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Benford or not Benford: a systematic but not always well-founded use of an elegant law in experimental fields

In this paper, we will see that the proportion of d as leading digit, d ∈ 1, 9 , in data (obtained thanks to the hereunder developed model) is more likely to follow a law whose probability distribution is determined by a specific upper bound, rather than Benford's Law. These probability distributions fluctuate around Benford's value as can often be observed in the literature in many naturally occurring collections of data (where the physical, biological or economical quantities considered are upper bounded). Knowing beforehand the value of the upper bound can be a way to find a better adjusted law than Benford's one.

Introduction

Benford's Law, also called Newcomb-Benford's Law, is noteworthy to say the least: according to it, the first digit d, d ∈ 1, 9 , of numbers in many naturally occurring collections of data does not follow a discrete uniform distribution, as might be thought, but a logarithmic distribution. Discovered by the astronomer Newcomb in 1881 ( [START_REF] Newcomb | Note on the frequency of use of the different digits in natural numbers[END_REF]), this law was definitively brought to light by the physicist Benford in 1938 ( [START_REF] Benford | The law of anomalous numbers[END_REF]). He proposed the following probability distribution: the probability for d to be the first digit of a number seems to be equal to log(d + 1) -log(d), i.e. log(1 + 1 d ). Benford tested it over data set from 20 different domains (surface areas of rivers, sizes of american populations, physical constants, molecular weights, entries from a mathematical handbook, numbers contained in an issue of Reader's Digest, the street addresses of the first persons listed in American Men of Science, death rates, etc.). Most of the empirical data, as physical data (Knuth in [START_REF] Knuth | The Art of Computer Programming 2[END_REF] or Burke and Kincanon in [START_REF] Burke | Benford's law and physical constants: the distribution of initial digits[END_REF]), economic and demographic data (Nigrini and Wood in [START_REF] Nigrini | Assessing the integrity of tabulated demographic data[END_REF]) or genome data (Friar et al. in [START_REF] Friar | Genome sizes and the Benford distribution[END_REF]), follow approximately Benford's Law. To such an extent that this law is used to detect possible frauds in lists of socio-economic data ( [START_REF] Varian | Benford's law (letters to the editor)[END_REF]) or in scientific publications ( [START_REF] Diekmann | Not the first digit! using benford's law to detect fraudulent scientific data[END_REF]).

First restricted to the experimental field, it is now established that this law holds for various mathematical sequences (see for example [START_REF] Bunimovich | One-dimensional dynamical systems and benford's law[END_REF]). In the situation, where the distribution of first digits is scale, unit or base invariant, this distribution is always given by Benford's Law ( [START_REF] Pinkham | On the distribution of first significant digits[END_REF] and [START_REF] Hill | Base-invariance implies benford's law[END_REF]). Selecting different samples in different populations, under certain constraints, leads also to construct a sequence that follows the Benford's Law ( [START_REF] Hill | A statistical derivation of the significant-digit law[END_REF]). Furthermore independant variables multiplication conducts to this law ( [START_REF] Boyle | An application of fourier series to the most significant digit problem[END_REF]). One might add that some sequences satisfy Benford's Law exactly (for example see [START_REF] Sarkar | An observation on the significant digits of binomial coefficients and factorials[END_REF], [START_REF] Washington | Benford's law for fibonacci and lucas numbers[END_REF] or [START_REF] Jolissaint | Loi de benford, relations de récurrence et suites équidistribuées[END_REF]).

We can note that there also exist distributions known to disobey Benford's Law ( [START_REF] Raimi | The first digit problem[END_REF] and [START_REF] Beer | Terminal digit preference: beware of benford's law[END_REF]). And even concerning empirical data sets, this law appears to be a good approximation of the reality, but no more than an approximation ( [START_REF] Gauvrit | Pourquoi la loi de benford n'est pas mystérieuse[END_REF]).

In the model we build in the article, the naturally occurring data will be considered as the realizations of independant random variables following the hereinafter constraints: (a) the data is strictly positive and is upper-bounded by an integer n, constraint which is often valid in data sets, the physical, biological and economical quantities being limited ; (b) each random variable is considered to follow a discrete uniform distribution whereby the first i strictly positive integers are equally likely to occur (i being uniformly randomly selected in 1, n ). This model relies on the fact that the random variables are not always the same. The article is divided into two parts. In the first one, we will accurately study the case where the leading digit is 1. In the second one, we will generalize our results to the eight last cases.

Through this article we will demonstrate that the predominance of 1 as first digit (followed by those of 2 and so on) is all but surprising, and that the observed fluctuations around the values of probability determined by Benford's Law are also predictible. The point is that, since 1938, Benford's Law probabilities became standard values that should exactly be followed by most of naturally occurring collections of data. However the reality is that the proportion of each d as leading digit, d ∈ 1, 9 , structurally fluctuates. There is not a single Benford's Law but numerous distinct laws that we will hereafter examine.

1 The chosen probability space

Notations

In order to determine the proportion of numbers whose leading digit is d ∈ 1, 9 , we will first build our probability space and further explain the model we choose.

Let i be a strictly positive integer. Let U {i} denote the discrete uniform distribution whereby the first i strictly positive integers are equally likely to be observed.

Let n be a strictly positive integer. Let us consider the random experiment E n of tossing two independent dice. The first one is a fair n-sided die showing n different numbers from 1 to n. The number i rolled on it defines the number of faces on the second die. It thus shows i different numbers from 1 to i.

Let us now define the probability space Ω n as follows: Ω n = {(i, j) : i ∈ 1, n and j ∈ 1, i }. Our probability measure is denoted by P.

Let us denote by L n the random variable from Ω n to 1, 9 that maps each element ω of Ω n to the leading digit of the second component of ω.

Why such a model?

Let us imagine a perfect consumer shopping in a perfectly structured supermarket: (a) in the i th (i being a strictly positive integer) section of this supermarket, the products prices range between 1 and i cents of the considered currency; (b) the prices in a section are uniformly distributed; (c) each section contains the same quantity of products and (d) the consumer randomly chooses his products in the whole store.

Under these constraining hypotheses, these perfect entities enable us to use our model. Note that conditions (c) and (d) gathered avoid us to conduct a double drawing every time: first the section then the product. In that respect, the sales receipt will verify the following results in terms of proportion of d as leading digit, d ∈ 1, 9 .

Among the different domains studied by Benford ([2]), some could be well adapted to our model: sizes of populations (sections here gathering all the populations having the same usable areas, the geographic constraints preventing the surface area to be broader; populations being not neccessary settled on the entire area, their sizes fluctuate) or street adresses for example (sections here gathering the adresses of a selected street; the lenght of the considered streets might be uniformly distributed to fit model criteria).

Hence the defined model is relevant when the studied data can be considered as realizations of a homogeneous and expanded range of random variables approximately following discrete uniform distributions.

Proportion of d

Through the below proposition, we will express the probability P(L n = d), for each n ∈ N * , i.e. the probability that the leading digit of our second throw in our random experiment is d.

