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Abstract

This paper deals with the stabilization of continuous-time linear time-invariant systems subject to uniform input quantization. Specifically,
the right-hand side of the closed-loop system is rewritten as a linear system subject to a discontinuous perturbation due to the quantization
error. Then, the controller design is performed to achieve finite-time convergence of the closed-loop trajectories towards a compact invariant
set surrounding the origin. Furthermore, a computationally tractable design procedure for the proposed controller based on linear matrix
inequalities, and some insights on the simulation of the closed-loop system are presented. In addition, the effectiveness of the proposed
control design procedure is shown in a numerical example.
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1 Introduction

Recent technology enhancement has enabled the con-
trol of dynamical systems via digital controllers. When a
continuous-time plant is controlled through a digital con-
troller, side effect as time-delays, asynchronism, quantiza-
tion, (see [14] and references therein), can turn into an
excessive performance degradation like the appearance of
limit cycles, chaotic phenomena or even instability of the
closed-loop system, [7,13]. Concerning the effect of quan-
tization in control systems, such a topic has been exten-
sively addressed by researchers over the last years; see, e.g.,
[5,7,12,13,17,22,26,27] just to cite a few.

This paper pertains to the stabilization of continuous-
time linear time-invariant plants with uniformly-quantized
input via static state feedback control. Specifically, pursu-
ing the general approach introduced in [13], we model the
uniform quantizer as a discontinuous static isolated nonlin-
earity entering into the dynamics of the closed-loop system.
At this stage, since the resulting closed-loop system is de-
scribed by a discontinuous right-hand side differential equa-
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tion, the existence of solutions to the closed-loop system is
not guaranteed; see [16]. Therefore, to tackle the problem
under consideration, we adopt, for the closed-loop system,
the notion of solution due to Krasovskii; see [11]. Then, by
the use of the sector conditions for the uniform quantizer
presented in [15], coupled through S-procedure (see [3]) to
a quadratic Lyapunov-like function, we propose a condition
to guarantee the finite-time convergence of the closed-loop
trajectories towards a compact invariant set surrounding the
origin, (asymptotic stability is usually impossible to prove
due to the deadzone effect induced by uniform quantization;
see, e.g., [8,15,27]). Afterwards, via the use of the projection
lemma (see [25]), such a condition is turned into a design
procedure based on the solutions of a convex optimization
problem that in one shot provides: the controller gain, the
invariant set wherein the closed-loop trajectories ultimately
converge, while minimizing the size of such a set. Moreover,
some insights on the simulation of the considered closed-
loop system are discussed.

It is worthwhile to notice that, although the approach in-
troduced in [13], (consisting in modeling quantizers as iso-
lated nonlinearities), has enabled to build constructive de-
sign tools for quantized control systems, as for the case
of other types of isolated nonlinearities such as, saturation,
backlash etc., surprisingly no much work has been done in
that direction, except for [12,17,27], though the results in
[12,17] relate to discrete-time systems subjected to a loga-
rithmic quantizer (deadzone-free). Specifically, the majority
of the results available in the literature (see, e.g., [7,22] and
the references therein), has dealt with the stability analysis
of quantized closed-loop systems involving a controller de-
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signed while ignoring the presence of the quantizer. In this
sense, this paper wants to fill this gap by proposing a design
technique tailored to quantized systems. The contribution of
this paper with respect to [27] is twofold. On one hand, the
novel sector conditions for the uniform quantizer presented
in [15] are for the first time exploited to design a static state
feedback controller in the presence of uniform input quanti-
zation. On the other hand, the use of the projection lemma is
considered to potentially improve the proposed design tech-
nique. Notice also that even if the spirit of the pursued ap-
proach is similar to [7,20], the results presented in this paper
allows to deal with multi-inputs systems, derive constructive
conditions for the design of a state feedback controller and
explicitly characterize the set wherein the closed-loop tra-
jectories ultimately converge, directly from the knowledge
of a Lyapunov-like function. Therefore, our results can be
considered as complementary with respect to those in [7,20].

