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Abstract: This paper suggests a Structural Health Monitoring (SHM) method for
damage detection and localization in pipeline. The baseline signals, used in SHM, could
change due to the variation of environmental and operational conditions (EOCs).
Hence, the damage detection method could give rise to false alarm. In this study, this
issue is addressed by estimating the current signal using only few reference signals
with similar or very close EOCs. Such an operation can be performed by calculating a
sparse estimation of the current signal. The estimation error is used as an indication of
the presence of damage. Actually, a signal from the damaged pipe will be characterized
by a high estimation error compared to that of a signal from the undamaged pipe. The
damage location is obtained by calculating the estimation error on a sliding window
over the signal from the damaged pipe. This method was tested on signals collected on
a 6 m pipeline segment placed in a workshop under natural temperature variations.

Results have shown that the created damage was successfully detected and localized.

Keywords: Structural Health Monitoring, sparse estimation, damage detection, damage

localization, environmental and operational conditions.
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1. INTRODUCTION

Structural Health Monitoring (SHM) techniques are intended to assess the integrity of structures,
such as pipelines [1-3]. They are developed in order to avoid failures, which could occur as
consequence of a critical damage. Some failures might give rise to considerable material, human
and institutional losses. The damage could have different types and forms, where the most faced
one is corrosion because of the huge use of carbon steel pipelines. SHM techniques aim at detecting
the initiation of damage (i.e. at early stages) to perform thereafter the maintenance of the damaged
area of the structure, without any delay. Technically speaking, early stages defect detection is
ensured thanks to the monitoring, which is somewhat based on the comparison between the
reference signals (i.e. baseline) obtained from the healthy structure and the current one (i.e. the
structure can be damaged or still healthy). Regarding the monitoring of pipelines integrity, the
signals are acquired using ultrasonic guided waves (UGW) technique [4]. UGW can travel over long
distances with relatively small attenuation [5]. Hence, they can cover large areas using only small
numbers of distributed sensors. These waves interact with the structures heterogeneity such as
weld, flange, defect etc.

The task of comparison between the reference signal and the current signal is not easy to achieve
because the healthy state of the structure could vary due to the changes in the environmental and
operational conditions (EOCs) (e.g. temperature, humidity, vibration loads, etc.) [6]. The effects of
these EOCs could be similar to those produced by damage [7,8]. This would result in false warnings.
The differentiation between the aforementioned types of changes is a challenging task. In the
literature, different approaches were proposed to address this issue. They can be classified into two
categories: analytical and statistical methods. Clarke et al [9] have proposed to combine two
analytical methods (optimal stretch method and optimal baseline method) to compensate the effect

of temperature on guided wave propagation. The first method is applied when temperature effect is
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dilation/compression of the received signal. However, some experimental works have
demonstrated that temperature effect is not only a change of the propagation time but also a
significant change in the amplitude of the signals [10,11]. The second method requires a database of
reference signals acquired at different temperatures. Each time a new current signal is presented, it
selects from the database of reference signals the one that gives a lower subtraction error. But, the
reliability of this method depends on the temperature gap between the baselines which should be
very small. This implies a huge database of reference signals. Furthermore, damage detection with
these methods is based on a simple subtraction between the reference signal and current signal,
which is not reliable. Concerning statistical methods, Rizzo et al [12] applied novelty detection for
defect detection in railroad using UGW. They have proposed to build a database of reference signals
by adding a random noise to a baseline signal acquired from an undamaged mock up railroad.
However, the added noise cannot be used to simulate the effects of EOCs. A more realistic study was
developed by Chang et al [13], they have proposed an unsupervised damage detection method
using Singular Value Decomposition (SVD) of the matrix of collected signals. It was developed on
the premise that the effect of damage and the effect of EOCs will be represented in different
singular vectors. In this case, damage is detected by observing a jump of the mean in the right
singular vectors. But the question here is in which singular vector the jump can be observed and
how can we automatically detect this jump. Also, this can be only done in the case where the
following hypotheses are fulfilled. Firstly, it supposes that damage occurs abruptly, which is not
always true because in real cases, damage may develop progressively during a long period of time.
Secondly, EOCs should be constantly changing so a jump cannot be observed in their associated
singular vectors, otherwise it will be considered as an indication of the presence of damage. Here
also temperature changes for example could have a clear trend, so in this case the latter hypothesis
might be not verified. More recently, Eybpoosh et al [14] have proposed a supervised method based

on sparse representation of UGW signals, which can ensure discrimination between damage and
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variation in EOCs. However, this method requires the use of signals from the damaged pipe, which
are generally not available. Indeed, in real world, when damage occurs, it progresses arbitrary. That
is to say, a database collected in a given structure could not be used for others. Consequently, the
aforementioned method may not be reliable in industrial context.