Proposition 2.1. Let k denote the positive integer such that k = min{i ∈ N : d × 10 i > n}. If n < (d + 1) × 10 k-1 , the value of P(L n = d) is: 1 n k-2 l=0 ( (d+1)×10 l -1 b=d×10 l b - (9d-1)×10 l -8 9 b + d×10 l+1 -1 a=(d+1)×10 l 10 l+1 -1 9 a )+ n b=d×10 k-1 b - (9d-1)×10 k-1 -8 9 b .
Otherwise the value of P(L n = d) is:

1 n k-2 l=0 ( (d+1)×10 l -1 b=d×10 l b - (9d-1)×10 l -8 9 b + d×10 l+1 -1 a=(d+1)×10 l 10 l+1 -1 9 a ) + (d+1)×10 k-1 -1 b=d×10 k-1 b - (9d-1)×10 k-1 -1 9 b + n a=(d+1)×10 k-1 10 k -1 9 
a .

Proof. Let us denote by D n the random variable from Ω n to 1, n that maps each element ω of Ω n to the first component of ω. It returns the number obtained on the first throw of the unbiased n-sided die. For each i ∈ 1, n , we have:

P(D n = i) = 1 n . (1) 
According to the Law of total probability, we state:

P(L n = d) = n i=1 P(L n = d|D n = i) P(D n = i) . (2) 
Thereupon two cases appear in determining the value of P(L n = d|D n = i), for i ∈ 1, n . Let us study the first case where the leading digit of i is d. Let k i be the positive integer such that k i = min{k ∈ N : d × 10 k > i} in both cases. Among the first d × 10 ki-1 -1 non-zero integers (all lower than i), the number of integers whose leading digit is

d is (if k i ≥ 2): ki-2 t=0 10 t = 1 × 1 -10 ki-1 1 -10 = 10 ki-1 -1 9 .
This equality still holds true for k i = 1. From d × 10 ki-1 to i, there exist i -d × 10 ki-1 + 1 additional integers whose leading digit is d. It may be inferred that:

P(L n = d|D n = i) = 1 i ( 10 ki-1 -1 9 + i -d × 10 ki-1 + 1) = i -(9d-1)10 k i -1 -8 9 i , (3) 
the leading digit of i being here d.

In the second case, we consider the integers i whose leading digits are different from d. Among the first (d + 1) × 10 ki-1 -1 non-zero integers (i is greater than or equal to (d + 1) × 10 ki-1 ), the number of integers whose leading digit is d is: From 2 × 10 ki-1 to i, there exists no additional integers whose leading digit is d. It can be concluded that:

P(L n = d|D n = i) = 10 k i -1 9 i , (4) 
the leading digit of i being here different from d.

Using equalities (1), ( 2), ( 3) and (4), we get our result.

For example, we get: b -8 

Study of two subsequences

It is natural that we take a specific look at the values of n positioned just before a long sequence of numbers whose leading digit is d ; or conversely, at those positioned just before a long sequence of numbers whose leading digit is all but d.

To this end we will consider the sequence (P(L n = d)) n∈N * . In the interests of simplifying notation, we will denote by (P (d,n) ) n∈N * this sequence. Let us study two of its subsequences.

The first subsequence

The first one is the subsequence (P (d,φ d (n)) ) n∈N * where φ d is the function from N * to N that maps n to d × 10 n -1. We get the below result: Proof. Let n be a positive integer such that n ≥ 2. According to Proposition 2.1, we have:

P (d,φ d (n)) = P (d,d×10 n -1) = 1 d × 10 n -1 n-1 l=0 ( (d+1)×10 l -1 b=d×10 l b -(9d-1)×10 l -8 9 b + d×10 l+1 -1 a=(d+1)×10 l 10 l+1 -1 9 a ) .
Let us first find an appropriate lower bound of P (d,φ d (n)) :

P (d,φ d (n)) ≥ 1 d × 10 n n-1 l=1 ( (d+1)×10 l -1 b=d×10 l 1 - (9d -1)10 l 9 (d+1)×10 l -1 b=d×10 l 1 b + 10 l+1 -1 9 d×10 l+1 -1 a=(d+1)×10 l 1 a ) ≥ 1 d × 10 n n-1 l=1 10 l - 9d -1 9 10 l ln( (d + 1) × 10 l -1 d × 10 l -1 ) + 10 l+1 -1 9 ln( d × 10 l+1 (d + 1) × 10 l ) ,
knowing that for all integers (p, q), such that 1 < p < q:

ln( q + 1 p ) ≤ q k=p 1 k ≤ ln( q p -1
) .

(
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Therefore we have:

P (d,φ d (n)) ≥ 1 d × 10 n n-1 l=1 10 l - 9d -1 9 n-1 l=1 10 l ln( d + 1 d ) + ln( 10 l -1 d+1 10 l -1 d ) + ln( 10d d+1 ) 9 n-1 l=1 (10 l+1 -1) ≥ 1 d × 10 n 10(10 n-1 -1) 9 - (9d -1) ln( d+1 d ) 9 × 10(10 n-1 -1) 9 - 9d -1 9 n-1 l=1 10 l ln(1 + 1 d(d+1) 10 l -1 d ) + ln( 10d d+1 ) 9 × ( 10 2 (10 n-1 -1) 9 -(n -1)) ≥ 9 -(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81d - 9 + 10 ln( 10d d+1 ) + 9 ln( 10d d+1 ) 10 n 81d × 10 n-1 - 9d -1 9 n-1 l=1 10 l ln(1 + 1 d+1 d×10 l -1 ) d × 10 n
we know that for all x ∈] -1; +∞[ we have: ln(1 + x) ≤ x, thus:

- 9d -1 9 n-1 l=1 10 l ln(1 + 1 d+1 d×10 l -1 ) d × 10 n ≥ - 1 10 n n-1 l=1 1 d+1 × 10 l d × 10 l -1 ≥ - 1 10 n n-1 l=1 1 ≥ - n 10 n .
Consequently, we obtain this lower bound:

P (d,φ d (n)) ≥ 9 -(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81d - 90 + 100 ln( 10d d+1 ) + 9 ln( 10d d+1 )n + 81dn 81d × 10 n . (6) 
Let us now find an appropriate upper bound of P (d,φ d (n)) :

P (d,φ d (n)) ≤ 1 d × 10 n -1 n-1 l=0 ( (d+1)×10 l -1 b=d×10 l 1 - (9d -1)10 l -8 9 (d+1)×10 l -1 b=d×10 l 1 b + 10 l+1 9 d×10 l+1 -1 a=(d+1)×10 l 1 a ) ≤ 1 d × 10 n -1 10 n -1 9 - 1 9 n-1 l=1 (9d -1)10 l -8 ln( (d + 1) × 10 l d × 10 l ) + n-1 l=0 10 l+1 9 ln( d × 10 l+1 -1 (d + 1) × 10 l -1
) , thanks to inequalities (5). Thus we get:

P (d,φ d (n)) ≤ 1 d × 10 n -1 10 n 9 - ln( d+1 d ) 9 n-1 l=1 (9d -1)10 l -8 + n-1 l=0 10 l+1 9 (ln( 10d d + 1 ) + ln( 10 l -1 10d 10 l -1 d+1 
))

≤ 1 d × 10 n -1 10 n 9 - ln( d+1 d ) 9 (9d -1)10(10 n-1 -1) 9 -8n + 10 ln( 10d d+1 ) 9 × 10 n -1 9 + 10 9 n-1 l=0 10 l ln(1 + 1 d+1 -1 10d 10 l -1 d+1 ) ≤ 1 d(10 n -1 d ) 10 n -1 d + 1 d 9 - ln( d+1 d ) 9 × ( (9d -1)(10 n -1 d + 1 d -10) 9 -8n) + 10 ln( 10d d+1 ) 9 × 10 n -1 d + 1 d -1 9 + 10 9 n-1 l=0 10 l ln(1 + 1 d+1 -1 10d 10 l -1 d+1 ) ≤ 9 -(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81d + 9 d + 90d ln( d+1 d ) + 72n ln( d+1 d ) + 10 ln( 10d d+1 ) d 81(d × 10 n -1) + 10 9(d × 10 n -1) n-1 l=0 10 l (1 -d+1 10d ) (d + 1)10 l -1 ≤ 9 -(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81d + 9 d + 90d ln( d+1 d ) + 72n ln( d+1 d ) + 10 ln( 10d d+1 ) d 81(d × 10 n -1) + 10 9(d × 10 n -1) n-1 l=0 1 .
The last step is easy to demonstrate even for l = 0. Consequently, we obtain this upper bound: The bound just above and the one brought to light in inequality ( 6), added to the following limits: Let us denote by α d the limit of (P (d,φ d (n)) ) n∈N * :

P (d,φ d (n)) ≤ 9 -(9d - 
α d = 9 + 10 ln 10 + 9(d + 1) ln(1 -1 d+1 ) 81d
.

Here is the first values of

P (1,φ(n)) (α 1 ≈ 0.241):
Here is a few values of 

P (d,φ d (n)) , for d ∈ 2, 9 : n φ(n) P (i,φ(n)) P (i,φ(n)) -

The second subsequence

The second subsequence we will consider is (P (d,ψ d (n)) ) n∈N * where ψ d is the function from N * to N that maps n to (d + 1) × 10 n -1. We get the following result:

Proposition 3. Proof. Let n be a positive integer such that n ≥ 2. According to Proposition 2.1, we have:

P (d,ψ d (n)) = P (d,(d+1)×10 n -1) = 1 (d + 1) × 10 n -1 n l=0 (d+1)×10 l -1 b=d×10 l b - (9d-1)10 l -8 9 b + n-1 l=0 d×10 l+1 -1 a=(d+1)×10 l 10 l+1 -1 9 a .
Let us first find an appropriate lower bound of P (d,ψ d (n)) in a way very similar to that used in the proof of Proposition 3.1: 

P (d,ψ d (n)) ≥ 1 (d + 1) × 10 n 10(10 n -1) 9 - (9d -1) ln( d+1 d ) 9 × 10(10 n -1) 9 - 9d -1 9 n l=1 10 l ln(1 + 1 d(d+1) 10 l -1 d ) + ln( 10d d+1 ) 9 × 10 2 (10 n-1 -1) 9 -(n -1)
Let us now find an appropriate upper bound of P (d,ψ d (n)) using the proof of Proposition 3.1:

P (d,ψ d (n)) ≤ 1 (d + 1) × 10 n -1 n l=0 10 l - ln( d+1 d ) 9 n l=0 (9d -1)10 l -8 + n-1 l=0 10 l+1 9 ln( 10d d + 1 ) + ln(1 + 1 d+1 -1 10d 10 l -1 d+1 ) ≤ 1 (d + 1)(10 n -1 d+1 ) 10 n+1 -1 9 - ln( d+1 d ) 9 (9d -1)(10 n+1 -1) 9 -8(n + 1)) + 10 ln( 10d d+1 ) 9 × 10 n -1 9 + 10 9 n-1 l=0 10 l (1 -d+1 10d ) (d + 1)10 l -1 ≤ 1 (d + 1)(10 n -1 d+1 ) 10(10 n -1 d+1 ) -1 + 10 d+1 9 + 10 ln( 10d d+1 )(10 n -1 d+1 + 1 d+1 -1) 81 - ln( d+1 d ) 9 (9d -1)(10(10 n -1 d+1 ) -1 + 10 d+1 ) 9
-8(n + 1) + 10 9

n-1 l=0

1 .

Thereby:

P (d,ψ d (n)) ≤ 90 -10(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81(d + 1) + 90 d+1 + 72(n + 1) ln( d+1 d ) + 90n 81 (d + 1) × 10 n -1 . (8) 
Bounds brought to light in inequalities ( 7) and ( 8) and the fact that: Let us denote by β d the limit of (P (d,ψ d (n)) ) n∈N * :

β d = 10 9 + ln 10 + 9d ln(1 -1 d+1 ) 81(d + 1)
.

Here is the first values of

P (1,ψ(n)) (β 1 ≈ 0.313):
Here is a few values of

P (d,ψ d (n)) , for d ∈ 2, 9 :
4 The graph of (P

(d,n) ) n∈N *
Let us first plot the graph of the sequence (P (1,n) ) n∈N * for values of n from 1 to 1200 (Figure 1). Then we plot a second graph of P (1,n) versus log(n), for n ∈ 1, 32000 (Figure 2). On this graph, the four dots represented by red circles are associated with the first values of (P Through Figure 2, it is clear that the proportion of 1 as leading digit structurally fluctuate and does not follow Benford's Law.

Let us additionally plot graphs of sequences (P (d,n) ) n∈N * for values of n from 1 to 400 (Figure 3). Then we plot graphs of P (d,n) versus log(n), for n ∈ 1, 32000 (Figure 4).

Through Figure 4, it is once more clear that the proportion of each d as leading digit, d ∈ 1, 9 , structurally fluctuate and does not follow Benford's Law.

For each d ∈ 1, 9 the values seem to fluctuate between two values, under the following constraint: Proposition 4.1. For all n ∈ N * such that n ≥ 10 and for all (p, q) ∈ 1, 9 2 such that p < q, we have:

P (p,n) > P (q,n) .
The relative position of graphs of P (d,n) , for d ∈ 1, 9 , can be observed on Figures 3 and4.