The paper is organized as follows. Section 2 presents the
system under consideration and the problem we solve. Sec-
tion 3 is dedicated to the main results. Section 4 is devoted
to numerical issues about the controller design. Moreover,
some aspects on the simulation of the closed-loop system
are discussed. Finally, Section 5 shows the effectiveness of
the presented results in a numerical multi-inputs example.

Notation: The set Bpx,δ qq denotes the δ radius closed Eu-
clidean ball centered at x. In denotes the identity matrix and 0
denotes the null matrix (equivalently the null vector) of appro-
priate dimensions. For a matrix A P Rnˆm, A1, Apiq denotes its

i ´ th row, and tracepAq denote its transpose and its trace, and
HepAq “ A ` A1. The matrix diagtA1,A2, . . . ,Anu is the block-
diagonal matrix having A1,A2, . . . ,An as diagonal blocks and in
symmetric matrices ‚ stands for symmetric blocks. For a vector
x P Rn, xpiq denotes its i ´ th component, x1 denotes its transpose,

|x| stands for the componentwise absolute value operator, signpxq
is the componentwise sign function, with signp0q “ 0, and txu
the componentwise floor operator. The set ∆Zp is the set of the
p-tuples of integers multiple of ∆. The symbol x¨, ¨y denotes the
standard Euclidean inner product and ˆ stands for the standard
Cartesian product. For a set U , intpUq denotes the interior of U .
The double arrows notation F : Rn Ñ Rm indicates that F is a
set-valued mapping with Fpxq Ă Rm. Throughout the paper, a.a.
stands for almost all in a Lebesgue-measure sense. For a function
f : A Ñ B, rge f :“ ty P B : Dx P A such that y “ f pxqu.

Preliminary definitions: In this paper we deal with differen-
tial inclusions in the form

9x P Fpxq (1)

where Fpxq : Rn Ñ R
n. Consider the following definitions given

mainly in [18,23].

Definition 1 Let I Ă Rě0 be an interval. Given x0 P Rn an abso-
lutely continuous function φptq : I Ñ Rn is said to be a solution

to (1) from x0, if φp0q “ x0, and 9φ ptq P Fpφptqq for a.a. t P I.

Definition 2 A solution φ : I Ñ Rn to (1) from x0 is said to be

maximal, if there does not exist any other solution φ : I Ñ Rn,

with I Ă I and such that φptq “ φptq for every t P I. Moreover, φ
is said to be complete, if I “ Rě0.

Definition 3 A set A Ă Rn is strongly forward invariant for (1),
if every maximal solution φ to (1) is complete, and φp0q P A

implies rgeφ Ă A .

2 Problem Statement

Consider the following continuous-time linear system
with quantized input

"

9x “ Ax ` Bqpuq

xp0q “ x0
(2)

where x P Rn, u P Rp, x0 P Rn are respectively the state, the
input of the system and the initial state. A,B are real matrices
of suitable dimensions, and qp¨q is the uniform quantizer,
which is described by the static nonlinear functions defined
as

qpuq :“ ∆signpuq

Z

|u|

∆

^

(3)

where ∆ is a positive given real scalar characterizing the
quantization error bound. Assuming that the state x is fully
accessible, we want to stabilize system (2) via the follow-
ing control law u “ Kx. Therefore, by defining the function
Ψpuq – qpuq ´ u, the closed-loop system reads as

"

9x “ pA ` BKqx ` BΨpKxq

xp0q “ x0.
(4)

Notice that, due to the presence of the uniform quantizer, the
right-hand side of (4) is a discontinuous function of the state,
then there is no guarantees about the existence of solutions
when intended in a classical sense; see [11]. To this end,
as in [7], in this paper we focus on Krasovskii solutions to
system (4), that is the solutions to the following differential
inclusion

9x P K ppA ` BKqx ` BΨpKxqq (5)

where the Krasovskii operator K is defined by 1 K p f pxqq –
Ş

δ ą0 co f pBpx,δ qq. The existence of such solutions is
guaranteed under the very mild requirement of local bound-
edness of the right-hand side of (4), obviously verified in
our case. Moreover, as pointed out in [18,19], Krasovskii
solutions are arbitrarily close to the solutions to (4) obtained
by perturbing the state x with arbitrarily small perturbations;
see [19]. This fact provides a further reason to consider
Krasovskii solutions, beyond the merely issue concerning
the existence of solutions.