In this study, since signals from the undamaged pipe are the only available information which can
be provided in the training step, the proposed method for damage detection is based on a novelty
detection technique. To deal with variation in EOCs, we consider a method of learning in non-
stationary environment. This method consists in estimating the current signal by only few signals
among the reference database. Physically, if the current signal is from a healthy pipe, it will be
estimated using few reference signals with similar or very close EOCs, the others being discarded.
As all identification methods, the proposed approach is based on the assumption that the database
of reference signal contains sufficient variation of EOCs. Otherwise, an update of the reference
database is necessary to ensure viable damage detection. Such development is not implemented in
the present study. Note here that the difference between the proposed method and the optimal
baseline selection method is that the latter searches for only one baseline signal that matches the
current signal in terms of temperature variation. While the proposed approach searches for a
combination of reference signals that well estimate the current signal. The estimated signal is
obtained by averaging the found reference signals with a specific weight for each one. To localize
the damage, we suggest applying the sparse estimation on a sliding window over the signal from
the damaged pipe. This is motivated by the fact that when dealing with UGW the effect of damage is
local on the signal.

In the next section, the proposed methodology for damage detection and localization in pipeline is
presented. In section 3, the procedure for collecting the database of signals from the healthy pipe
and the damaged pipe is explained. Also, the pre-processing of these signals is exposed. Section 4 is

devoted to discussions on the obtained results. Finally, section 5 concludes the paper.
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2. MATHEMATICAL BACKGROUND AND PROBLEM FORMULATION

2.1 Overview of the sparsity problem
The monitoring process of a structure begins generally by collecting reference signals at different
EOCs during a fixed period of time. Afterthat, whenever a new current signal is presented, it must
be compared to these reference signals. In this paper, the proposed approach for comparing the
current signal to the reference signals consists in first estimating the current signal by only a few
reference signals as shown in Figure 1. Then, we calculate the estimation error which will be used
to construct a damage index. The question here is how to select from the database of reference
signals those which will be used to estimate the current signal. This could be done by feature
selection techniques used in machine learning. However, the problem is not only to select the
suitable reference signals but also to search for the fewest number of them. Such an issue is
commonly known as sparsity problem. The next section is devoted to describe the methodology

that has been followed to estimate a new current signal.

Reference signals

[ \
1 S1 8 .
I
i I
S, B Current signal
r’ - _- __________ \I w
' S3 0 | Estimation Damage
: : — error index
I\\ ® o0 ’:I
Sn—1 Jiny Estimated signal
,__- __________ . a151 + ...+ aksn

Figure 1. Overview of the sparsity approach used for damage detection in pipeline
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2.2 Sparse estimation
Initially, an estimation of the current signal x € R™ by the matrix of reference signals C € R™*"
could be provided by minimizing the quadratic error given below:
J(0) = lIC6 — x|I3 (1)

0 =arg mgin ](8) (2)

where @ € R" is the vector of regression coefficients, m and n are the number of samples and the
number of reference signals respectively.

The optimal regression coefficients 8 provide an estimation of the current signal using all the
reference signals. But, the current signal is measured in specific EOCs while the reference signals
are generally acquired in a wide range of EOCs. Hence, such estimation could give rise to an
overfitting. This will jeopardize damage detectability because the regression model will tend to
minimize the estimation error for a signal from the damaged pipe, which should be very high
compared to that of a reference signal. Besides, the coefficients should be positive to avoid the
compensation between the reference signals. To overcome this issue, sparsity on the regression
coefficients must be defined. It can be obtained by adding a regularisation term to equation (2) as
following:

8 = arg min, (J(8) +A116]l) 3)
subjectto @ = 0

This optimization problem can be solved using the lasso method with non-negative constraint [15].
The optimal solution will select from the reference signals a subset, which will be used to estimate
the current signal and assign zero to the others. The tuning parameter A controls the power of
regularization and it must be chosen in the training step. Generally, it is very difficult to determine a
value of this parameter. It requires the use of cross validation technique. In this context, some
studies have shown that in the case of positively correlated signals, non-negative least square

(NNLS) is an efficient regularization technique [16,17]. In other words, we can say that the method

6
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has a self-regularization property, which means that it can automatically generate a regularization
term. Thus, there is no need to determine the tuning parameter A. The condition of positively
correlated variable is generally true for UGW signals (this will be verified in section 4.1). This
condition is fulfilled if all the entries of the covariance matrix S of C are strictly positive.
Mathematically, it can be expressed as:

n;_l}n(s (i,)))=0>0 4)

where S = %CTC and o, a strictly positive scalar.