Proof. For all n ∈ N * such that n ≥ 10 and for all (p, q) ∈ 1, 9 2 such that p < q, we denote by k p and k q the positive integers such that k p = min{i ∈ N : p×10 i > n} and k q = min{i ∈ N : q × 10 i > n}. We note that k p ≥ k q . For (r, l) ∈ N 2 , let A l and B r,l be real numbers such that A l = 10 l+1 -1 9 and B r,l = (9r-1)×10 l -8
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. We consider that A -1 = 0. Third cases can be distinguished: In the first case (q + 1) × 10 kp-2 ≤ p × 10 kp-1 ≤ n < (p + 1) × 10 kp-1 ≤ q × 10 kp-1 . Thus we have k p = k q + 1. Thanks to Proposition 2.1 we obtain:

P (p,n) -P (q,n) = 1 n kp -2 l=0 ( (p+1)×10 l -1 b=p×10 l b -B p,l b + p×10 l+1 -1 a=(p+1)×10 l A l a ) + n b=p×10 kp -1 b -B p,kp -1 b - 1 n kp -3 l=0 ( (q+1)×10 l -1 b=q×10 l b -B q,l b + q×10 l+1 -1 a=(q+1)×10 l A l a ) + (q+1)×10 kp-2 -1 b=q×10 kp -2 b -B q,kp-2 b + n a=(q+1)×10 kp -2 A kp -2 a = 1 n kp -3 l=0 (p+1)×10 l -1 b=p×10 l b -B p,l b + p×10 l+1 -1 a=(p+1)×10 l A l a - (q+1)×10 l -1 b=q×10 l b -B q,l b - q×10 l+1 -1 a=(q+1)×10 l A l a + (p+1)×10 kp -2 -1 b=p×10 kp -2 b -B p,kp -2 b + p×10 kp-1 -1 a=(p+1)×10 kp -2 A kp -2 a + n b=p×10 kp-1 b -B p,kp b - (q+1)×10 kp -2 -1 b=q×10 kp -2 b -B q,kp b - n a=(q+1)×10 kp -2 A kp -2 a = 1 n kp -2 l=0 (p+1)×10 l -1 b=p×10 l b -B p,l -A l-1 b + q×10 l -1 a=(p+1)×10 l A l -A l-1 a + (q+1)×10 l -1 b=q×10 l A l -(b -B q,l ) b + p×10 l+1 -1 a=(q+1)×10 l A l -A l a + n b=p×10 kp -1 b -B p,kp -1 -A kp -2 b .
Furthermore, for all (r, l) ∈ N 2 , we have A l > A l-1 and:

∀s ∈ r × 10 l , (r + 1) × 10 l+1 -1 , s -B r,l -A l-1 = s - (9r -1) × 10 l -8 9 - 10 l -1 9 = s -(r × 10 l -1) > 0 A l -(s -B r,l ) = 10 l+1 -1 9 -s + (9r -1) × 10 l -8 9 = (r + 1) × 10 l -1 -s ≥ 0 .
Consequently, in this case, P (p,n) -P (q,n) > 0.

In the second case (p + 1) × 10 kp-1 ≤ n < q × 10 kp-1 . Thus we have k p = k q + 1. Thanks to Proposition 2.1 we obtain:

P (p,n) -P (q,n) = 1 n kp -2 l=0 ( (p+1)×10 l -1 b=p×10 l b -B p,l b + p×10 l+1 -1 a=(p+1)×10 l A l a ) + (p+1)×10 kp -1 -1 b=p×10 kp -1 b -B p,kp-1 b + n a=(p+1)×10 kp -1 A kp -1 a - 1 n kp-3 l=0 ( (q+1)×10 l -1 b=q×10 l b -B q,l b + q×10 l+1 -1 a=(q+1)×10 l A l a ) + (q+1)×10 kp-2 -1 b=q×10 kp -2 b -B q,kp-2 b + n a=(q+1)×10 kp -2 A kp -2 a = 1 n kp -2 l=0 (p+1)×10 l -1 b=p×10 l b -B p,l -A l-1 b + q×10 l -1 a=(p+1)×10 l A l -A l-1 a + (q+1)×10 l -1 b=q×10 l A l -(b -B q,l ) b + (p+1)×10 kp-1 -1 b=p×10 kp -1 b -B p,kp -1 -A kp -2 b + n a=(p+1)×10 kp -1 A kp -1 -A kp -2 a .
Consequently, in this case, P (p,n) -P (q,n) > 0.

In the third case q × 10 kp-1 ≤ n < p × 10 kp . Thus we have k p = k q . Thanks to Proposition 2.1 we obtain:

P (p,n) -P (q,n) = 1 n kp -2 l=0 (p+1)×10 l -1 b=p×10 l b -B p,l -A l-1 b + q×10 l -1 a=(p+1)×10 l A l -A l-1 a + (q+1)×10 l -1 b=q×10 l A l -(b -B q,l ) b + (p+1)×10 kp-1 -1 b=p×10 kp -1 b -B p,kp -1 -A kp -2 b + q×10 kp -1 a=(p+1)×10 kp -1 A kp -1 -A kp -2 a + min((q+1)×10 kp -1 -1,n) b=q×10 kp -1 A l -(b -B q,l ) b .
Consequently, in this latter case, P (p,n) -P (q,n) > 0.

Remark 4.2. For n ∈ N * , we have, if d > n, P (d,n) = 0. Hence for all n ∈ N * and for all (p, q) ∈ 1, 9 2 such that p < q, we have:

P (p,n) ≥ P (q,n) .
Let us from now on denote by k d the positive integer such that k d = min{i ∈ N : d × 10 i > n}. Through Figures 2 and4, "delayed effects" appear to exist, in particular after a long sequence of numbers whose leading digit is d. Let us examine these features in more detail. We study for this purpose the increasing or decreasing nature of sequences (P (d,n) ) n∈N * , for d ∈ 1, 9 :

Proposition 4.3. i ∈ {0, 1}. P (d,n+1) -P (d,n) = 1 n + 1 ( c i n + 1 -P (d,n) ),
where:

ci = n + 1 -(9d-1)10 k d -8 9 if n + 1 ∈ d × 10 k d , (d + 1) × 10 k d -1 10 k d +1 -1 9 if n + 1 ∈ (d + 1) × 10 k d , d × 10 k d +1 -1
Proof. It is based on the formulas of Proposition 2.1. Indeed:

P (d,n+1) = 1 n + 1 (nP (d,n) + c i n + 1 ) = P (d,n) + 1 n + 1 ( c i n + 1 -P (d,n) ).
Through this proposition the obvious condition regarding the increasing or decreasing nature of the sequence is underscored: whether P (d,n) value, for d ∈ 1, 9 , is less or greater than the appropriate ci n+1 value, for n ∈ N * and i ∈ {0, 1}. Finding the approximate values of n for which the increasing or decreasing nature of the sequence (P (d,n) ) n∈N * appears is henceforth the aim of that section. We first provide a proposition similar to the previous one: 

P (d,n) = 1 n P (d,d×10 k d -1) × (d × 10 k d -1) + n b=d×10 k d b -(9d-1)10 k d -8 9 
b .