Remark 1 As pointed out in [22,27], the presence of the
uniform quantizer defined in (3), due to its deadzone effect,
can represent a real obstacle to the asymptotic stabilization
of the closed-loop system. Namely, one should be aware that
if the matrix A is not Hurwitz, then the asymptotic stability of
the origin for the closed-loop system (4) cannot be achieved
via any choice of the gain K.

Concerning closed-loop system (4), notice that according

to [24] every solution to (4) is a Krasovskii solution to 2 3

9x P pA ` BKqx ` B

p
ą

i“1

K
`

ΨpKpiqxq
˘

. (6)

In the sequel, for notational simplicity, we denote the right-
hand side of (6) as W pxq, so that (6) reads as 9x P W pxq. Now
we are in position to state the problem we solve.

1 Missing co in the published version.
2 In the published version there is a missing B in (6).
3 Systems (4) and (6) are swapped in the published version. The
error does not propagate and the (correct) argument used in the
paper is that solutions to (6) are Krasovskii solutions to (4) and
not the other way around.

2



Problem 1 Given the matrices A,B of adequate dimensions
and a positive real quantization error bound ∆, determine a
gain K and a compact set Su Ă Rn containing the origin,
such that

‚ Su is strongly forward invariant for (6);
‚ For every initial condition x0 P RnzSu, the resulting max-

imal solutions to (6) are bounded, complete and converge
in a finite time into Su.

3 Main results

To solve Problem 1, we want to exploit the sector con-
ditions for the uniform quantizer presented in [15], which
are recalled below.

Lemma 1 For every u PRp and every v P
Śp

i“1 K pΨpupiqqq,
the following relations are verified

v1S1v ´ tracepS1q∆2 ď 0 (7)

v1 S2 pv ` uq ď 0 (8)

for any diagonal positive definite matrices S1,S2 P Rpˆp.

The next result gives a first condition to solve Problem 1.

Proposition 1 If there exist a symmetric positive definite
matrix P P Rnˆn, two diagonal positive definite matrices
S1,S2 P Rpˆp, a matrix K P Rpˆn and a positive scalar τ
such that

N “

«

HepPpA ` BKqq ` τP PB ´ K1S2

‚ ´S1 ´ 2S2

ff

ă 0 (9)

tracepS1q∆2 ´ τ ď 0 (10)

then K, and

Su “ tx P R
n : x1Px ď 1u (11)

are solution to Problem 1.

PROOF. Consider the following quadratic function V pxq “
x1Px, we want to prove that there exists a positive real scalar
β such that

x∇V pxq,wy ď ´β x1x @x P R
nzintpSuq,w P W pxq.

(12)
By S-procedure arguments, this can be obtained by showing
that for every x P Rn, there exists a positive real scalar τ
such that

x∇V pxq,wy ´ τp1 ´ x1Pxq ď ´β x1x @w P W pxq. (13)

On the other hand, due to (6), for every w P W pxq there exists
a v P

Śp
i“1 K pΨpKpiqxqq such that w “ pA ` BKqx ` Bv,

thus still by S-procedure arguments, by continuity of the
function Kx (see [15]), thanks to Lemma 1, (13) is ensured
by proving that for each x P Rn and v P Rp,

x∇V pxq,pA ` BKqx ` Bvy ´ τp1 ´ x1Pxq ´ v1S1v`

tracepS1q∆2 ´ 2v1S2pv ` Kxq ď ´β x1x.
(14)

By straightforward calculations the left-hand side of the

above relation can be rewritten as follows

«

x

v

ff1

N

«

x

v

ff

` tracepS1q∆2 ´ τ. (15)

Thus in view of (9) and (10), it follows that there exists a
small enough positive scalar β such that for every x PRn

,w P
W pxq, one has x∇V pxq,wy ´ τp1 ´ x1Pxq ď ´β px1x ` v1vq,
which in turn gives (13).