It is worth noting here that the farther the parameter o is to zero, the higher the self-regularizing
effect.
The NNLS problem is defined as:

0 = arg mﬂin ](8) (5)

subjectto @ = 0
To get an optimal solution of this problem, the Karush-Kuhn-Tucker (KKT) conditions must be

satisfied. These conditions are defined as follows [18]:

6 =0 (6)
vj(8) =0 (7)
vj(6) T =0 (8)

where V] denotes the gradient. Its expression is given by:

VJ(8) = 2CT(cH —x) 9)
The constrained minimization problem described in equation (5) can be solved using different
numerical approaches. The most common ones are: active set method, projected quasi Newton
approach, principal block pivoting method and interior point method [19]. A comparison between
these approaches is beyond the scope of this study. However, we have chosen to use the active set

method because a recursive version of this method can be easily implemented. This will be used
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later for the purpose of damage localization. Active set method divides the constraints into active
and passive ones. Actually, the active constraint refers to zero regression coefficients, otherwise it
is considered as passive. At each step, the method calculates the solution by the least squares
method on the passive set. Then, it tests if the new regression coefficients satisfy the KKT
conditions. Afterthat, it updates the set of active coefficients until a final set is found. Lawson and
Hanson [20] have proposed an algorithm to solve NNLS problem, which is an active set method. It is

described in the following flowchart.

Inputs € x

Initializations: active constraints R and
passive constraints P

Stopping criteria

Exchange of indexes between active
constraints and passive constraints

Calculate the least square solution on the
passive constraints

Nonnegativity
conditions
Change the solution to satisfy the
nonnegativity conditions

End

Figure 2. Algorithm used for solving a non-negative least square problem
2.3 Damage indicators
To detect the presence of damage, an indicator must be derived from the sparse estimation of the

current signal. If the signal is from a damaged structure, we expect that the estimation error will be



CoO -1 o N s W b

M O G UT U U U U U1 U U1 s B B s B s B B W0 W W W W W W RN RN R N R R N R
M WNHFOWO-JdO O d WK FE O W - s WNHEOWE-JIOUE WNEFEOWwOL-1ToUbsWNE OWwm-1oUbWwheE ow

very high compared to that of a reference signal. Hence, a damage indicator could be chosen as the
quadratic estimation error ](9) given by the solution of NNLS problem described in equation (5).
The sparsity of the regression coefficients (Sr) could be also used as damage indicator [21]. It is

defined as the ratio of the number of zero coefficients in 8 to the total number of reference signals:

— card(P
_n car()><

Sr 100 (10)

where card(P) denotes the cardinal of the final set of the passive constraints P. In fact, a signal from
the damaged pipe will be characterized by a very small number of passive coefficients. Hence, the
value of Sr will converge to unity. While, for a reference signal, the value of S will be theoretically a
little far from unity. Furthermore, this sparsity will increases as the damage size increases. Thus,
the damage severity can be assessed using this factor.

A joint damage indicator I that account for both the quadratic estimation error and the sparsity
ratio could be established to maximize the chances for damage detectability as proposed in [22]. It
is defined by the vector:

1=((8),sr (11)

To ensure automatic damage detection, a threshold must be defined. For this purpose, in the case of
one dimensional damage indicator (i.e. ](9) or Sr), an empirical distribution for damage indicators,
calculated from reference signals, has to be established. Afterthat, the threshold can be chosen by
fixing the confidence limit of the distribution. The current signal is considered as damage if its
damage indicator exceeds the value of the specified confidence limit.( ) The procedure of damage
detection in this case is shown in Figure 3. When using a bivariate indicator as defined in equation
(11), the signals will be represented in a two-dimensional space. In this case, the threshold can be
chosen by defining a metric to measure how close the damage indicator vector of the current signal
to those of the reference signals. This metric can be calculated using multivariate statistical tools

such as the Mahalanobis Square Distance [23].
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Figure 3. Proposed damage detection procedure, where H and D denote healthy and damaged states
of the pipe, respectively, i, an integer.

