
HAL Id: hal-01767392
https://hal.science/hal-01767392v1

Submitted on 16 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the calibration of elastoplastic parameters at the
microscale via X-ray microtomography and digital

volume correlation for the simulation of ductile damage
Ante F Buljac, Victor-Manuel Trejo-Navas, Modesar Shakoor, Amine Bouterf,
Jan Neggers, Marc Bernacki, Pierre-Olivier Bouchard, Thilo F. Morgeneyer,

François Hild

To cite this version:
Ante F Buljac, Victor-Manuel Trejo-Navas, Modesar Shakoor, Amine Bouterf, Jan Neggers, et al.. On
the calibration of elastoplastic parameters at the microscale via X-ray microtomography and digital
volume correlation for the simulation of ductile damage. European Journal of Mechanics - A/Solids,
2018, 72, pp.287-297. �10.1016/j.euromechsol.2018.04.010�. �hal-01767392�

https://hal.science/hal-01767392v1
https://hal.archives-ouvertes.fr


On the Calibration of Elastoplastic Parameters at the
Microscale via X-Ray Microtomography and Digital
Volume Correlation for the Simulation of Ductile

Damage

Ante Buljaca,b, Victor-Manuel Trejo Navasc, Modesar Shakoorc, Amine
Bouterfa, Jan Neggersa, Marc Bernackic, Pierre-Olivier Bouchardc, Thilo F.

Morgeneyerb, François Hilda,∗
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Abstract

An identification framework is introduced herein to calibrate material pa-

rameters at the microscale in order to analyze ductile damage. It is applied to

study a dog-bone sample, which is made of spheroidal graphite cast iron, loaded

in tension and imaged via in situ microtomography. The region of interest is

analyzed via Digital Volume Correlation (DVC) to measure kinematic fields.

Finite Element (FE) simulations, which account for the studied microstructure

that is explicitly meshed thanks its 3D image, are driven by Dirichlet boundary

conditions extracted from DVC measurements. The plastic behavior of the fer-

ritic matrix is calibrated via integrated DVC. The three mechanisms of ductile

damage are then analyzed in view of the predictions of numerical simulations

at the microscopic scale.
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1. Introduction

Motivated by the constant quest for more fuel efficient and hence lighter

design substantial progress has been made in understanding and modeling failure

of ductile materials over the last decades [1, 2, 3]. Yet, some questions still

remain open and robust ductile damage models that would be able to correctly5

predict fracture loci εf (η, µ) under arbitrary loading paths are still lacking [4, 5,

6], where εf denotes the fracture strain, η the stress triaxiality and µ the Lode

parameter. One of the main reasons is an incomplete understanding of ductile

damage mechanisms at lower scales. The current work is motivated by the idea

of having more realistic macroscopic calculations thanks to physical models10

directly calibrated at the microscale when analyzing two of the three steps of

ductile damage, namely, void growth and coalescence. To achieve this aim, the

feasibility of an experimental-computational framework allowing for validation

and identification of the material properties at the microscale is shown in the

following work. To the authors’ knowledge, it is the first time that such type of15

study is reported.

Damage models are useful to optimize the forming processes when dealing

with metals and alloys and to predict the in-service life of structures [7, 8].

The first models, which are known as macroscopic postulates, were written at

the scale of the volume element in continuum mechanics. They allow damage20

occurrence and the softening toward fracture to be described [9, 10, 11]. How-

ever, these models are known to have limited predictive capabilities for complex

loading paths and are not easy to calibrate [5].

An alternative to the previous constitutive postulates is to derive the macro-

scopic response from microscopic formulations [12, 13]. The first propositions25

were based on closed-form derivations [12]. Numerical simulations were also

proposed to enhance the initial propositions [13]. Over the years, many im-

provements were proposed to enlarge the validity domain of the developed mod-

els [2, 8, 3]. However, it is worth noting that the calibration of such models still

is a (very) difficult task [4]. All such simulations were never probed against30
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experimental results, in particular the behavior of the matrix, which is usually

described by very simple constitutive postulates (e.g., Lukwik’s power law).

This calls for advanced observation, simulation and identification techniques.

On the experimental side, computed microtomography was used to directly

monitor damage in various materials [14, 15, 16, 17]. Physical damage vari-35

ables such as porosity were observed experimentally thanks to 3D imaging

techniques [18, 19, 20, 21]. It is possible to study individually inclusions and

voids with manual [20] or automatic [21] procedures. The three ductile damage

mechanisms, namely, void nucleation [22, 23], growth [24, 25, 26] and coales-

cence [27, 28, 16, 29] were analyzed and quantified thanks to computed micro-40

tomography.

Simulations are needed to experimentally relate observed quantities such as

total strain, porosity and the number of fractured/debond inclusions to internal

variables (e.g., stresses) to derive criteria for nucleation and coalescence [30].

Averaged damage models were derived by such simulations. The microscale45

calculations were usually performed with idealized microstructures and con-

stitutive behavior [2, 8, 3]. Moreover, uniform kinematic or static boundary

conditions were prescribed. Such conditions cannot capture the local strain and

stress states that inclusions and voids are subjected to due to their random

shapes and distributions [18, 31, 32, 21, 33]. The effect of the three-dimensional50

random distribution of voids on softening was also studied [34] using different

void volume fractions. It is concluded that it is desirable to work with realistic

microstructures.

From the acquired tomographies, real microstructures can be meshed [35,

36]. The level set (LS) method [37] is useful to describe interfaces in FE compu-55

tations when large deformations and complex topological events occur [38, 39,

40]. When FE simulations were run with such interfaces, image processing was

directly carried out on FE meshes, thereby making such procedures applicable

thanks to parallel implementations [41].

Once such microstructures were generated, the next step was to start vali-60

dating the numerical simulations. One key aspect is to be able to perform and
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monitor in situ mechanical tests [42, 43]. Combined with digital volume correla-

tion, displacement fields can be measured within the bulk of imaged materials.

The early developments of DVC [44, 45, 46, 47] consisted of independently reg-

istering small interrogation volumes in the considered Region of Interest (ROI).65

Global approaches [48] perform registrations over the whole ROI by measuring

kinematic fields that are, for instance, based on FE discretizations, which as-

sume displacement continuity. Such DVC approaches were directly linked with

numerical simulations of mechanical problems [49, 50]. They were also used in a

numerical framework to partially validate simulations at the microscale [51, 33].70

The previously introduced experimental-computational framework [51, 33] is

further extended herein to perform the calibration of material parameters at the

microscale via 4D mechanical correlation for nodular graphite cast iron. Up to

now, such approaches were only performed at the macroscopic level [52]. Once

such calibration has been achieved, the next step is to analyze the development75

of ductile damage. The proposed framework to calibrate material parameters

at the microscale is based on the following steps (Figure 1):

1. X-ray microtomography to get 3D images of an in situ test in a lab tomo-

graph. By post-processing the reconstructed volume in the reference con-

figuration, the morphology of the microstructure is obtained. The interest80

of using tomography instead of laminography is that the whole sample

cross-section can be imaged. Consequently, measured load data will also

be used in the present analyses to be compared with predicted resultant

forces. Such data were not available in the in situ experiments reported

so far on the same material for the analyzed volume of interest [51, 33].85

2. Global DVC to measure displacement fields whose kinematic basis is made

of the shape functions of 8-noded elements. These displacement fields

serve as Dirichlet boundary conditions to FE simulations at the microscale

thanks to the interpolation functions of the meshes associated with DVC

and FE analyses. It was shown that this step is critical for validation90

purposes at the microscale [51, 33] and also for identification purposes at
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a mesoscale [52].

3. The FE simulations at the microscale explicitly account for the morphol-

ogy of the studied material. Therefore the considered meshes made of

4-noded tetrahedra (mixed velocity-pressure formulation with P1+/P1 el-95

ements) are adapted to the microstructure by using signed distance func-

tions obtained from the 3D image.

4. FE simulations are run with an elastoplastic constitutive equation to

model the nonlinear behavior of the ferritic matrix. The corresponding

parameters will be calibrated herein since this is believed to be one cause100

of discrepancies observed between laminography experiments and simula-

tions [51, 33]. The nodules are assumed to be elastic with very low elastic

properties, which is a classical hypothesis when performing damage cal-

culations under tensile loading [53, 54, 55, 56]. This assumption is related

to the fact that debonding occurs very early in cast iron. This hypothesis105

was recently confirmed with DVC measurements [57, 51, 33]. More ad-

vanced models (e.g., accounting for debonding of the interfaces between

nodules) will not be investigated herein.

5. 4D mechanical registration consists of minimizing the registration resid-

uals combined with the global equilibrium gap to calibrate the sought110

material parameters. This integrated approach allows meshes to be as fine

as required as opposed to standard DVC techniques [58, 59, 60].