To conclude, by following standard arguments (see, e.g.,
[2,21]), from (12) it follows that, Su is strongly forward in-
variant for (6), every solution to (6) is bounded (then com-
plete; see [18, Proposition 6.10.]) and converges to Su at

most in 4 λmaxpPq
β

lnpV px0qq units of time. l

As it appears in Proposition 1, condition (9) is nonlinear
in the decision variables, thus from a numerical standpoint
the solution to Problem 1 directly via Proposition 1 appears
unlikely; see [3]. For this, the next result allows to make
a first step toward a convex design procedure based on the
result given in Proposition 1.

Corollary 1 If there exist a symmetric positive definite ma-
trix J P Rnˆn, a matrix Y P Rpˆn, a matrix F P Rnˆn, two
diagonal positive definite matrices S1,S2 P Rpˆp and a pos-
itive scalar τ such that (10) is verified and

»

—

—

–

´HepFq J ` AF ` BY ´ F1 B

‚ τJ ` HepAF ` BYq ´Y 1S2 ` B

‚ ‚ ´S1 ´ 2S2

fi

ffi

ffi

fl

ă 0 (16)

then K “ YF´1 and the set Su “ tx P R
n : x1Px ď 1u, with

P “ F 1´1JF´1, are solution to Problem 1.

PROOF. The proof is inspired by [25]. From Proposition
1, notice that N “ W 1QW , where

W “

»

—

—

–

A ` BK B

I 0

0 I

fi

ffi

ffi

fl

,Q “

»

—

—

–

0 P 0

‚ τP ´K1S2

‚ ‚ ´S1 ´ 2S2

fi

ffi

ffi

fl

.

Thus, (9) can be rewritten equivalently as W 1QW ă 0. More-
over, being S1 and S2 positive definite, U 1QU ă 0, with

U 1 “
”

0 0 I

ı

, is obviously satisfied. Thus, by the projection

lemma; see [25], the satisfaction of (9), whenever S1 and S2

are required to be positive definite, is equivalent to find a

matrix X such that 5

Q ` pW K
r q1

X UK
r ` pUK

r q1
X

1W K
r ă 0 (17)

where, UK
r and W K

r are some matrices having as rows a
basis of the row-null space, respectively of U and W . Now,

4 Typo in the published version, P should be P.
5 Typo in (17), W 1K

r should be pW K
r q1, same for U 1K

r .
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by selecting UK
r “

”

I2n 02nˆp

ı

and W K
r “

”

´I A ` BK B

ı

,

and by partitioning X “
”

X1 X2

ı

, where X1,X2 P Rnˆn,

from (17) one gets
»

—

—

–

´HepX1q P ´ X2 ` X 1
1pA ` BKq X 1

1B

‚ HepX 1
2pA ` BKqq ` τP X 1

2B ´ K1S2

‚ ‚ ´S1 ´ 2S2

fi

ffi

ffi

fl

ă 0.

(18)

At this stage, by setting in the above expression
X1 “ X2 “ X , then by pre-and-post multiplying the left-

hand side of the resulting matrix by diagtX 1´1
,X 1´1

,Iu
and diagtX´1

,X´1
,Iu and finally by setting X´1 “ F ,

J “ F 1PF and Y “ KF yields the left-hand side of (16).
Then, since the satisfaction of (16) implies the satisfaction
of (9), thanks to Proposition 1 the assertion is proven. l

4 Numerical Issues

4.1 Controller design

The implicit objective in solving Problem 1 is to shrink
the size of the set Su as much as possible, so as to keep
the closed-loop trajectories sufficiently close to the origin.
Thus, as shown in [27], one can select among all the feasible
solutions to condition (16), that one providing the smallest
size of the set Su. To achieve this objective, one need firstly
to choose a suitable measure for the set Su. Now, being the
ultimate set an ellipsoid, several size criteria can be adopted.
A typical choice adopted in the literature consists in min-
imizing the volume of the set Su which is proportional to
a

detpP´1q; see [3]. However, since the variable P does not
directly appear in (16), the adoption of the latter criterion is
not handy and it can even lead to nonconvex problems. To
overcome this issue, one can implicitly minimize the vol-

ume of Su by minimizing tracepP´1q. Then, to link the ma-
trix P to the other decision variables the following further
constraint is added