If n ∈ (d + 1) × 10 k d , d × 10 k d +1 -1 , then we have:

P (d,n) = 1 n P (d,(d+1)×10 k d -1) × ((d + 1) × 10 k d -1) + n a=(d+1)×10 k d 10 k d +1 -1 9 
a .

Proof. Results are directly derived from Proposition 2.1.

We now consider the sequence ( P (d,n) ) n∈N * defined as follows. If n ∈ d × 10 k d , (d + 1) × 10 k d -1 :

P (d,n) = d(α d -1) 10 k d n + 1 + 9d -1 9 10 k d n ln( 10 k d n ) + ln d .
If n ∈ (d + 1) × 10 k d , d × 10 k d +1 -1 :

P (d,n) = (d + 1)β d 10 k d n - 10 9 
10 k d n ln( 10 k d n ) + ln(d + 1) .
We denote by γ d a real number such that

γ d ∈]1; 1+ 1 d [ and I (d,γ d ) the set such that I (d,γ d ) = +∞ i=1 dγ d ×10 i , (d+1)×10 i -1 ∪ (d+1)γ d ×10 i , d×10 i+1 -1 .
The below proposition can thereupon be stated: Proposition 4.5.

P (d,n) ∼ n→+∞ n∈I (d,γ d ) P (d,n) .
Proof. Let us study both cases. In the first one, n ∈ γ d d × 10 k d , (d + 1) × 10 k d -1 . Let I 1 be the interval such that, I 1 = +∞ i=1 dγ d × 10 i , (d + 1) × 10 i -1 . We have:

1 d + 1 ≤ 10 k d n ≤ 1 γ d d . (9) 
Before we go any further, let us prove the following lemma:

Lemma 4.6. For n > d × 10 k d :

ln( n 10 k d ) -ln d + ln(1 + 1 n ) ≤ n b=d×10 k d 1 b ≤ ln( n 10 k d ) -ln d + ln(1 + 1 d × 10 k d -1
) .

Proof. This result is directly related to inequalities 5. Indeed for n > d × 10 k d > 1, we have:

ln( n + 1 d × 10 k d ) ≤ n b=d×10 k d 1 b ≤ ln( n d × 10 k d -1
) .

Thanks to Proposition 4.4 we get:

P (d,n) = P (d,d×10 k d -1) d × 10 k d -1 n + n -d × 10 k d + 1 n - (9d -1)10 k d -8 9n n b=d×10 k d 1 b = d(P (d,d×10 k d -1) -1) 10 k d n + 1 - (9d -1)10 k d 9n n b=d×10 k d 1 b - P (1,d×10 k d -1) n + 1 n + 8 9n n b=d×10 k d 1 b .
Thanks to inequalities ( 9) and knowing that We have:

n b=d×10 k d 1 b = ln( n 10 k d ) -ln d + o n→+∞ n∈I1 (1) 
1 10d ≤ 10 k d n ≤ 1 (d + 1)γ d . ( 10 
)
Before we go any further, let us prove this additional lemma:

Lemma 4.7. For n > (d + 1) × 10 k d : ln( n 10 k d ) -ln(d + 1) + ln(1 + 1 n ) ≤ n a=(d+1)×10 k d 1 a and, n a=(d+1)×10 k d 1 a ≤ ln( n 10 k d ) -ln(d + 1) + ln(1 + 1 (d + 1) × 10 k d -1
) .

Proof. This result is directly related to inequalities 5. Indeed for n > (d + 1) × 10 k d > 1, we have:

ln( n + 1 (d + 1) × 10 k d ) ≤ n a=(d+1)×10 k d 1 a ≤ ln( n (d + 1) × 10 k d -1
) .

Thanks to Proposition 4.4 we get:

P (d,n) = P (d,(d+1)×10 k d -1) (d + 1) × 10 k d -1 n + 1 9 × 10 k d +1 -1 n n a=(d+1)×10 k d 1 a = (d + 1)P (d,(d+1)×10 k d -1) 10 k d n + 10 9 × 10 k d n n a=(d+1)×10 k d 1 a - P (1,(d+1)×10 k d -1) n - 1 9n n a=(d+1)×10 k d 1 a .
Thanks the inequalities [START_REF] Hill | A statistical derivation of the significant-digit law[END_REF] and knowing that 

n a=(d+1)×10 k d 1 a = ln( n 10 k d ) - ln(d + 1) + o n→+∞ n∈I2 ( 
P (d,n) ∼ n→+∞ n∈I2 (d + 1)β d 10 k d n - 10 9 
10 k d n ln( 10 k d n ) + ln(d + 1) .
To find the approximate values of n for which the increasing or decreasing nature of (P (d,n) ) n∈N * appears, we need to study two distinct functions:

Lemma 4.8. The minimum m d of the function f d from [ 1 d+1 , 1 d ] that maps x onto d(α d -1)x + 1 + 9d-1 9 x(ln(x) + ln d) is reached when: x = 10 -10 9(9d-1) 1 -1 d+1 -d+1 9d-1 d .

Its value is m

d = 1 - (9d-1)10 - 10 
9(9d-1) 1-1 d+1 -d+1 9d-1 9d . Proof. ∀x ∈ [ 1 d+1 , 1 d ], f d (x) = d(α d -1) + 9d-1 9 (1 + ln(x) + ln d).
By solving the equation d(α d -1) + 9d-1 9 (1 + ln(x) + ln d) = 0, we have:

x = 10 -10 9(9d-1) 1 -1 d+1 -d+1 9d-1 d . Finally f d ( 10 - 10 
9(9d-1) 1-1 d+1 -d+1 9d-1 d ) = 1 - (9d-1)10 - 10 
9(9d-1) 1-1 d+1 -d+1 9d-1 9d
.

Remark 4.9. We note that: 1-

f d ( 1 d ) = α d -1 + 1 = α d and f d ( 1 d + 1 ) = (α d -1) × d d + 1 + 1 + 9d -1 9 × 1 d +
1 d+1 d 9 (d+1) 
.

Remark 4.11. We note that:

g d ( 1 d + 1 ) = β d and g d ( 1 10d ) = (d + 1)β d × 1 10d - 10 9 × 1 10d ln( 1 10d 
) + ln(d + 1)

= 9 + ln 10 + 9d ln(1 -1 d+1 ) 81d - 1 9d ln( 1 10d 
) + ln(d + 1) = 9 + 10 ln 10 + 9(d + 1) ln(1

-1 d+1 ) 81d = α d .
Using the approximation of Proposition 4.5, the definition of ( 

P (d,n) ) n∈N * (for n ∈ (d + 1) × 10 ki , d × 10 k d +1 -1 )
M (1,i) M (1,i) P (1,M (1,i 
= 10 1 9 1-1 2+1 2 2+1 = 4×10 1 9
27 , i.e. M (2,4) ≈ 52263.

Both values of maxima and ranks for which these maxima are reached are correctly approximated by our results as illustrated in Table 8.

