
despite important differences in mortality rates, there were initially more individuals older
than 60 in the most deprived subpopulation.
On the contrary, an increase in deprivation can be observed in age group 45-70 for the
population based on 2015 inputs (Figure 9). Initially in this age group, there were more
individuals in Subpopulation 1, while the situation is reversed after 30 years, with more
individuals in Subpopulation 5. The aging of the larger cohort composed of individuals
initially in the age group 45-55 also induces a significant increase in the number of individ-
uals in the age group 75-85. However, the proportion of individuals in each subpopulation
appears to be rather stable over time, with around 60% of individuals in Subpopulation
1 for this age group.

Impact on the aggregated mortality In order to better understand the impact of
compositional changes on the aggregated mortality, Scenario A is compared to two other
scenarios (noted B and C): in Scenario B, population evolution is combined with mortality
improvements in each subpopulation; in Scenario C, only mortality improvements are
considered, without taking into account compositional changes (that is, the population
composition is fixed, equal to the initial population composition). In Scenarios B and C,
mortality improvements are modeled using a constant annual mortality improvement rate
of 0.5% for all ages. This allows us to compare the order of magnitude of mortality changes
induced by compositional changes, to those induced by moderate mortality improvement
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rates, as well as their interplay for both y “ 1981 and 2015.
Since mortality rates are assumed to be time-independent in Scenario A, the aggregated
mortality only evolves due to changes in the subpopulation age pyramids. On the other
hand, the population composition is fixed in Scenario C, and thus the aggregated mortality
evolves only due to the constant annual mortality improvement rate of 0.5%. In Scenario
B, the aggregated mortality depends on both mortality improvement rates and population
dynamics.
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Figure 8: Evolution of the aggregated age pyramid, y “ 1981
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Figure 9: Evolution of the aggregated age pyramid, y “ 2015

Results are presented in Figure 1014 and 11. Note that the evolution of life expectancy
14The axis on top of each graph represents the initial-time age of 65 years old individuals at time t.
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between t “ 30 and t “ 40 should be interpreted with caution. Indeed, we observe signifi-
cant population flows in the data for ages 25-35, resulting from both internal and external
migrations. For instance, the decrease in the period life expectancy between t “ 30 and
t “ 40 in Figure 10a is also caused by the fact that the model does not take these changes
into account.
According to the initial year y of inputs, the indicators evolve in opposite directions.
In the conditions of 1981, period life expectancy at 65 increases for Scenario A, and aver-
age mortality improvement rates are positive at all ages. This means that the evolution
of the population composition contributes positively to the aggregated mortality. This is
confirmed by the period life expectancy and average mortality improvement rates in Sce-
nario B, which are higher than in Scenario C, for which the population dynamics are not
taken into account. In particular, in Scenario B, average annual mortality improvement
rates are larger than 0.7% for all ages younger than 80, in comparison to the constant
improvement rates of 0.5% in Scenario C. Thus, favorable changes in population compo-
sition since 1981 likely contributed to the increase in the aggregated life expectancy.
On the other hand, in the conditions of 2015, the life expectancy at age 65 in Scenario
A decreases by approximately 6 months, after a slight increase during the first half of
the simulation, with negative average mortality improvement rates at all ages below 80.
Thus, the evolution of the least and most deprived subpopulations contribute negatively
to the evolution of the aggregated mortality. In Scenario B, mortality improvement rates
for each subpopulation are compensated for by adverse evolution of the population com-
position. In particular, average annual mortality improvement rates in Scenario B are
lower than in Scenario C for all ages under 81. This suggests that changes in population
composition might offset future improvements in subpopulation mortality rates.
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Figure 10: Evolution of male life expectancy at age 65
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Figure 11: Average male annual mortality improvement rates over the simulation period
0-30 years

4.2 Cause of death reduction and compensation effect

The numerical results of the previous subsection show how changes in composition of
the heterogeneous population can impact the aggregated mortality, even when mortality
rates in each subpopulation do not change over time. We are now interested in studying
the evolution of aggregated mortality indicators when changes of composition are coupled
with a cause-of-death mortality reduction.
In the following, changes in the population composition are quantified by birth patterns,
and coupled with cause-specific reduction of mortality. The classical assumption of inde-
pendence between causes of death is assumed15. By first studying the evolution of the
population dynamics when demographic rates are changed separately, we show that period
and cohort indicators computed on the aggregated population are able to capture changes
in mortality of different natures. Finally, the results presented at the end of the section
show how a cause of death reduction could be compensated and thus misinterpreted in
presence of heterogeneity, due to structural changes in the population composition.

Baseline scenario (0) We first define a baseline scenario serving as reference scenario,
and for which the computed indicators are nearly constant. To that end, demographic
rates are taken as time-independent in Scenario (0). The mortality rates in each subpop-
ulation are the fitted mortality rates of year 2015: µjpε, aq “ µ̂jpε, a, 2015q. Under this
scenario, the period and cohort life expectancies in each subpopulation are thus fixed and
equal to the 2015 period life expectancies. For example, the male life expectancy at age 25

15This assumption is discussed at the end of the section (see also Chiang (1968) or Boumezoued et al.
(2018)).
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is 58.1 in the least deprived subpopulation and 50.8 in the most deprived subpopulation.
Fertility rates are assumed to be the same in each population and estimated from English
fertility rates in 201516.
As we have seen in the previous results, the heterogeneity of the age pyramid can lead
to significant changes in the aggregated mortality even when mortality rates are time-
independent. In order to limit the influence of the initial age pyramids, a natural choice
could be to consider an initial pyramid in which each all classes are composed of the same
number of individuals from each subpopulation. However, this choice leads to important
variations in the aggregated mortality, due to the modification of cohorts composition over
time induced by differences in mortality rates between the two subopulations. Since indi-
viduals in Subpopulation 5 have higher mortality, the composition of cohorts is modified
as individuals grow older, generating a change of composition in older age classes from the
initial “50/50” distribution to a distribution composed of more individuals in Subpopula-
tion 1. The solution to this issue is to choose initial pyramids which “corresponds” to the
specific mortality rates of each subpopulation, that is the stable pyramids corresponding
to the specific demographic rates of each supopulation, as defined in Section 3.1.2. Since
fertility rates of each subpopulation are the same in the baseline scenario, the intrinsic
growth rates of each subpopulation are very close. This guarantees that the composition
of the aggregated population stays almost constant over time, with cohorts composed at
birth of approximately 52% of individuals in the most deprived subpopulation. In partic-
ular, the aggregated male period and cohort life expectancies at age 25 under the baseline
scenario are 54.3 (Figure 12).

Scenario 1a: cause of death mortality reduction In the first scenario, we consider
a progressive reduction of mortality rates from Cardiovascular Diseases (CVD) (cause 2),
which could be the result for instance of a targeted public policy or improvements in
medical care. The initial mortality rates (at t “ 0) in each subpopulation j “ 1, 5 are
equal to the fitted 2015 mortality rates, as in the baseline scenario, and can be written
as the sum of the fitted mortality rates µ̂εij for the m causes of death available in the
datasets:

µεjpa, 0q “
řm
i“1 µ̂

ε
ijpa, 2015q.

Under Scenario 1a, mortality rates from CVD are reduced linearly over a period of hr “ 30

years starting from the year tr “ 40, in order to attain a reduction of α% of CVD mortality
rates at the end of the period17. More formally, the mortality rate at age a and year t in
subpopulation j is defined as follow:

µεjpa, tq “
ÿ

i‰2

µεijpa, 0q ` p1´ αptqqµ
ε
2jpa, 0q, αptq “ 1rtr,tr`hrrptq

α

hr
pt´ trq. (12)

The evolution of the aggregated period and cohort male life expectancies at age 25 is
represented in Figure 12 under Scenario 1a, for α “ 10%, 20% and 30%.

16English female fertility rates are estimated from Office for National Statistics (2015a), for 5-year age
classes and for ages 15 to 44 (see Boumezoued et al. (2018) for more details on the estimation).