«

N F

‚ J

ff

ě 0 (19)

which, for every symmetric positive definite matrix N, is

equivalent to P´1 ď N. Essentially, the latter constraint

guarantees that tracepP´1q ď tracepNq, so as the minimiza-

tion tracepP´1q can be performed via the minimization of
tracepNq, and N is a new decision variable. At this stage,
it is important to note that (16) is still nonlinear in the de-
cision variables. On the other hand, relation (16) becomes
linear with respect to the decision variables once τ and S2

are fixed. The selection of τ and S2 is not a difficult task
and it can be performed through a grid search. Therefore,
Problem 1 can be solved through the solution of the follow-
ing convex optimization problem, along with a grid search
stage aimed at selecting the values of τ and S2 providing
the best value for the objective function.

minimize
F,Y,S1,N,J

tracepNq

subject to N ą 0,S1 ą 0,J ą 0, (16), (10), (19).
(20)

Nevertheless, due to the dead-zone effect induced by the
quantizer, by solving the above optimization problem, one
may run into solutions characterized by a high norm control
gain, situation that need to be ruled out to envision the phys-
ical construction of the proposed controller. To this end, we
implicitly limit the control gain by constraining the eigen-
values of the matrix A` BK to lay in suitable subsets of the
open-left half complex plane. This kind of additional con-
straints can be easily expressed in a linear matrix inequality
form; see [9]. A typical choice is to consider as region the
closed circle centered in p´ω ,0q with radius r ą 0, where
ω is a positive real scalar, i.e., tz P C : |z ` ω | ď ru; such a
condition is guaranteed by adding the following constraint;
see [28], «

´rQ ωF ` AF ` BY

‚ ´rpF 1 ` F ´ Qq

ff

ă 0 (21)

where Q is a symmetric matrix with adequate dimensions.

Remark 2 The introduction of the slack variable F allows
to decouple the matrix P defining the set Su from the gain
K. This in turn allows to introduce an extra variable, i.e.,
Q, in (21). On the one hand, this in general leads to a
less conservative design technique when further constraints
like (21) are considered; see [6]. On the other hand, this
approach potentially enables to obtain better result in term
of size of the set Su, being the variable J, (and then indirectly
P), not subject to any additional constraint.

Notice that, as long as the gain K is known, condition
(9) is linear in the decision variables, modulo the variable
τ . Therefore, as a second step, by combining Proposition 1
along with a griding procedure for the scalar τ , by solving a
finite number of linear matrix inequalities, one may attempt
to tighten the set Su. This is a typical approach pursued in
the literature; see, e.g., [28]. In particular, throughout this
further stage one may also account for different measures
for the set Su than the trace criterion considered during the
design stage.

4.2 Numerical integration

To overcome the issues on the existence of solutions to
the closed-loop system, we addressed the study of such a
system by mean of the notion of Krasovskii solution, and
resting on this notion we shown some stability and sta-
bilization results for the closed-loop system. Thus, at this
stage, the question that naturally arises is how to simulate
the closed-loop system while taking into account the notion
of solution adopted throughout the paper. For this purpose,
we need to introduce the notion of approximated polygonal
arc and Euler solution, which are both given in [10].

Definition 4 (Polygonal approximation) Given x0 P Rn

and T ą 0, consider the following construction

‚ Fix an arbitrary partition of the interval r0,T s, 0 ă t1 ă
t2 ă ¨¨ ¨ ă tN , with tN “ T and max

kPt0,...,N´1u
ttk`1 ´ tku ď ε.

‚ Compute xk`1 “ xk ` ptk`1 ´ tkqpAxk ` BqpKxkqq, for k “
0, . . . ,N and xp0q “ x0.

‚ Build the affine function such that xε ptkq “ xk for k “
0, . . . ,N.

The function xε ptq is said to be an ε-polygonal approxima-
tion for closed-loop system (4).