When considering the random experiment defined in the beginning of the article, we have thus determined the values of the proportions of selected numbers whose leading digit is d and its bounds: these values seem to fluctuate between m d and M d .

Central values

From previous Figures, we notice that there exist fluctuations in the graph of (P (d,n) ) n∈N * . We can calculate over each "pseudo-cycle", i.e. for all n ∈ d × 10 i , d × 10 i+1 -1 where i ∈ N, the mean value C (d,i) of P (d,n) . For example, we obtain: We will now consider the sequence (C (d,n) ) n∈N and will demonstrate that it converges. Before we go any further, let us prove the following lemma: Lemma 5.2. For all (p, q) ∈ N 2 , such that 4 < p < q, we have: ln q(p -1) ln( q p-1 ) 2 ≤ q n=p n ln n ≤ ln (q + 1)p ln( q+1 p ) 2 .

Proof. The function from [3; +∞[ to R that maps x onto x ln x is increasing on [3; +∞[. Thus:

q p-1 x ln x dx ≤ q n=p n ln n ≤ q+1 p x ln x dx (ln x) 2 2 q p-1 ≤ q n=p n ln n ≤ (ln x) 2 2 q+1 p .
The result follows.

The below proposition can thereupon be stated:

Proposition 5.3. Proof. Let E be a real number such that 0 < E < 1. For all n ∈ N * , we have:

C (d,n) ∼ +∞ (18d(α d -1) -(9d - 
C (d,n) = 1 9d × 10 n d×10 n+1 -1 i=d×10 n P (d,i) = 1 9d × 10 n (d+E)×10 n -1 i=d×10 n P (d,i) + (d+1)×10 n -1 i= (d+E)×10 n P (d,i) + ((d+1)+E)×10 n -1 i=(d+1)×10 n P (d,i) + d×10 n+1 -1 i= ((d+1)+E)×10 n P (d,i) .
For all n ∈ N * , let us consider C (d,n) = 1 9d×10 n d×10 n+1 -1 i=d×10 n P (d,i) . We know that:

∀i ∈ N * , |P (d,i) -P (d,i) | ≤ |P (d,i) | + | P (d,i) | ≤ 2 .
There also exists an integer t such that for all i ≥ t and i ∈ I E , |P (d,i) -P (d,i) | ≤ E (see Proposition 4.5).

Thus, for all n ∈ N * such that 10 n ≥ t, we have:

|C (d,n) -C (d,n) | ≤ 1 9d × 10 n d×10 n+1 -1 i=d×10 n |P (d,i) -P (d,i) | ≤ 1 9d × 10 n (d+E)×10 n -1 i=d×10 n |P (d,i) -P (d,i) | + (d+1)×10 n -1 i= (d+E)×10 n |P (d,i) -P (d,i) | + ((d+1)+E)×10 n -1 i=(d+1)×10 n |P (d,i) -P (d,i) | + d×10 n+1 -1 i= ((d+1)+E)×10 n |P (d,i) -P (d,i) | ≤ 1 9d × 10 n 2( (d + E) × 10 n -d × 10 n ) + ((d + 1) × 10 n -(d + E) × 10 n )E + 2( ((d + 1) + E) × 10 n -(d + 1) × 10 n ) + (d × 10 n+1 -((d + 1) + E) × 10 n )E ≤ 1 9d × 10 n 2E × 10 n + 10 n E + 2E × 10 n + 8 × 10 n E ≤ (5 + (9d -1))E 9 . Consequently C (d,n) ∼ +∞ C (d,n
) . We will henceforth study ( C (d,n) ) n∈N . We have for all n ∈ N * :

C (d,n) = 1 9d (d+1)×10 n -1 i=d×10 n P (d,i) 10 n + d×10 n+1 -1 i=(d+1)×10 n P (d,i) 10 n . (11) 
We consider the first term of this sum:

1 9d (d+1)×10 n -1 i=d×10 n P (d,i) 10 n = 1 9d (d+1)×10 n -1 i=d×10 n d(α d -1) i + 1 10 n + 9d -1 9d (ln( 10 n i ) + ln d) = 9d(α d -1) + (9d -1)n ln(10) + (9d -1) ln d 81d (d+1)×10 n -1 i=d×10 n 1 i - 9d -1 81d (d+1)×10 n -1 i=d×10 n ln i i + 1 9d .
The proofs of Lemma 4.6 and Proposition 3.1 allow us to state: 

ln( (d + 1) × 10 n d × 10 n ) ≤ (d+1)×10 n -1 i=d×10 n 1 i ≤ ln( (d + 1) × 10 n -1 d × 10 n -1 ) ln( d + 1 d ) ≤ (d+1)×10 n -1 i=d×10 n 1 i ≤ ln( d + 1 d ) + ln(1 + 1 d(d+1) 10 n -1 d ) , i.e. (d+1)×10 n -1 i=d×10 n 1 i = ln( d+1 d ) + O +∞ ( 1 10 
10 n -1 d )) 2 ≤ (d+1)×10 n -1 i=d×10 n ln i i .
We have: We obtain:

ln(d(d + 1)) + 2n ln(10) + O +∞ ( 1 10 n ) ln( d+1 d ) + O +∞ ( 1 10 n ) 2 ≤ (d+1)×10 n -1 i=d×10 n ln i i (ln(d(d + 1)) + 2n ln(10)) ln( d+1 d ) + o +∞ (1) 2 ≤ (d+1)×10 n -1 i=d×10 n ln i i .
Thanks to Lemma 5.2 we also have:

(d+1)×10 n -1 i=d×10 n ln i i ≤ ln d(d + 1) × 10 2n ln( (d+1)×10 n d×10 n ) 2 (d+1)×10 n -1 i=d×10 n ln i i ≤ (ln(d(d + 1)) + 2n ln(10)) ln( d+1 d ) 2 .
Finally the first term of equality [START_REF] Jolissaint | Loi de benford, relations de récurrence et suites équidistribuées[END_REF] .

We consider henceforth the second term of the equality (11): 

1 9d d×10 n+1 -1 i=(d+1)×10 n P (d,i) 10 n = 1 9d d×10 n+1 -1 i=(d+1)×10 n (d + 1)β d 1 i - 10 
(d + 1) × 10 n ) ≤ d×10 n+1 -1 i=(d+1)×10 n 1 i ≤ ln( d × 10 n+1 -1 (d + 1) × 10 n -1 ) ln( d + 1 ) ≤ d×10 n+1 -1 i=(d+1)×10 n 1 i ≤ ln( 10d d + 1 ) + ln(1 + 1 d+1 -1 10i 10 n -1 d+1 
) ,

i.e.

d×10 n+1 -1 i=(d+1)×10 n 1 i = ln( 10d d+1 ) + O +∞ ( 1 10 
n ). Then thanks to Lemma 5.2:

ln (d × 10 n+1 -1)((d + 1) × 10 n -1) ln( d×10 n+1 -1 (d+1)×10 n -1 ) 2 ≤ d×10 n+1 -1 i=(d+1)×10 n ln i i ln(10d(d + 1) × 10 2n -(11d + 1) × 10 n + 1)(ln( 10d d+1 ) + ln(1 + 1 d+1 -1 10d 10 n -1 d+1 
))