5



C8-DVC

}ρC8

C8/T4}
interp. FE}simulations

uC8

 I-DVC

In}situ
tomography}data

+
{Fmeas}

}ρT4

I 0
T4}mesh}
generation

}
T4}mesh

F

F

I 0
,}I

t

uT4,{FT4}

{δp}

{δF}

Figure 1: Schematic representation of the methods used in the present paper for calibrating

material parameters via numerical simulations at the microscale. Global DVC based on 8-

noded elements (C8-DVC) is run to register a series of reconstructed volumes It with respect

to the reference configuration I0. Such analyses provide the gray level residuals ρC8, and the

measured displacements uC8, which are interpolated on a mesh made of 4-noded tetrahedra

(T4). From the reference volume I0, a T4 mesh is adapted to the underlying microstructure.

Finite element simulations are then run to determine, for any given set of material parameters

{p}, the displacement fields uT4 and the reaction forces {FT4} to be used in an integrated

DVC (I-DVC) approach to compute global equilibrium residuals {δF } = {Fmeas} − {FT4},

and gray level residuals ρT4

The paper is organized as follows. First the different steps of the identifica-

tion framework shown in Figure 1 are described in detail. A mesh convergence

study is then discussed and finally the damage mechanisms as observed experi-115

mentally and predicted numerically are critically assessed and compared.

2. Identification and validation framework

2.1. In situ mechanical experiment

The material studied herein is commercial nodular graphite cast iron (EN-

GJS-400 [56]). Figure 2 shows the graphite nodules and a secondary void pop-120
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ulation in the matrix as revealed by laminography imaging, subsequent filter-

ing and binarization [61]. The number of contrasted objects per sub-volume

(isotropic element length ` = 70 µm) is of the order of 1. The volume fraction

of nodules is on the order of 11 %. The matrix is mostly ferritic.

Figure 2: Isometric view of nodules and secondary void population of the reconstructed

volume via laminography of the studied cast iron. The region of interest has a size of

280 × 280 × 280 µm3 (after Ref. [61])

A dog-bone sample was obtained via electro discharge machining (EDM)125

from a 2-mm thick plate. To ensure that the specimen will break in the ligament

area and not in the grips, the central part was thinned with a radius of 20 mm.

This zone was 9-mm long, while the smallest cross-section of the sample was 2×

1 mm2. The tensile test reported herein was carried out in situ within the North

Star Imaging X50+ tomograph (Figure 3). The testing machine is similar to one130

of those designed by Buffière et al. [43]. One scan of the sample corresponded

to 360◦ rotation about its vertical axis. 1,000 radiographs were acquired with a

definition of 1, 536 × 1, 944 pixels. Each scan lasted approximately 1.5 h. The

physical voxel length was 3.4 µm, and the reconstructed volume was encoded

with 8-bit deep gray levels.135
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Figure 3: Tomography setup with the representation of the tested sample. The reconstructed

region of interest is also shown

The specimen was pulled in six incremental loading and unloading steps

(Figure 4) in a custom-made testing machine (Figure 3), which was placed on

the rotation stage of the tomograph. The first two scans of the reference con-

figuration allow displacement uncertainties to be evaluated via DVC analyses.

Six additional scans were acquired for different applied load levels. When the140

sample was not unloaded, the scan was started after some dwell time to allow

for stress relaxation of the whole tensile stage. The considered load is then equal

to the maximum level reached prior to the acquisition process.
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Figure 4: Loading and acquisition histories for the in situ tensile test. The red line shows

the tomographic acquisitions. First, two acquisitions were carried out under minimal load for

uncertainty quantifications. Then, six additional scans were performed at different load levels

for identification purposes

2.2. Displacement uncertainty

The reported test is first analyzed via global DVC with meshes made of145

8-noded cubes (i.e., it will be referred to as C8-DVC in the sequel). Such

measurements allow the experimental boundary conditions to be prescribed to

the numerical simulations (Figure 1). It was shown in earlier works on the

same type of material that these boundary conditions are crucial when seeking

quantitative comparisons with numerical simulations at macroscopic [52] and150

microscopic [51, 33] scales.

The analyzed ROI is shown in Figure 6 (blue mesh). Its size is 320× 576× 640 vox-

els, which corresponds to a volume of 4.64 mm3. Figure 5 shows the change of

standard displacement uncertainties as functions of the element length ` for the

three displacement components. The observed trend is to be expected from155

tomographic data [62] and exemplifies the compromise between measurement

uncertainty and spatial resolution [59]. In the following analyses, an element

length ` = 64 voxels is selected, which leads to a displacement uncertainty of
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the order of 0.12 voxel (i.e., ≈ 0.4 µm). The same order of magnitude (when

expressed in voxel) was observed in synchrotron laminography with the same160

material for 64-voxel elements [51, 33, 61].
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Figure 5: Standard displacement uncertainty as a function of the element length for the three

displacement components

2.3. Meshed microstructure

In order to model the microstructure observed in the experimental 3D image

(Figure 6), a level set based technique is followed. The zero contour of the

corresponding signed distance function enables the interfaces to be located. The165

interested reader is referred to previous work by the authors for details on the

mesh generation procedure [33]. The meshed ROI in the FE calculations has a

total volume of 2.87 mm3, which contains 72.7 million voxels.
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Figure 6: DVC (blue) and FE (red) meshes plotted over the corresponding cast iron mi-

crostructure in isometric view and sections normal to X, Y and Z axes. Two regions from

the section normal to Z axis are showed enlarged on the right

As explained in Ref. [51], the ROI used for FE simulations has to be included

in all DVC domains for any considered loading step. Otherwise displacement170

fields would not be prescribed on the whole top and bottom boundaries of the

FE mesh. In practice, in order to be as representative as possible, a 3D box as

large as possible is chosen. Further, to make the following simulations tractable,

the meshes should not be made too fine since more than one simulation will have

to be carried out to calibrate the plastic parameters of the matrix.175

Three different mesh densities have thus been studied to analyze the effect of

mesh density on the results reported hereafter (Table 1). The first mesh (Mesh

1), which is very coarse (Figure 7), has less than 13,000 degrees of freedom. The

microstructure is only crudely represented for this initial discretization.

Table 1: Structural details of the three studied meshes. The computation time refers to

sensitivity fields (for the 3 investigated material parameters) calculations

Mesh elements nodes time (CPUs used)

Mesh 1 18, 785 4, 293 103 s (3)

Mesh 2 202, 376 38, 688 2 × 104 s (6)

Mesh 3 675, 752 122, 078 105 s (16)
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Meshes 2 and 3 are finer and describe more faithfully the underlying mi-180

crostructure (Figure 7). The number of degrees of freedom has been significantly

increased to ≈ 110, 000 and ≈ 360, 000 for the finer meshes.

Figure 7: Characterization of three different mesh sizes used in the work with signed distance

fields plotted over the corresponding microstructure sections and with the nodule/matrix

interface depiction

For FE simulations at these small scales, the mesh quality is of major im-

portance and should be investigated. The quality distribution is reported in

Figure 8 for the three mesh densities. A quality of 1 means well shaped tetra-185

hedra, while a quality of 0 means degenerated elements. Finer meshes induce

more elements far from interfaces and render mesh adaption easier. Therefore,

the histogram for the finest mesh has more elements with good to very good

quality. As the meshes are coarsened, their quality is substantially decreased.

This result can be understood by analyzing Figure 7, which shows that the190

‘nodules’ correspond to very elongated elements for Mesh 1, which is less the

case for Mesh 3.
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Figure 8: Distribution of mesh quality at the initial state for the three tested meshes

2.4. Investigated constitutive law

The framework used for microscale FE simulations is based on previous de-

velopments presented in Refs. [39, 63, 41, 64, 65]. To avoid numerical locking195

in plasticity, a mixed velocity-pressure formulation is used with P1+/P1 ele-

ments [66]. Large transformations are considered with an updated Lagrangian

formulation, which is commonly used in metal forming simulations [67]. This

incremental formulation has proven to give accurate results for small time steps.

The constitutive equation investigated herein is Ludwik’s law [68], which

describes isotropic hardening as follows

σeq = σy +Kpn (1)

where σeq is the second (von Mises) invariant of the deviatoric part of the Cauchy200

stress tensor, p the accumulated plastic strain associated with the Cauchy strain

tensor, σy the yield stress, K the hardening modulus and n the hardening ex-

ponent. Such type of constitutive equation may seem very crude for the ma-

trix. This is certainly the case up to an extent that will be investigated herein.

However, almost all cell calculations [12, 13, 2, 3] or even with more complex205

microstructures [34, 41, 51] use von Mises plasticity. Consequently, the present
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work aims at calibrating material parameters to be as consistent as possible to

experimental observations. It is worth noting that the proposed framework is

compatible with more advanced constitutive postulates. However, the computa-

tion time would be increased very significantly (provided the simulations can be210

carried out with such fine discretizations). Since the first aim of the work is to

prove the feasibility of such analyses, the chosen constitutive equation was lim-

ited to Ludwik’s law for the plastic part. Isotropic elasticity was also accounted

for but the parameters will not be tuned.

Ludwik’s law was calibrated against a stress/strain curve for a pure ferritic215

matrix [54], which is assumed to be representative, as an initial step, of the in

situ behavior of the ferritic matrix of the studied cast iron. The obtained values

are σy = 290 MPa, K = 382 MPa, n = 0.35; the Young’s modulus E = 210 GPa,

and Poisson’s ratio ν = 0.3. It was also used to simulate damage growth in cast

iron when imaged via synchrotron laminography [51, 33]. However, up to now it220

was not probed against an experiment in which displacement and load data were

utilized to calibrate the matrix behavior at the microscale in order to analyze

ductile damage since the full cross-section needs to be imaged, as in the present

case. The calibration procedure will use an integrated approach to DVC.

2.5. Integrated DVC225

Let us note that any of the meshes that were adapted to the microstructure

cannot be used in regular DVC analyses. This is due to the fact, that at this

scale, the contrast in each finite element is too low, which would prevent good

convergence of DVC analyses. Consequently, integrated DVC is used in the

following analyses. This type of approach allows the mesh size to be as fine as230

desirable thanks to the strong coupling between experiment and simulation [52].

When performing integrated DVC the displacement fields are mechanically

admissible (i.e., they satisfy equilibrium in the finite element sense for a chosen

constitutive law in addition to their kinematic admissibility thanks to the use

of measured boundary conditions). The first 3D developments were based on

elastic simulations for which a non-intrusive framework was implemented [60].
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They were then extended to nonlinear analyses at the macroscale [52]. The FE

code was then used to generate kinematic fields that are needed for DVC pur-

poses. When material parameters are sought, the corresponding spatiotemporal

sensitivities [69, 70] are also needed for nonlinear constitutive postulates. The

4D kinematics is thus parameterized with the sought corrections {δp} to the

current estimate of material parameters {p̂}

u(x, t, {p}) = u(x, t, {p̂}) +

[
∂u

∂{p}
(x, t, {p̂})

]†
{δp} (2)

where [∂u/∂{p}] is the matrix gathering all the spatiotemporal sensitivity fields

to the sought material parameters, x any voxel within the analyzed region of

interest, and t time. Thus the discretized displacement field becomes

u(x, t, {p}) =
∑
t

∑
n

υn({p}, t)Nn(x) (3)

in which the kinematic degrees of freedom υn, which are associated with the

shape function vector Nn, are not independent but all linked via their sensitiv-

ities to the sought parameters

υn({p}, t) = υn({p̂}, t) +

{
∂υn
∂{p}

({p̂}, t)
}†
{δp} (4)

The kinematic sensitivities associated with the chosen spatial discretization are

gathered in matrix [Sυ(t)] (i.e., (Sυ(t))nm = (∂υn/∂pm)(t)) that is evaluated

for each time t. The finite difference method is used to approximate ∂υn
∂{p}

∂υn
∂{p}

({p̂}, t) ≈ υn({p̂}+ ζ{p̂}, t)− υn({p̂}, t)
ζp̂

(5)

where ζ is a perturbation factor. To illustrate such fields, Figure 9 shows the

longitudinal component of the sensitivity fields associated with the three plastic

parameters when each of them is independently perturbed by ζ = 2 % with

respect to its nominal value. Consequently, these fields are expressed in voxels235

divided by the physical unit of the studied parameters. It is observed that

the first and last loading steps have overall shapes that are different from the

intermediate steps (i.e., 2 to 5). This trend may signal the development of

different damage mechanisms or regimes, as will be discussed in Section 3.2.
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(a) Yield stress (voxel/MPa) (b) Hardening modulus (voxel/MPa)

(c) Hardening exponent (voxel)

Figure 9: Sensitivity fields in the longitudinal direction for the last loading step. Online

version: corresponding movie for the 6 analyzed steps. The color bar has a fixed range

Table 1 reports the computation time required to have access to sensitivity240

fields for the three investigated material parameters (i.e., four FE simulations).

There is a two order of magnitude difference in computation time. It is worth

noting that the machines used to run these different calculations had to be

adapted to the mesh density, namely, for Meshes 1 and 2, a workstation (6

CPUs) with Intel(R) Xeon(R) E5 processor (32 GB, 3.3 GHz) was used, and245

a node of a cluster (16 CPUs) with Intel(R) Xeon(R) E7-8837 processor (252

GB, 2.67 GHz) for Mesh 3. For the finest mesh, each set of sensitivity fields (for

three material parameters) required about 28 h of simulation.

4D mechanical correlation consists of minimizing the sum of squared gray

16



level differences directly with respect to {p}

{p}meas = argmin
{p}

∑
[0,tmax]

∑
ROI

(I0(x)− It(x + u(x, t, {p})))2

2γ2I
(6)

over the considered ROI for the reconstructed volumes in the reference config-

uration I0(x) and deformed configuration It(x). The coefficient γ2I denotes the250

variance associated with acquisition and reconstruction noise of the gray level

volumes.

In the present case, load measurements gathered in vector {Fmeas} are also

available. Thus they are compared with the FE predictions in which the reaction

force vector {FFE} is due to the fact that measured displacements are prescribed

on the top and bottom boundaries of the considered ROI. The global equilibrium

gap over the whole loading history reads

ρ2F =
1

γ2F
‖{Fmeas − Fmeas({p})}‖2 (7)

where γ2F denotes the variance of the measurement uncertainty of load cells.

The latter is assumed to be white and Gaussian. The minimization of ρ2F alone

corresponds to updating the FE model by considering only global equilibrium255

to estimate the sought parameters {p}. It is referred to as load-based FE model

updating (or FEMU-F [71, 72]).

In the following, both sets of data, namely, reconstructed volumes and mea-

sured loads will be considered in a single approach. A normalization framework

is considered [52] in which each considered information is weighted by its merit

(i.e., variance and covariance with all the other data) for DVC (i.e., χ2
I) and

global equilibrium (i.e., χ2
F ). An equal weighting is then assumed between the

kinematic and load contributions

χ2 =
1

2
χ2
I +

1

2
χ2
F (8)

with

χ2
I =

1

nt

∑
[0,tmax]

χ2
I(t) =

1

|ROI|nt

∑
[0,tmax]

∑
ROI

(I0(x)− It(x + u(x, t, {p})))2

2γ2I

χ2
F =

1

nt
χ2
F (t) =

1

nFnt

∑
t

‖{Fmeas(t)− FEF (t, {p})}‖2

γ2F
(9)
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where nF denotes the number of load measurements per scan (i.e., nF = 1 in the

present case). With the chosen weighting, when the residuals are close to unity,260

the only contribution to the error is due to noise associated with tomography

and load cell(s) measurements. If χI and/or χF are significantly larger than

unity then there are numerical model errors.

4D mechanical correlation thus consists of minimizing χ2 with respect to the

sought parameters

{p}meas = argmin
{p}

χ2 (10)

A Gauss-Newton scheme is implemented for which the corrections {δp} to the

sought material parameters are iteratively updated [52]. Each iteration lasts265

about one day. To speed-up the simulations, the sensitivity fields are no longer

updated when all parameter variations are less than 10 % of their current es-

timate. Convergence is reached when their relative variations are all less than

0.01 %.

The integrated DVC code, Correli 3.0 [73], is a Matlab implementation that270

uses in a non-intrusive way FE codes to compute the spatiotemporal sensitivity

fields in addition to the current estimates of the displacement fields and reaction

forces. The inputs to such simulations are the measured displacements of the

top and bottom boundaries of the ROI. In the present case, the CimLib library

is used with its built-in constitutive laws [63].275

3. Simulation results

3.1. Mesh sensitivity

Table 2 gathers the parameters at the end of the integrated DVC analyses

for the three different meshes. The first set of simulations is initialized with

the parameters proposed by Zhang et al. [54]. The second set of simulations is280

performed when the previous initial guess is perturbed by 10 %. Each set of

calibrated parameters is different.
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Table 2: Plastic properties of nodular cast iron obtained via I-DVC

Method E (GPa) ν σy (MPa) K (MPa) n

Initial parameters [54] 210 0.3 290 382 0.35

I-DVC, Mesh 1 210 0.3 232 303 0.23

I-DVC, Mesh 2 210 0.3 235 313 0.19

I-DVC, Mesh 3 210 0.3 245 330 0.21

Initial parameters (perturbed) 210 0.3 260 420 0.31

I-DVC, Mesh 1 210 0.3 206 349 0.22

I-DVC, Mesh 2 210 0.3 211 364 0.21

I-DVC, Mesh 3 210 0.3 219 371 0.23

To better understand the difference of all these parameter sets, Figure 10

illustrates the corresponding equivalent stress / strain responses. In comparison

with the initial guesses, there are two groups of results. First the two finer mesh285

densities lead to very similar stress / strain responses. Conversely, the coarser

mesh leads to significantly different responses. This difference is attributed

to the fact that Mesh 1 only crudely describes the underlying microstructure

(Figure 7). The fact that Meshes 2 and 3 yield very similar stress / strain

responses indicates that convergence is achieved in terms of matrix behavior290

accounting for void growth.
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Figure 10: Stress-strain for the cases analyzed in Table 2. In the legend {p0} and perturbed

{p0} stand for different sets of initial parameters detailed in Table 2. Initial response stands

for σ − ε values obtained with the initial set of parameters

Since both initial guesses lead to virtually identical stress-strain responses for

the three mesh densities (Figure 10), only the initialization based on literature

data is further discussed. In the present case, it can be noted that there is a

clear difference between the initial guess and the converged solution. This is to295

be expected since the in situ properties of the present ferritic matrix are not

necessarily identical to the ferrite studied by Zhang et al. [54]. However, the

initial part of the yielding regime (i.e., up to 5 % equivalent plastic strain) is very

close. Conversely, for equivalent strains greater than 10 % the difference is more

pronounced. It is believed that this is due to the fact that the constitutive law300

is probed over a larger strain range in the present case thanks to measurements

at the microscopic scale.

The local stress-strain differences (Figure 10) will also induce different di-

mensionless load residuals (see Figure 11). There is a significant decrease of the

latter ones from the initial guess to the converged solution. The coarse mesh305

leads to a higher global residual (i.e., χF = 14.6) in comparison with the two

fine meshes, which lead to global load residuals 9 times the standard uncertainty
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of the load cell.
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Figure 11: Initial and final dimensionless static residual χF for the different mesh sizes used

in integrated DVC

Let us recall that the gray level residual χI(t) corresponds to the root mean

difference between undeformed and corrected deformed volumes by the mea-310

sured (DVC) or the simulated (FE) kinematic fields, see Equation (9). Figure 12

shows the change of dimensionless gray level residual for the six analyzed load-

ing steps. Even though the C8-DVC analyses are only based on a very coarse

mesh (Figure 6) they still lead to the lowest gray level residuals. The latter ones

are at least equal to 1.6 times those corresponding to the uncertainty analysis315

discussed in Section 2.2. This trend indicates that the measured kinematics

does not completely follow the details of the material microstructure. However,

the residuals remain sufficiently low to deem the measurements trustworthy and

apply them as Dirichlet boundary conditions to the FE simulations.
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Figure 12: Initial and final dimensionless gray level residuals χI for different mesh sizes used

in the I-DVC procedure and for DVC calculations

The same degradation of the gray level residuals is observed for the four320

analyzed numerical cases. Since measured boundary conditions are considered,

gray level residuals can also be evaluated for displacement fields that would not

be measurable with a standard DVC code since the mesh size would be too

small to ensure good convergence. In the present case, all I-DVC results lead

to virtually the same residuals. The reason why there is only a very minor325

influence of the three discretization is due to the fact that the modeled region of

interest is small and that the type of loading is rather simple (i.e., induced by

uniaxial tension). Further, they are significantly higher than C8-DVC residuals.

This clearly indicates a model error, which has to be analyzed more locally by

using the voxel scale representation of the gray level residuals (see Section 3.2).330

To conclude the mesh sensitivity analysis of the three mesh densities consid-

ered herein, the coarser Mesh 1 is disqualified since it is not sufficiently close to

the actual microstructure (Figure 7) and it does not predict the overall load level

as accurately as the other two meshes. The latter ones lead to very similar load

residuals (Figure 11) and stress / strain responses (Figure 10). Consequently,335
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they are equivalent in overall predictive power with the chosen constitutive

framework. However, in terms of overall computation time there is a significant

increase, which was anticipated from the computation of the sensitivity fields

(Table 1), namely, 50 h for Mesh 2 and 236 h for Mesh 3. It is worth noting

that the identification procedure can start with Mesh 1 for the first parameter340

estimations and finish with Mesh 3 for more detailed analyses.

3.2. Discussion

Since the actual microstructure of the material is explicitly meshed, void

growth should be reasonably described by the simulations, provided the con-

stitutive law of the matrix is representative of the actual material. Conversely,345

damage nucleation and coalescence are not accounted for if coalescence mecha-

nisms other than internal necking between nodules are at play. Therefore it is

believed that some of the deviations of the previous residuals can be linked to

these hypotheses.

Figure 13 shows sections of the gray level residuals for the six (in printed350

version only sixth) analyzed loading step(s). For the first loading step, the C8-

DVC residuals reveal that early debonding occurs in particular in the lower/left

region of the analyzed volume. For the second loading step, coalescence and

fracture has already started and matrix/nodule debonding has further developed

over a large area. For I-DVC, the chosen constitutive law is not able to fully355

describe the response of the material in the transverse directions. Consequently

the gray level residuals are higher than in C8-DVC (see Figure 12). Similar

observations can be made by analyzing the residuals for steps 3 to 5, which have

essentially the same features. Last, further coalescence and fracture develop in

the last loading step and the residuals degrade for C8-DVC and I-DVC.360
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Figure 13: Gray level residuals for I-DVC (left) and C8-DVC (right) analyses for the last

loading step. Online version: corresponding movie for the 6 analyzed steps

It is worth remembering that as the analyzed loading step increases, so does

the load residual (Figure 11). With the present observations it can be stated

that this degradation is linked to coalescence and fracture. Let us also note

that apart from matrix/nodule debonding and coalescence, no other zone with

high residuals is observed. Consequently, it is believed that damage nucleation,365

if present, occurs at scales lower than that of the voxels (i.e., 3.4 µm).

Figure 14 shows microstructural and equivalent strain maps (from FE cal-

culations) for the six analyzed loading steps (in printed version for the sixth

loading step). From the first loading step on, the strain field is heterogeneous

but the most loaded zone is not the one that will lead to coalescence and frac-370

ture. For the second loading step, the zone where coalescence occurs is the most

strained but coalescence and more importantly fracture are not captured in FE

simulations. Furthermore, there is a second zone where strains concentrate (see

loading steps 2 to 5). For the last loading step, the strain levels continue to

increase.375

The FE framework used herein naturally takes into account coalescence by

internal necking without any special criterion. In fact, Figure 14 (strain maps,

between increments 1 and 4) shows that coalescence instances at about one

quarter of the length of the crack are captured in the FE simulation. Hence, if

coalescence occurs by internal necking, it should be predictable. If coalescence is380

not completely captured by FE simulations as in the present case, the individual
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void growth is probably underestimated in addition to nucleation on secondary

particles.

Figure 14: Microstructure section and equivalent strain field (from FE calculations) plotted

on the deformed configuration for the last loading step. Online version: corresponding movie

for the 6 analyzed steps

The possible reasons for underestimating void growth originating from the

matrix behavior are:385

� not considering the effects of softening due to damage at smaller scales.

The possible acceleration of void growth when coalescence arises calls for

an implementation of a coupled damage model that was not considered

herein,

� the present hardening law does not saturate (i.e., there is no plateau) and390

induces unrealistic hardening. This effect will suppress levels of plastic

strain in the inter-void ligaments for the high stress states (i.e., postpone

void growth and coalescence),

� crystallographic effects of the matrix.

Another reason would be having underestimated the initial void volume frac-395

tion in the FE simulation. The quality of the geometrical descriptions of the

nodules is still imperfect due to the limited mesh density (even Mesh 3). In this

scenario, an underestimated initial void volume fraction in the FE ROI will gen-

erally decrease the void growth rate in the matrix. Also, the topological details
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of the nodules (voids), which may play an important role for stress localization400

and void interaction in the inter-void ligaments) are not properly captured.

4. Conclusions

In this paper the feasibility of an innovative identification procedure (Fig-

ure 1) was proven to calibrate matrix parameters for the simulation of dam-

age growth and coalescence at the microscale. Experimental data (i.e., recon-405

structed volumes) were collected via lab tomography while performing an in situ

tensile test on a dog-bone specimen made of nodular cast iron. Bulk kinematic

fields in the central region were measured via DVC. The FE mesh is adapted to

the real microstructure with a (re)meshing procedure based on level set fields.

The subsequent FE simulations are driven by Dirichlet boundary conditions ex-410

tracted from DVC measurements. To be as representative as possible of the

actual test, the plastic parameters of the ferritic matrix are calibrated utilizing

integrated DVC. Graphite nodules are assumed to behave as voids.

The fact that FE simulations were driven by measured boundary conditions

allowed the simulations to be more representative of the actual experiment com-415

pared to other methods used for obtaining the boundary conditions [33]. It also

enabled calibration procedures to be run at the microscale by accounting for

load and imaged microstructure since the whole sample cross-section was im-

aged. Consequently, the constitutive law of the matrix was not only probed in

terms of overall load level but also by kinematic fields induced by the random420

microstructure.

The overall residual levels were sufficiently low, thereby indicating successful

identification. The areas of higher residuals corresponded to the position of the

debond zones that appear early on, and increased further due to void coales-

cence. The fact that the numerical simulations did not account for accelerated425

void growth (i.e., softening at smaller scales) in the coalescence zone explained

why the gray level residuals degraded between DVC and I-DVC. Even though

more advanced constitutive models may be considered in the future, the overall
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dimensionless residual was only on the order of 8, which is low in comparison

to analyses at the macroscale [52].430

One of the next steps of the present work will deal with void sheeting coales-

cence that was not accounted for in the reported results. Different criteria may

then be probed. Similarly, the hypothesis of considering nodules as voids can

also be relaxed and debonding may be addressed. The proposed experimental-

numerical framework can still be used to deal with these different degradation435

mechanisms. On the experimental side, more scans would be needed in par-

ticular at earlier loading steps to better capture the matrix behavior prior to

significant damage growth.
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