4



Definition 5 A function ϕE ptq is said to be an Euler solu-
tion to (4) if it is the uniform limit for ε Ñ 0 of a polygo-
nal approximation xε ptq obtained by some partition of the
interval r0,T s.
The interest in considering Euler solutions stems from the
fact that, as proven in [4], Euler solutions are Krasovskii
solutions. In particular, notice that, among all the possible
polygonal approximations one can consider, the simplest and
straightforwardly attainable through a numerical procedure
arises from selecting a uniform partitioning of the time in-
terval. Namely, let N be an arbitrarily positive integer, then

fix δ “ T
N

, and for k “ 1,2, . . . ,N ´ 1, tk`1 “ tk ` T
N

. Thus,

the sequence of polygonal approximations tx T
N

u8
N“1, if con-

verges uniformly, it converges uniformly to a Krasovskii so-
lution to (4). Therefore, for N sufficiently large, the function
x T

N
can represent a good approximation of a Krasovskii solu-

tion to the considered system. However, often given x0 P R
n,

there may exist multiple Krasovskii solutions from x0, and
some of them may not be Euler solutions. Moreover, es-
tablishing whether the considered sequence uniformly con-
verges whenever N approaches infinity could be nontrivial.
Therefore, this aspect is still worth of further investigations.

5 Numerical example

Consider the following example derived from [1] for

which A “
”

´0.5 1.5 4
4.3 6 5
3.2 6.8 7.2

ı

,B “

„

´0.7 ´1.3
0 ´4.3

0.8 ´1.5



and assume ∆ “

0.5. As a first step, by considering τ “ 1.8,S2 “ diagt1.4 ¨
10´6

,4.3 ¨ 10´5u, selected via a grid search, and by con-
sidering the further constraint in (21) with ω “ 10,r “ 8.5,
the solution to the optimization problem (20) yields K “
“

´0.71 1.9 ´27
4.3 4.1 4.3

‰

.

As a second step, we perform an analysis stage via
Proposition 1, while considering as measure for the set Su

its volume (the volume of the set Su can be minimized by
considering as convex objective ´ logdetpPq; see [3]). An
iterative research for the scalar τ allows to select the more
convenient value for such a parameter, that is τ “ 7.2, which

leads to P “

„

29.33 13.25 ´14.07
13.25 65 ´136.7

´14.07 ´136.7 404.8



. In Fig. 2, the evolution

of the closed-loop system from different initial conditions
is reported. Simulations show that trajectories converge to-
wards two equilibria, (obviously also the origin is an equi-
librium point for the closed-loop system, though unstable).
It is interesting to notice that these two equilibrium points
belong respectively to the two surfaces Kx “ r∆ ´ ∆s1 and
Kx “ r´∆ ∆s1 wherein the function qpKxq is discontinuous.
It can be shown that the two mentioned equilibria are ac-
tually Krasovskii equilibria, and they can be computed as
illustrated in [8]. Fig 1 reports a closed-loop trajectory con-
verging towards an equilibrium. Specifically, in approaching
the equilibrium point, the state slides onto different quanti-
zation boundaries making the control inputs switch repeat-
edly among the two adjacent quantization levels (chatter-
ing). Simulations also show the accuracy provided by Euler
integration in capturing the peculiar behaviors due to the dis-
continuity introduced by the quantizer, as the two Krasovskii
equilibria.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-10
-8
-6
-4
-2
0
2
4
6

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.4

-0.2

0

0.2

0.4

0.6

t

Fig. 1. The evolution of the closed-loop system from
x0 “ p0.5,0.5,0.5q: Above the control inputs (qpu1q (solid-black),
qpu2q (solid-gray), and the two quantization-free inputs (Kp1qxptq

(dashed-black), Kp2qxptq (dashed-gray). Below the closed-loop

states: x1 (solid), x2 (dashed), x3 (dotted).

6 Conclusion

In this paper we tackled the stabilization problem for
linear systems subject to input quantization, with respect to
Krasovskii solutions. Specifically, via the use of the novel
sector conditions for the uniform quantizer presented in [15],
and the adoption of the projection lemma, a design proce-
dure based on the solution of a convex optimization prob-
lem was provided. In addition some hints on the numerical
simulations of the closed-loop system are discussed. Finally,
the effectiveness of the proposed methodology is displayed
in a multi-inputs example.

Future research directions include the extension of this
methodology to the case of the logarithmic quantizer, and to
the case of static state feedback control via quantized state.
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