2

≤ d×10 n+1 -1 i=(d+1)×10 n ln i i .
We have: 
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Thanks to Lemma 5.2 we also have:

d×10 n+1 -1 i=(d+1)×10 n ln i i ≤ ln(d(d + 1) × 10 2n+1 ) ln( 10d d+1 ) 2 d×10 n+1 -1 i=(d+1)×10 n ln i i ≤ (ln(10d(d + 1)) + 2n ln(10)) ln( 10d d+1 ) 2 .
Finally the second term of equality (11) verifies: Hence:

C (1,n) ∼ +∞ (18d(α d -1) -(9d -1) ln( d+1 d )) ln( d+1 d ) + 18 162d + (9(d + 1)β d + 5 ln( 10d d+1 )) ln( 10d d+1 ) 81d ∼ +∞ (18d(α d -1) -(9d -1) ln( d+1 d )) ln( d+1 d ) + 18 + 2(9(d + 1)β d + 5 ln( 10d d+1 )) ln( 10d d+1 ) 162d .
The result follows.

Let us denote by C d the limit of (C (d,n) ) n∈N . Note that our first choice of "pseudo-cycle" give more weight at the values of proportion situated at the end of intervals d×10 i , d×10 i+1 -1 where i ∈ N. We can also have defined the sequence ( C(d,n) ) n∈N as follows:

C(d,n) = 1 9(d + 1) × 10 n (d+1)×10 n+1 -1 i=(d+1)×10 n P (1,i) .
If so, we would state that the limit Cd of the sequence ( C(d,n) ) n∈N is: (

) 12 
The first term of this sum is similar to the second term of the associated sum in the proof of Proposition 5.3. The second one verifies: Finally the second term of equality ( 12) is: The result follows.

Once more, means values over both "pseudo-cycles" are very close to the theoric value highlighted by Benford: log(1 + 1 d ) ( [START_REF] Benford | The law of anomalous numbers[END_REF]). Indeed, according to Hill ([10]), it is absolutely normal. In a way, it can be considered as an equivalent to the central limit theorem ([8]).

Conclusion

To conclude, through our model, we have seen that the proportion of d as leading digit, d ∈ 1, 9 , in certain naturally occurring collections of data is more likely to follow a law whose probability distribution is (d, P (d,n) ) d∈ 1,9 , where n is the smaller integer upper bound of the physical, biological or economical quantities considered, rather than Benford's Law. These probability distributions fluctuate around Benford's value as can be seen in the literature (see [START_REF] Knuth | The Art of Computer Programming 2[END_REF], [START_REF] Burke | Benford's law and physical constants: the distribution of initial digits[END_REF], [START_REF] Nigrini | Assessing the integrity of tabulated demographic data[END_REF] or [START_REF] Friar | Genome sizes and the Benford distribution[END_REF] for example) in accordance with our model. Knowing beforehand the value of the upper bound n can be a way to find a better adjusted law than Benford's one.

The results of the article would have been the same in terms of fluctuations of the proportion of d ∈ 1, 9 as leading digit, of limits of subsequences, or of results on central values, if our discrete uniform distributions uniformly randomly selected were lower bounded by a positive integer different from 0: first terms in proportion formulas become rapidly negligible. Through our model we understand that the predominance of 1 as first digit (followed by those of 2 and so on) is all but surprising in experimental data: it is only due to the fact that, in the lexicographical order, 1 appears before 2, 2 appears before 3, etc.

However the limits of our model rest on the assumption that the random variables used to obtain our data are not the same and follow discrete uniform distributions that are uniformly randomly selected. In certain naturally occurring collections of data it cannot conceivably be justified. Studying the cases where the random variables follow other distributions (and not necessarily randomly selected) sketch some avenues for future research on the subject.
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 22 If n = 20, we have k = 2. The value of P(L 20 = 1) is then (second case of Proposition 2.

Proposition 3 . 1 .

 31 The subsequence (P (d,φ d (n)) ) n∈N * converges to: 9 -(9d -1) ln( d+1 d ) + 10 ln(

  × 10 n -1) .

2 .

 2 The subsequence (P (d,ψ d (n)) ) n∈N * converges to: 10 9 -(9d -1) ln( d+1 d ) + ln( 10d d+1 ) 81(d + 1) = 10 9 + ln 10 + 9d ln(1 -1 d+1 ) 81(d + 1).

≥ 90 - 1 (

 901 10(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81(d + 1) -90 + 100 ln( 10d d+1 ) + 9n ln( 10d d+1 ) 81(d + 1) × 10 n d + 1) × 10 n . Then: P (d,ψ d (n)) ≥ 90 -10(9d -1) ln( d+1 d ) + 10 ln( 10d d+1 ) 81(d + 1) -90 + 100 ln( 10d d+1 ) + 9n ln( 10d d+1 ) + 81dn (d + 1) × 10 n .

  ln( 10d d+1 ) + 9n ln( 10d d+1 ) + 81dn (d + 1) × 10 n ) = 0 and lim n→+∞ ( 90 d+1 + 72(n + 1) ln( d+1 d ) + 90n 81 (d + 1) × 10 n -1 ) = 0 lead to the expected result.

  associated with the subsequence (P (1,ψ(n)) ) n∈N * . Their distances to the samecoloured horizontal dotted asymptote tend towards 0. The linear equations of these lines are y = α 1 and y = β 1 respectively (see Propositions 3.1 and 3.2).

Figure 1 :

 1 Figure 1: Graph of (P (1,n) ) n∈N * .

Figure 2 :

 2 Figure 2: Graph of P (1,n) versus log(n), values of P (1,φ(n)) being in red and those of P (1,ψ(n)) being in deep blue. Limits α 1 and β 1 of these two subsequences are represented by horizontal asymptotes.

Figure 3 :

 3 Figure 3: Graphs of (P (d,n) ) n∈N * , for d ∈ 1, 9 .

Figure 4 :

 4 Figure 4: For d ∈ 1, 9 , graphs of P (d,n) versus log(n). Note that points have not been all represented.

Proposition 4 . 4 .

 44 If n ∈ d × 10 k d , (d + 1) × 10 k d -1 , then we have:

  (thanks to Lemma 4.6, n d×10 k d being greater than or equal to γ d > 1) and that P (d,d×10 k d -1) ∼ +∞ α d (see Proposition 3.1), we finally have: In the second case n ∈ (d + 1)γ d × 10 k d , d × 10 k d +1 -1 . Let I 2 be the interval such that, I 2 = +∞ i=1 (d + 1)γ d × 10 i , d × 10 i+1 -1 .