17The choice of values for tr and hr are discussed at the end of the section.
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When α “ 30%, the reduction of CVD mortality rates generates an increase of respec-
tively 0.7 and 0.9 years for the male period life expectancy in the least and more deprived
subpopulations. As a rough order of magnitude, this represents approximately 10% and
16% of the historic increase in male life expectancy over the period 1985-2015.
Due to the reduction in mortality from CVD, the aggregated male period life expectancy
at 25 (Figure 12a) also experiences an increase ranging from 0.3 to 0.8 years, with a mid-
dle value of 0.6 years when the cause is reduced by 20%. It is interesting to note that the
period life expectancy is more adapted than the cohort life expectancy to capture this
type of mortality changes. Indeed, the period life expectancy is a period index based on
the mortality of individuals living at time t, and is therefore able to capture the starting
time and the period of the mortality reduction, and to some extent the magnitude of the
mortality reduction. On the other hand, the cohort life expectancy, by including future
mortality rates in its computation at a given time, has a smoother evolution, which makes
the interpretation of underlying mechanisms more difficult.
These remarks are coherent with the classical approach to mortality modeling and fore-
casting, in which mortality rates are often represented by an age dependent function,
whose evolution over time is described using time-series (see e.g. the short model review
in Ludkovski et al. (2016)). However, if the period dimension appears to be well-suited to
capture mortality changes such as a cause-of-death mortality reduction, we show in the
following that variations in mortality caused by changes in population composition are
not necessarily well-captured by period indexes.
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Figure 12: Aggregated male life expectancy: cause-of-death reduction (scenario 1a)

Scenario 1b: ‘reverse’ cohort effect In the second scenario, changes in the aggre-
gated mortality are caused changes to the population composition. These compositional
changes are generated by a ‘reverse’ cohort effect (adverse compositional changes in par-
ticular cohorts) modeled by fertility rates which are different in each subpopulation. Over
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a period hb, the fertility rates of the most deprived subpopulation (j “ 5) are increased
of β%:

b5pa, tq “ b̂pa, 2015qp1` β1r0,hbrptqq. (13)

The evolution of the aggregated period and cohort male life expectancies at age 25 under
this scenario is represented in Figure 13, for hb “ 20 years and β “ 20%, 40% and 60%.
Due to the higher fertility rates in the most deprived subpopulation over the period
r0, hbr, the composition of the population changes and the weight of the most deprived
subpopulation becomes more important in the aggregated population/mortality than in
the baseline scenario. In our example, the cohorts born during the first 20 years of the
simulation are respectively initially composed of 56%, 60% and 63% of individuals in the
most deprived subpopulation.
Before time t “ 25, the period life expectancy at age 25 is based on individuals present in
the initial population, and since mortality rates are the same as in the baseline scenario,
the two scenarios do not differ up until this time. From t “ 25, the computation of the
period and cohort life expectancy at age 25 includes individuals born during the reverse
cohort effect. The increase in deprivation among the cohorts born over this period leads
to a degradation of the aggregated mortality.
The cohort dimension is more adequate to capture mechanisms underlying aggregated
mortality changes under this scenario. At time t “ 25, the cohort life expectancy (Figure
13b) experiences a negative jump, which captures the sudden increase in deprivation
of the cohort of individuals aged 25 at t (born at the beginning of the reverse cohort
effect). The last cohort born during the reverse cohort effect attain age 25 at time 25 `

hb “ 45, corresponding to the sudden increase in the cohort life expectancy. After time
t=45, the cohort life expectancy progressively decreases over 20 years, corresponding
to the introduction of generations born from these more deprived cohorts. Changes of
composition in these cohorts alone (which have the same mortality as in the baseline
scenario) generates a decrease in the cohort life expectancy ranging from 0.3 to 0.8 years
as β increases. Thus, changes in the life expectancy due to changes in the population
composition are of the same order of magnitude as the changes caused by the cause-of-
death mortality reduction of Scenario 1a.
On the other hand, the period life expectancy, which is smoother, progressively integrates
individuals from the more deprived cohorts over time. It is thus difficult to understand
the underlying factors responsible for the decrease in life expectancy, based only on the
period index. As changes are due to differences in fertility rates, the population dynamics
have to be observed on a longer term in order to see the impact of composition changes
on the period life expectancy.

Scenario 2 In this last scenario, we study the combined effects of cause-of-death mor-
tality reductions and ‘reverse’ cohort effects. We consider a progressive cause-of-death
mortality reductions for different causes of death, with α “ 20%, but now coupled with
the ‘reverse’ cohort, with β “ 20%, 40% and 60%.
Figure 14a represents the evolution of the period life expectancy for a progressive reduc-
tion of mortality from CVD under this scenario. As in Scenario 1a, the CVD mortality
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is progressively reduced from tr “ 40, and the period life expectancy increases over the
reduction period (hr “ 30 years). However, the increase in the aggregated life expectancy
is now compensated for by the higher mortality of cohorts born during the reverse cohort
effect, which have a higher level of deprivation. Firstly, the period life expectancy pro-
gressively decreases up to time t=40, due to the ‘reverse’ cohort effect. At the end of the
reduction period (t “ tr ` hr), the more deprived individuals born in r0, hbs are in the
age class 50-70, and the period life expectancy decreases due to the progressive increase
in deprivation level of older individuals.
Due to this compensation effect, the period life expectancy is lower in Scenario 2 than
in Scenario 1a (Figure 14a). When the CVD mortality reduction attains α “ 20%, the
male period life expectancy at age 25 is respectively 54.6, 54.5, 54.4 in Scenario 2 with
β “ 20%, 40% and 60%, in comparison with 54.8 where there are no changes of composi-
tion in the population (Scenario 1a). Depending on the value of β, this corresponds to a
compensation of 32%, 58% and 81% of the increase in the period life expectancy caused
by the CVD mortality reduction. When individuals born during the reverse cohort effect
grow older, the cause-of-death mortality reduction can even be counterbalanced by the
cohort effect. This is the case when β “ 60%18: the increase in life expectancy due to the
cause specific reduction is compensated for when the oldest individuals (born at t “ 0) in
the more deprived cohorts attain age 76.
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Figure 13: Aggregated male life expectancy: reverse cohort effect (scenario 1b)

The other causes considered (Figure 14b) are numbered from 1 to 4 per order of impor-
tance: neoplasms (1), CVD (2), respiratory diseases (3) and external causes (4), with
parameters α “ 20% and β “ 60%. All cause-of-death mortality reductions, except neo-
plasms, are eventually compensated for by the cohort effect. Naturally, the direction and
magnitude of the impact of the cause reductions depend on the cause of death that is re-
duced, since different causes do not impact all age groups and socioeconomic categories in

18Cohorts born during the period r0, 20r composed of 63% of individuals in Subpopulation 5.
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the same way. In particular, for causes 3 and 4, which are less important, the aggregated
period life expectancy even decreases over time due to the compensation effect, and that
could be incorrectly interpreted as an increase of mortality rates.
Similar conclusions hold as well for the aggregated cohort life expectancy in term of cause-
specific mortality reduction compensation (Figure 15). Nevertheless, as in Scenario 1b,
the impact of the reverse cohort effect is more clear-cut when looking at the cohort index.
Figure 15b shows that for all causes of death, the cohort life expectancy at 25 of the
cohorts more deprived (corresponding to the cohort life expectancy from time t “ 25 to
t “ 25` hb “ 45) is lower than in the baseline scenario. This means that the increase in
deprivation of these cohorts has more impact than the cause-of-death mortality reduction.
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Figure 14: Aggregated male period life expectancy over time (scenario 2)
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Figure 15: Aggregated male cohort life expectancy over time (scenario 2)
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Discussion The demographic scenarios presented in this section illustrate the complex-
ity induced by the presence of heterogeneity. Figures 14 and 15 show that when the
socioeconomic composition of the population changes over time, the sole study of aggre-
gated period indexes can lead to misinterpretations of mortality trends. For instance, a
“true” mortality reduction driven by a cause-of-death reduction could be minimized, or
even not accounted for, due to structural changes in the population composition.
It is also important to note that the demographic changes in Scenarios 1a and 1b (cause-of-
death mortality reduction and reverse cohort effect) operate on very different timescales,
which add to the complexity of understanding aggregated indicators. In Scenario 2, the
change of composition due to the reverse cohort effect has a delayed impact on the aggre-
gated mortality, and compensates for the increase in life expectancy because individuals
in the more deprived cohorts (born during the period r0, hbs) are old enough when the
progressive cause-of-death mortality reduction starts at time tr. When the mortality re-
duction starts at an earlier time tr, the life expectancy first increases (more deprived
individuals are too young to weight in the period life expectancy), but then starts to de-
crease faster at the end of the mortality reduction period (after time tr`hr), as individuals
in more deprived cohorts grow older and have more weight in the aggregated period life
expectancy. On the other hand, when the mortality reduction starts at a later time tr,
the adverse mortality of individuals born during the reverse cohort effect compensates for
the mortality reduction earlier and more strongly.
In order to compare the different demographic rates, the population composition is mod-
ified using fertility rates in Scenarios 1b and 2. However, compositional changes could be
caused by other underlying mechanisms such as internal or external migrations. Recent
changes in internal migration patterns in England suggest that these mechanisms could
generate compositional changes comparable in order of magnitude to those presented in
this section, although these changes might not be as stable over time as in Scenario 1a.
Thus, including internal migrations should be an important part of a further work. How-
ever, the lack of data might remain an important challenge to overcome.
Finally, the cause-of-death independence assumption could be relaxed by using a model
allowing for dependence between causes of death such as that proposed in Dimitrova et al.
(2013) or Alai et al. (2015), or Girosi and King (2008) in a Bayesian framework. It is
worth noting that under our assumption of independence between causes of death, a de-
crease in CVD mortality decreases the life expectancy gap between the least and the most
deprived subpopulations, while Alai et al. (2017), using the model proposed in Alai et al.
(2015), found that the cause elimination of CVD would actually have increased the life
expectancy gap, under the mortality conditions of most years over the period 1981-2007.
An increase in the mortality gap between the most and least deprived subpopulations
would actually magnify the effect of composition changes, and one could expect that a
model allowing for dependence would strengthen the previous results.
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5 Concluding Remarks

We have illustrated in this paper the complexity of understanding drivers of the ag-
gregated mortality in the presence of heterogeneity. The data analysis and numerical
applications presented reveal the complex interactions between population dynamics and
mortality indicators. In the context of increasing differences in mortality between differ-
ent socioeconomic subgroups, changes in population composition have more impact on
the aggregate population mortality. At the same time, significant variations of depri-
vation levels have occurred across age groups and over time. Those notable changes in
the population composition make studying the effect of composition changes even more
complicated.
Numerical results presented in Section 4.1 show that favorable changes in population
composition since 1981 might have contributed positively to the increase in aggregated
life expectancy, while the model shows that based on the 2015 population, composition
changes might offset future mortality improvements to a certain extent.
Furthermore, the reduction of a cause of death may not necessarily result in an improve-
ment of aggregate mortality rates or life expectancy, if the composition of the population
changes at the same time. In particular, a ‘reverse’ cohort effect, or any changes in the
population composition, could compensate for a cause-of-death reduction. In this case,
the effect of public health policies could be misinterpreted if only aggregated data are
studied. This raises the question of the assessment of mortality reduction targets set by
national or international organization in the presence of heterogeneity. Indeed, it seems
rather difficult, by only looking at aggregated indicators, to determine if a target is not
met due to the failure of a public health policy or a change in population composition.
The results also stress the importance of studying not only mortality rates at older ages
but also the whole population dynamics in the presence of heterogeneity, as mortality
models which may not be able to capture population composition changes.
Depending on the nature of demographic changes and on the timing at which they impact
the aggregate mortality, different changes are captured by different types of indicators,
i.e. period or cohort indicators. In particular, we showed that composition changes,
which can have a delayed effect on mortality, seem to be better captured by cohort indi-
cators. Obviously, cohort indicators require to forecast future mortality rates in order to
be computed. However, due to these delayed effects, taking into account the population
composition and age structure gives insight into how future composition changes might
impact mortality rates.
Finally, the population dynamics framework is very flexible. The model considered in this
paper allows us to reproduce composition changes and capture non-trivial effects of the
heterogeneous population dynamics. However, the framework could actually be extended
without difficulty to the broader scope of stochastic rates, depending for instance on a
random environment. Further work could also investigate the use of stochastic individual-
based models.
In the numerical applications presented in Section 4.2, composition changes were modeled
by differences in fertility rates, in order to compare these variations with a cause-of-death
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mortality reduction. Nevertheless, modification of the population composition could be
extended to other underlying mechanisms. Thus, a more realistic modeling procedure
could integrate internal migrations among the subpopulations, as well as external migra-
tions. This constitutes a challenge due to data availability, but the population dynamics
framework can operate as a tool for experimenting and simulating different scenarios.
Another perspective would be to consider dependence between causes of death in the
modeling, along with the study of consistency between subnational and national mortal-
ity forecasts (Shang and Hyndman (2017), Shang and Haberman (2017)).
To conclude, population dynamics theory is a promising and complementary field of re-
search when modeling mortality rates in the presence of heterogeneity. The richness of
available models should allow them to be used as simulation and validation tools. Addi-
tionally, they can capture dynamically effects of a different nature with respect to classical
mortality modeling, such as composition changes.
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Appendix A IMD over time

The IMD is computed at fixed times, year 2007 and year 2015, and applied to larger
time periods, see Figure 16. Therefore, the socioeconomic evolution of living areas over
the reporting periods is not taken into account. However, the aggregation of small living
areas into deprivation quintiles might reduce changes over reasonable periods of time. For
the 1981-2006 period, previous studies have shown that the majority of small areas have
stayed in the same deprivation quintile (se e.g. Bajekal et al. (2013a), Appendix D of Lu
et al. (2014) or Norman and Darlington-Pollock (2017) for the 1970-2011 period).
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Figure 16: IMD2007-IMD2015

We have also compared data over the 2001-2006 period, computed with the IMD 2007
in the one hand (dataset 1) and with the IMD 2015 in the other hand (dataset 2). For
the overlapping period 2001-2006, over the five quintiles, the relative difference in life
expectancy at age 25, respectively at age 65, using IMD 2007 or IMD 2015 is less than
0, 27%, resp. 0, 78%, for males and less than 0, 18%, resp. 0, 46%, for females.

Appendix B Miscellaneous information on data

B.1 Fixed cohorts
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Figure 17: Proportion of individuals by IMD quintile for cohort 1921-1930 (1985, 1995,
2005, 2015)
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B.2 Mortality rates
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Figure 18: Central death rates per single year of age and IMD quintile in 2015

B.3 Central death rates
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Figure 19: Average annual rates of improvement in mortality, females
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B.4 Causes of death
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Figure 20: Females deaths per cause and IMD quintile for ages 25-85

Appendix C Numerical implementation

The general model is implemented in C++ by discretization of the transport partial
differential equation (1), using a first order implicit Euler scheme. More details on the
convergence and stability of the scheme, as well as other numerical methods, can be found
in the review of Pelovska and Iannelli (2006).
In the different applications presented in Section 4, the parameters of the model (mortality,
fertility rates and initial age pyramids) are estimated from the data presented in Section 2.
The inputs and outputs of the model are processed using R, and interfaced with the C++
code using the package Rcpp. When only central death rates by 5-year age classes are
given, mortality rates are estimated based on the fitting procedure described in Appendix
D. Furthermore, individuals in each IMD quintile of age above 85 are grouped in the age
class “85 and older” in dataset 119. To overcome this difficulty, we assume that individuals
are distibuted in age classes until age 110 as in the UK population20. This assumption is
consistent with the observation that mortality rates in all IMD quintiles converge at old
ages.

Appendix D Fitting procedure of mortality rates

In this paragraph, we consider the mortality of individuals of gender ε in a given IMD
quintile j. For simplicity of notation, we omit these variables when there is no ambiguity.
In both datasets, deaths by causes are given for each calendar year by 5-year age classes
(with the exception of the age class 0-5 divided in two classes, 0-1 and 1-5). Central death

1990 and older in Dataset 2.
20The English age pyramid after age 85 is provided by the Human Mortality Database (The Hu-

man Mortality Database (2016)).
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rates at age a and year t for 5-year age classes can been estimated by 5m̂pa, tq “
5Dpa,tq

5Êpa,tq
;

where 5Dpa, tq is the number of individuals who died during year t (in rt, t` 1r) at an age
in ra, a` 5r, and where 5Êpa, tq is the estimated exposure. Recall that the real exposure
5Epa, tq is the cumulative time lived during year t by individuals in the age class21.
In our model, we need to estimate the force of mortality µpa, tq which is linked to the
theoretical death rate by the following formula:

5mpa, tq “

ż t`1

t

ż a`5

a

µpx, sq
gpx, sq

şt`1

t

şa`5

a
gpu, hqdudh

dxds (14)

Equation (14) can be interpreted as follow: the central death rate is the average force
of mortality on rt, t` 1rˆrx, x` 5r, weighted against the population distribution on this
interval.
In the sequel, we make the assumption that the force of mortality is constant over each 1
year period, so that for all calendar years t, µpa, t` sq “ µpa, tq @s P r0, 1r. In this case,
Equation (14) can be rewritten as:

5mpa, tq “

ż a`5

a

µpx, tq

şt`1

t
gpx, sqds

şa`5

a
p
şt`1

t
gpu, sqduqds

dx

When data is structured by single year of age, the force of mortality is usually also
assumed to stay constant over each age class, so that µpx, tq “ 1mpa, tq for a ď x ă a` 1.
However, this assumption seems quite unrealistic when data is aggregated over 5 year age
classes. The next simplest parametric assumption is to assume that the force of mortality
is piecewise linear in age over the age classes:

µpx, sq “ αpa, tqx` βpa, tq @px, sq P ra, a` 5rˆrt, t` 1r. (15)

When information on the population by single years of age is available, the distribution
of the population within the age class can be approximated by a discrete distribution
defined for 0 ď k ď 4 by:

şt`1

t
gpx, sqds

şa`5

a

´

şt`1

t
gpu, sqds

¯

du
“ Êk, @x P ra` k, a` k ` 1r,

where Êk is the estimated proportion of individuals of age in ra`k, a`k`1r in the the age
class. By replacing µpa, tq and gpx, sq in (14) with the new assumptions, we obtain that
Equation (15) should be a line passing through 5mpx, tq at the mean age of individuals in
the age class. Therefore, an inductive procedure can be defined in order to fit the force
of mortality for year t:
(i) Initialization: Choose µp0, tq.
(ii) Induction: Assume that the mortality rate has been fitted until the ith age class
rai, ai`1r. The mortality rate on the next age class rai`1, ai`2r is the line passing through
µpai`1, tq

´ at ai`1 and 5mpxi`1, tq at x̄i`1.
21An individual attaining age a at time t` s and who died at time t` h` s ă t` 1 will have weight

h in the exposure.
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(iii) Reiterate the second step on the next age class.

The main advantage of the piecewise linear approximation is to be consistent with the the-
oretical definition of the aggregated and specific central death rates in our heterogeneous
population model. However, the degree of liberty in the choice of the initial point µp0, tq
is a drawback of the method, and the fitting is not guaranteed to obtain positive death
rates. In the numerical applications the initial point µp0, tq is found by an optimization
procedure. A similar fitting approach has been proposed by Hautphenne and Latouche
(2012), with possible discontinuities in the death rates. See also Villegas and Haberman
(2014) for an alternative method.
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