2.4 Damage localization using recursive NNLS

To get the position of damage, we suggest calculating the sparse estimation of the signal from the
damaged pipe on a sliding window over the matrix of reference signals. The already found
regression coefficients, obtained for the entire signal, are no longer suitable. Hence, the solution of
NNLS problem must be obtained for every sliding window. Taking into consideration the fact that
adding and removing one sample at a time do not change significantly the regression coefficients
found in the previous window, it is of interest to apply a recursive version for the solution of the
NNLS.

In the case of classical least squares method (unconstrained), a method to update the regression
coefficients already exists [24]. It is known as Recursive Least Squares (RLS). Since the NNLS

solving method requires the use of least squares on the passive set, the RLS could be applied to

10
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update NNLS solution. However, the non-negativity of the new regression coefficients is not
guaranteed. In other words, the KKT conditions could be violated. Thus, to get an optimal solution
of the recursive NNLS problem, these KKT conditions must be verified. Afterthat, a pivoting
exchange between the passive set and the active set could be eventually needed [25]. Under the
assumption of minimal set changes, we expect that only a single pivoting exchange is made between
the active set and the passive set. Hence, block pivoting is not necessary in this case.

The calculation of the RLS on a sliding window includes two successive steps: updating and
downdating [26]. The former adds a new sample to the window and the latter removes a sample,
which is excluded from the sliding window. Let us denotes by H the window width and by k the
index of the sample. The algorithm starts first with a window which comprises samples from k to
k + H — 1. This window corresponds to the matrix of reference signals C;,y_; and the current

signal X4 _1. The solution in this case is denoted as8,,y_;.When adding a new sample

(Cisrr Xk+n) Where Cpypy = (C’é:fgl) and Xy = (ngczfgl), the updating operation can be

written as:
A1 = (Ciyp—1Crer—1)"" (12)

T
Ak sr-1Ck+n

(13)

ﬁk-l—H = T
1+ CpynAk+n-1Cksn

Osrr = Osri—r + Bron (ke — CranOrin-1) (14)
These values will be then used to perform the downdating operation by removing the sample

(€, x). Itis expressed as follows:

T
Apri-1Ck+uCk+uAk+H-1

Apspg—1 = Apypy_q1 — 15
S TR Ak n-1Ckan (15
Apsn-1Ci
1= — 16
B 1= cxArrn-1Ck (16)
Osti-1 = Opsn — Brana (% — €Binr) (17)

11
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Notice that the window width (H) must be chosen in order to ensure the invertibility of the matrix
(CFsp-1Crsn—1), which not does represent a difficult issue because the sparsity guarantees that
only few number of reference signals are used to estimate the current signal. However, when this
matrix is not invertible, QR decomposition might be used to enforce the stability of the proposed

recursive algorithm [24].
3. DATA COLLECTION AND PREPROCESSING

3.1 Data collection

Figure 4 shows the specimen considered in this study, which consists of a steel tube with 6.4 m
length. It was placed in laboratory conditions where temperature fluctuates between 19°C and 26°C
during the monitoring period. This variation is due to the weather changes. The considered tube
was used for simultaneous different studies. A first study deals with the behaviour of mechanical
guided waves propagation in pipes repaired locally by composite patches [27,28]. This composite
repair which is visible on the photo of Figure 4 was deposited on the surface of the pipe to simulate
stopping an external corrosion damage. In the present study, another damage, in the same zone, but

inside the tube was also machined. This damage mimics a corrosion process.

- Composite repair
L —

Inner damage

Figure 4. Pipeline configuration showing the used sensor, the created damage and the composite repair.

12
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It must be noted that these studies being conducted simultaneously, the detection and the
localization of the inner damage is a challenging task as it is known that the composite layers
attenuate drastically the UGW.

A probe was placed on the tube as shown in Figure 4. This probe was installed permanently on the
surface of the tube (i.e. at least during the period of monitoring study). It acts as an emitter and
receiver at the same time (such an arrangement is called pulse-echo). In tubular structures
(pipeline in the current study), three types of propagation modes of UGW can coexist: Longitudinal
L, Torsional T and Flexural F [29]. Each mode propagates with a specific phase and group velocity.
These velocities are generally dependant of the frequency, which confer to the UGW the nature of
being dispersive. The used probe allows operating with two separate guided waves modes, which
are T (non-dispersive mode) and F (dispersive mode), at five different central frequencies: 14, 18,
24, 30 and 37 kHz. The specimen was monitored during a period around three months. Each week,
multiple measurements were scheduled. At each measurement, five signals were acquired in the
morning and at the evening in order to capture temperature changes during the day and to

investigate its effect on the collected signals. An example of an acquired signal is shown in Figure 5.

Distance (m)
10 8 6 4 2 0 2 4 6 8 10
0.4 T T T T
Ef‘-\ f—— [E—
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-E
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}wﬁ,\\m\wmf,l Wl‘.‘ﬂ!ﬂ
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Figure 5. Example of an ultrasonic guided wave signal excited with torsional mode (frequency: 14 kHz).
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As it can be seen in Figure 5, the middle part of the signal was drawn because it represents the dead
zone area (i.e. excitation signal) and the near field. During the former, the acquisition system
cannot take acquisition, and during the later, the received echoes don’t have the right magnitude, as
it should be. Also, a second x axis is shown in the top of this figure, it represents the distance
travelled by the UGW in the structure. Actually, time domain is automatically converted into
distance domain by the acquisition system, through the velocity of the T(0,1) mode in non-
dispersive medium, which is 3200 m/s.

The generated mode, in the current study, is the T(0,1) which is not dispersive since the pipe is
empty, and not surrounding by any material. However, when interacting with the repaired zone,
some dispersion may occur due to the variation of thickness [30]. This is not observed in the
current study, as it can be remarked in Figure 6 which shows a joint time-frequency representation
of the received signal. Consequently, no compensation method of the dispersion is required.

30

25

%]
(=]

=y
w

Frequency (kHz)

10

0 2 4 6 8 10 12
Time (ms)

Figure 6: Typical time frequency diagram showing no dispersion of the received signals.

The three echoes with the highest amplitude (E;, E; and E,E,E;), shown in Figure 5, represent
multiple reflections from the end of the pipe. Figure 7 gives an explanation of the traveling patch of
each one of these echoes. The echoes E; and E, correspond to a direct reflection of the UGW by the

end of pipe E1 and E2 respectively. While the echo E,E,E; is resulted from a reflection from the end

14
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of pipe E2 and two reflections from the end of pipe E1 as it is shown in Figure 7. The first reflection
was received by the sensor which corresponds to the echo E; but the second reflection produced by
the end of pipe E2 was not recorded by the sensor because it was coming from the right direction
(+) while the UGW in this case was generated in the left direction (-).

All these echoes have to be removed from the original signal because they can mask small changes
induced by the damage. Indeed, the echoes corresponding to damage are too small comparatively to
those generated by the geometrical reflectors. It is worth noting that this operation doesn’t impact
the in-situ reliability of the damage detectability. This is because the reflectors are known in

advance thanks to the isometric plan of the pipe.

Reflection Reflection
from E1 from E2
2.8m

(o
3
- A\

Probe

-~ Guided waves - .

Reflection COI’I’IpOS ite repair Damage

from E1, E2 and E1

Figure 7. Traveling path of the echoes E;, E, and E, E,E; shown in Figure 4 (not scaled figure).
Damage was created by removing material from the inside of the pipeline in six increasing steps in
order to simulate corrosion growing within the structure. Figure 4 (bottom right) shows the defect
in the last step (the 1€ coin is shown to have an idea about the size of the damage). The dimensions
and the form of this damage were set randomly as in the case of real corrosion, which occurs in real
world.

At the end of the monitoring period, a total of 236 signals were collected where 207 ones were
collected from the undamaged pipe and 29 signals were acquired from the damaged pipe. Table 1

summarizes information related to the collected database.
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Table 1. Characteristics of the collected data

Monitoring period 3 months

Reference state 207 signals

Damage state Damage increased in 6 steps (29 signals)
Temperature 19°C = 26°C

3.2 Temperature effect

The effects of EOCs are a concern of a number of researchers in the SHM community [6,31,32]. The
EOCs can affect the amplitude and/or the phase of the recorded signals. Temperature variation
includes both effects, as shown in previous studies [10-11]. For this raison and for cost and
practicality raisons, temperature is the most investigated factor in the literature [33-35]. In the
current study, temperature variation is the main factor that should undergo an influence on the
collected signals, since the pipe was installed in a workshop laboratory. The 7°C of temperature
variation will have an influence on both amplitude and phase, as demonstrate the results presented
in Figure 8. For illustration, two reference signals acquired at different temperatures were served
to extract the presented results. For the ease of the reader (i.e. to clearly see the differences
between the two signals), a zoom was displayed around the location of the damage (Figure 8 (a)).
Figure 8 (b) and (c) show the amplitude and the phase of the Fourier transform, respectively. A

significant change in amplitude and phase and also in frequency bandwidth can be easily remarked.
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Figure 8. Reference signals acquired at different temperatures: waveform (a), spectrum (b), phase (c).
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3.3 Damage effect

For the purpose of showing the effect of the intentionally created damage on the collected data, two
signals were arbitrary chosen (one from the healthy pipe and the other one from the damaged
pipe) to be compared. As done in the previous section (3.2), a zoom of the waveform around the
damage is shown. The corresponding result is presented in Figure 9 (a). The spectrum and the
phase are calculated via Fourier transform, applied on these portions of signals. The obtained
results are depicted in Figure 9 (b) and (¢), respectively. These results confirm the expected effects
of the damage, where just as temperature, there is an impact on the amplitude, the phase as well as

the frequency content.
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Figure 9. Reference signal and a signal from the damaged pipe: waveform (a), spectrum (b), phase (c).

The question that can be asked at this stage is: Is the damage detectable? The answer is surely no!
In this case, damage cannot be detected by visual analysis neither in time domain nor in another
domain such as frequency one, and this is because the quasi-similarity with the influence of
temperature. In another words, without any a priori on the nature of the collected signals, it is hard,
perhaps even impossible, to distinguish between the effects of EOC (temperature in the present
case) and damage. In simple words, one will not be able to confirm that a change in the signals is
due to temperature variation or due to the presence of damage. Consequently, the damage cannot
be detected. Statistical methods can be envisaged, but the “classical” use of statistical descriptors

such as root mean square (RMS), correlation coefficient, standard deviation and maximum
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amplitude, as proposed in references [36-38] will not help to detecting damages (in the current
database). To illustrate this, let us consider for example the RMS as a damage indicator. As a

reminder, the RMS of a signal x = {x;}, x € R™ is given by:

RMS(x) = ’% mox?2. (18)

Figure 10 shows the values of RMS for all monitoring signals (including those from the healthy pipe
and the damaged pipe). As it can be seen in this figure, a change of variability (variation between
minimum and maximum) in RMS values can be observed between the signals from the undamaged
pipe and the signals from the damaged pipe, which indicates that an abnormality has occurred.
However, in this case, threshold-based damage detection methods (see for example reference [39])
cannot be used to ensure automatically damage detection. Indeed, any gap cannot be observed
between the two types of the pipe state signals (healthy and damaged). Note also that in real world,
only one descriptor of the current signal (or a tiny if persistency is considered), is/are to be
compared to the baseline database (i.e. healthy state). In this case, the abnormality behaviour that
is remarked in Figure 10 cannot be exploited in order to detect damage. Even when considering
persistency item, the variability of the few descriptors that should be taken into account in the
database of the damaged state of the pipe is quasi-similar to the variability of each five signals
collected at each period for repeatability concerns (see zoom in Figure 10 left), and it is too weak in
front of the variability of the whole healthy database.

To face this problem, the authors had proposed a damage detection method based on the correction
of the collected signals [40]. However, it was found that this method has very low damage
sensitivity (that’s to say it is not sensitive to small damages). Hence, it is not suitable for the
monitoring of pipeline since the main aim of SHM techniques is detecting the initiation of the
damage (i.e. defects at early stages). The proposed method for damage detection described in

section 2.2, ensures relatively high damage sensitivity. The obtained results using this method are
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presented in the next section. In addition, the proposed method allows locating damages, as it will

be discovered in section 4.3.
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Figure 10. RMS of the monitoring signals, the signals from the damaged pipe are coloured in red with a

circle marker.
4. RESULTS AND DISCUSSIONS

4.1 Verification of the condition of using NNLS
One hundred and forty signals were used as a database of reference signals (i.e. matrix C) and the
others served for the test of the proposed method (as described earlier in Figure 3). The reference
signals used for the test step could have been obtained with different variation of temperature,
which might not be included in the matrix C. Each new signal (x) is estimated by sparse
model 8 obtained by solving the constrained minimization problem described in equation (5).
Here, the sparse estimation is calculated on the entire signal. Let us first verify that the reference
signals are positively correlated, which is the condition of using NNLS rather than the non-negative
lasso. In this study, the minimum of the covariance matrix was calculated for the reference signals.
It is equal to 0.0414, which is of course strictly positive. Thus, the condition of positively correlated
signals is fulfilled as stated in inequality (4). To confirm this, Principal Component Analysis (PCA)

was firstly performed on the matrix C [41]. Note that at this stage, only torsional mode signals with
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an excitation frequency of 14 kHz are considered. Afterthat, the correlation coefficient between the
first two representative principal components and the reference signals was calculated. The result

is presented in Figure 11.

Second principal component

-1 -0.5 1] 0.5 1
First principal component

Figure 11. Correlation coefficient of the reference signals and the first two principal components.

This result represents the classical correlation circle for the first factorial plane when deploying a
Principal Component Analysis on the matrix C containing the reference signals. This figure shows
that the reference signals are well represented by the first principal component (the correlation
coefficient exceeds 0.88). This can be explained by the fact that there is a strong positive correlation
between the reference signals. In this case, the use of NNLS will automatically imply sparsity (i.e.
when estimating a signal, the number of selected endogenous signals in the reference database will
be limited). The variation of the correlation between the reference signals and the second principal
component is probably due to the changes in EOCs namely temperature.

4.2 Damage detection

Since the condition of positively correlated signals is now fulfilled, an estimation of a new measured
signal can be provided using NNLS. Figure 12 shows the estimation error for a signal from the
undamaged pipe (left) and a signal from the damaged pipe (right). It was obtained by subtracting
the measured signal with its estimation calculated using NNLS. It can be noticed that the order of
magnitude of the estimation error for the signal from the damaged pipe is far from that of the signal

from the undamaged pipe. Besides, the estimation error of the undamaged pipe’s signal presents a
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random behaviour, except in the zones where the echoes from the end of pipe and excitation signal
were deleted. When a defect is present, the error will tend to deviate from the random behaviour to
a deterministic one. Also, a signal from the damaged pipe will be badly estimated by the reference

signals, that’s why its estimation error is very high.
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Figure 12. Estimation error: reference signal (left), signal from the damaged pipe (right)
The quadratic estimation error ](@) was calculated for all test signals including those from the
healthy pipe and the damaged pipe. The flexural mode signals are also considered here for the

purpose of comparison. The result is shown in Figure 13.
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Figure 13. Quadratic estimation error J(8) for two different modes (torsional mode: left and
flexural mode: right).

Different comments can be drawn from this result:
e Signals from the damaged pipe are well separated from the undamaged pipe’s signals for

both modes of excitation: torsional or flexural. In this case, damage can be detected
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automatically by defining a threshold. Besides, this separation is more significant in the case

of flexural mode. This directly affects the damage sensitivity.

e The quadratic estimation error ](@) of the reference signals presents very low variation by

comparison to the result of RMS, shown in Figure 10 .

e The values of J(8) increase as the size of damage increases. Thus, J(8) can be used to assess

the severity of damage.

The sparsity ratio (Sr) defined in equation (10) can be also used to detect a damage. Figure 14

shows the Sr for the monitoring signals including damaged and reference state signals for both

excitation modes (i.e. flexural and torsional). The variation of the Sr for the reference signals is

somewhat large while the Sr of damaged state signals presents a relatively low variation. Besides,

the values of Sr increase as the size of damage increases. However, a threshold cannot be defined to

ensure automatic damage detection without triggering false alarms. Thus, J(8) outperforms Sr in

terms of damage detectability. In this case, the use of a bivariate indicator, which was defined in

equation (11) will be useless. The quadratic estimation error J(8) is sufficient to ensure reliable

damage detection.
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As mentioned in section 3.1, the acquisition system can excite five different frequencies (14, 18, 24,

30 and 37 kHz). Therefore, the already developed method for damage detection should be applied

to all available frequencies in order to select the optimal one to be used in this context. Demma et al

[42] have studied the effects of damage size on the reflection of guided waves and have concluded

that the maximum amplitude of the reflected wave from a defect can be noticed when using a wide

range of frequency. The results showed in Figure 15 confirmed that the excitation frequency

severely impacts the damage sensitivity because when the frequency increases the damage

SenS]th]ty decreases.
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Figure 15. Frequency effect on damage detectability for flexural propagation mode.
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To illustrate this, a ratio which quantifies the gap between reference signals and damaged state
signals was calculated for all acquired signals at different excitation frequencies and for both modes
of propagation. This ratio can be expressed as:

_ J(8) [first damaged pipe’s signal]

Gr (19)

B ](3) [last undamged pipe’ssignal]

The results are reported in table 2. In overall, flexural mode ensures high damage sensitivity

compared to torsional mode. This might be explained by the fact that the dispersive nature of the

flexural mode emphasizes the interaction between damage and the guided waves. Thus, damage

effect is more significant in this case.

Table 2. Gap ratio (Gr) between reference signals and damaged state signals (following eq. 19)
Frequency 14 kHz 18 kHz

Mode

4.3 Axial damage localization

To locate the damage through the axes of pipe revolution (i.e. one dimensional localization), the
idea which was described in section 2.4, is to apply the sparse estimation on a sliding window over
the signal (i.e. samples) as shown in Figure 16. As it has been mentioned in the introduction, when
UGW are excited by the sensor, they travel in all directions. At the position of damage, they interact
with it and the echo resulted from this interaction travel back to the sensor. By analysing the
received signal, a significant change must be observed at the position of damage. Hence, the local
comparison between reference signals and damaged state signal is ensured by considering a
window which moves over the damaged pipe’s signal. At each step, we measure how different is
this portion of the signal from the same portion in the references signals. This is done by calculating

the quadratic estimation error using NNLS. Finally, the position of damage is characterized by a
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very high quadratic estimation error. In this case, the window width may influence the final result.
It can be determined basing on the desired precision of localization. It has to be noted that, the
problem here is not to localize precisely the position of damage as in the case of imaging method

but only to give an estimation of the distance that separate the sensor to the defect.
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Figure 16. Sliding window over a signal from the damaged pipe.

In the present study, the window width was set at forty samples. A larger window width could be
tested to investigate its influence on the result of localization. This window was moved with one
sample per step. At each step, the quadratic estimation error ](@) using recursive NNLS algorithm
is calculated. At the end, at each moving window over the signal from the damaged pipe, a value
of J(8) is obtained.

As it can be seen in Figure 17, the position of the machined defect is found for both modes (flexural
and torsional). To avoid interpretation of false damage position, the signal from the damaged pipe
was truncated between the first two arrivals of the end of pipe echoes. This figure shows that the
position of damage, which corresponds to the maximum of ](9), is 3 m for torsional mode and 2.8

m for flexural mode. The real position of damage is 2.6 m. Hence, the flexural mode is more precise

25



CoO -1 o N s W b

M O G UT U U U U U1 U U1 s B B s B s B B W0 W W W W W W RN RN R N R R N R
M WNHFOWO-JdO O d WK FE O W - s WNHEOWE-JIOUE WNEFEOWwOL-1ToUbsWNE OWwm-1oUbWwheE ow

in terms of damage localization. The error of localization is 15% and 7% for torsional and flexural
modes, respectively. It can be explained by the fact that the window width (H) induces an error of
localization. Finally, it is worth noting that the result of localisation could be optimized by assigning

the position of damage to a value of J(8) where we estimate that the error is significant and not

necessarily to the maximum of J(8).
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Figure 17. Quadratic estimation error ](@) of a signal from the damaged pipe showing the position
damage (left: torsional mode and right: flexural mode).

5. CONCLUSION

In this paper, a method for damage detection and localization in pipeline was proposed. It is based
on sparse estimation of the current signals by the reference signals. A simplified form of this
estimation using the non-negative least squares was investigated. It is based on the fact that the
acquired UGW signals are highly correlated. The sparsity helps to enhance damage detectability
because a signal from the damaged pipe will have a high estimation error compared to that of a
signal from the undamaged pipe. Besides, it can face the problem of variation in EOCs provided that
the database of reference signals contains large variations of these EOCs. The detection of the

damage was ensured by calculating the quadratic estimation error ](@) on the entire current

signal. The localization of the damage was established however through implementing a recursive
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version of the sparse estimation on a sliding window over the signal from the damaged pipe. It was
shown that the flexural mode provides better damage sensitivity and better precision of damage
localization.

As a perspective of this work, an update of the database of reference signals could be considered in
the case where these signals present limited variation in EOCs. This can be achieved by adding to
this database, new signals from the undamaged pipe with unknown variation in EOCs. Also, the

proposed method has to be validated on operational pipeline, which serves in different EOCs.
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