3 Lemma 4 . 10 .

 3410 The maximum M d of the function g d from [ 1 10d , 1 d+1 ] that maps x onto (d + 1)β d x -10 9 x ln(x) + ln(d + 1) is reached when x = g d (x) = (d + 1)β d -10 9 (1 + ln(x) + ln(d + 1)). By solving the equation (d+1)β d -10 9 (1+ln(x)+ln(d+1)) = 0, we obtain x =

  and the properties of g d (Lemma 4.10), we can approximate the ranks of local maxima. Let i be a strictly positive integer. Let us denote by M (d,i) the rank of the local maximum of P (d,n) in (d + 1) × 10 i , (d + 1) × 10 i+1 -1 and by M (d,i) the estimate of this rank. Let us gather in the following table the first values of those ranks and values of local maxima, for d = 1.

  i

P

  (9,i) ≈ 0.043 .

1 )

 1 n ). Then thanks to Lemma 5.2: ln ((d + 1) × 10 n -1)(d × 10 n -1) ln( × 10 2n -(2d + 1) × 10 n + 1)(ln( d+1 d ) + ln(1 + 1 d(d+1)

  ln(d(d + 1) × 10 2n -(2d + 1) × 10 n + 1) = ln(d(d + 1) × 10 2n ) + ln(1 -(2d + 1) -1 10 n d(d + 1) × 10 n ) = ln(d(d + 1)) + 2n ln(10) + O +∞ ( 2d + 1 d(d + 1) × 10 n ) .

1 )

 1 × 10 n+1 ) .

(

  90d(α d -1) -5(9d -1) ln( d+1 d )) ln( d+1 d ) + 90 + (9(d + 1)β d + 5 ln( 10d d+1 )) ln( 10d d+1 ) 81(d + 1) .Proof.C(d,n) ∼ +∞ C (d,n)where, for all n ∈ N * :

  d -1) + 10(9d -1)((n + 1) ln(10) + ln d)

  α d -1) + 10(9d -1)((n + 1) ln 10 + ln d)) ln( d+1 d ) 81(d + 1) -5(9d -1)(ln(d(d + 1)) + 2(n + 1) ln(10)) ln( α d -1) -5(9d -1) ln( d+1 d )) ln( d+1 d α d -1) -5(9d -1) ln( d+1 d )) ln( d+1 d ) + 90 81(d + 1) ∼ +∞ (90d(α d -1) -5(9d -1) ln( d+1 d )) ln( d+1 d ) + 90 + (9(d + 1)β d + 5 ln( 10d d+1 )) ln( 10d d+1 ) 81(d + 1).

Table 1 :

 1 First five values P (1,φ(n)) and P (1,φ(n)) -α 1 . We round off these values to three significant digits. d P (d,φ d (1)) P (d,φ d (2)) P (d,φ d (3)) P (d,φ d (4))

	α 1

Table 2 :

 2 

Values of P (d,φ d (n)) and α d , for n ∈ 1, 4 . These values are rounded to the nearest thousandth.

Table 3 :

 3 First five values P (1,ψ(n)) and P (1,ψ(n)) -β 1 . We round off these values to three significant digits.

	d P (d,ψ d (1)) P (d,ψ d (2)) P (d,ψ d (3)) P (d,ψ d (4))	β d
	2	0.176	0.166	0.165	0.165	0.165
	3	0.110	0.109	0.109	0.109	0.109
	4	0.078	0.080	0.081	0.0.081	0.081
	5	0.060	0.063	0.064	0.064	0.064
	6	0.049	0.052	0.052	0.053	0.053
	7	0.041	0.044	0.045	0.045	0.045
	8	0.035	0.038	0.039	0.039	0.039
	9	0.031	0.034	0.034	0.034	0.034

Table 4 :

 4 

Values of P (d,ψ d (n)) and β d , for n ∈ 1, 4 . These values are rounded to the nearest thousandth.

Table 5 :

 5 Using the approximation of Proposition 4.5, the definition of ( P (d,n) ) n∈N * (for n ∈ d × 10 k d , (d + 1) × 10 k d -1 ) and the properties of f d (Lemma 4.8), we can approximate the ranks of local minima. Let i be a strictly positive integer. Let us denote by m (d,i) the rank of the local minimum of P (d,n) in d × 10 i , (d + 1) × 10 i -1 and by m (d,i) the estimate of this rank. Let us gather in the following table the first values of those ranks and values of local minima, for d = 1. First four values of above defined ranks and associated values of local minima of P (1,n) . We round off values of P (1,n) to three significant digits and values of m (1,i) to unity. Note that m 1 ≈ 0.232. Indeed, for n ∈ 10, 19 , our approximation of the rank m (1,1) for which the minimum is reached verifies: 10 1 m (1,1) = 2 Both values of minima (approximately 0.232 according to Lemma 4.8) and ranks for which these minima are reached are correctly approximated by our results as illustrated in Table 5, for d = 1. Let us similarly gather in the below table the first values of those ranks and values of local minima, for d ∈ 2, 9 .

	1	ln(	d d + 1	)

5 36 , i.e. m (1,1) ≈ 12.

Table 6 :

 6 Values of above defined ranks and associated values of local minima of P (d,n) , for n ∈ d × 10 4 , (d + 1) × 10 4 -1 . We round off values of P (d,n) and m d to three significant digits and values of m (d,4) to unity.

	Indeed, for n ∈ 20000, 29999 , our approximation of the rank m (2,4) for
	which the minimum is reached verifies: 10 4 m (2,4) =

Table 7 :

 7 First four values of above defined ranks and associated values of local maxima of P (1,n) . We round off values of P (1,n) to three significant digits and values of M (1,i) to unity. Note that M 1 ≈ 0.359. Indeed, for n ∈ 20, 99 , our approximation of the rank M (1,1) for which the maximum is reached verifies: 10 1 n M = 5

	) )

Table 8 :

 8 Values of above defined ranks and associated values of local maxima of P (d,n) , for n ∈ (d + 1) × 10 4 , d × 10 5 -1 . We round off values of P (d,n) and M d to three significant digits and values of M (d,4) to unity.Indeed, for n ∈ 30000, 199999 , our approximation of the rank M (2,4) for which the maximum is reached verifies:10 4 

	M (2,4)

Table 9

 9 

	below gathers

Table 9 :

 9 Values of C d , Cd and Benford's Law probabilities, these values being rounded to the nearest thousandth.

2

, i.e. m (2,4) ≈ 21643. Both values of minima and ranks for which these minima are reached are correctly approximated by our results as illustrated in Table 6.

The second function we need to study is defined below:

Appendix: Python script Using Propositions 2.1, we can determine the terms of (P (d,n) ) n∈N * , for d ∈ 1, 9 . To this end, we have created a script with the Python programming language (Python Software Foundation, Python Language Reference, version 3.4. available at http://www.python.org, see [START_REF] Van Rossum | Python tutorial[END_REF]). The implemented function expvalProp has two parameters: the rank n of the wanted term of the sequence and the value ld of the considered leading digit. Here is the used algorithm: