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Abstract

In this paper, we will see that the proportion of d as leading digit,
d € [1,9], in data (obtained thanks to the hereunder developed model) is
more likely to follow a law whose probability distribution is determined by
a specific upper bound, rather than Benford’s Law. These probability dis-
tributions fluctuate around Benford’s value as can often be observed in the
literature in many naturally occurring collections of data (where the phys-
ical, biological or economical quantities considered are upper bounded).
Knowing beforehand the value of the upper bound can be a way to find a
better adjusted law than Benford’s one.

Introduction

Benford’s Law, also called Newcomb-Benford’s Law, is noteworthy to say the
least: according to it, the first digit d, d € [1, 9], of numbers in many naturally
occurring collections of data does not follow a discrete uniform distribution, as
might be thought, but a logarithmic distribution. Discovered by the astronomer
Newcomb in 1881 ([13]), this law was definitively brought to light by the physi-
cist Benford in 1938 (|2]). He proposed the following probability distribution:
the probability for d to be the first digit of a number seems to be equal to
log(d + 1) — log(d), i.e. log(1 + %). Benford tested it over data set from 20 dif-
ferent domains (surface areas of rivers, sizes of american populations, physical
constants, molecular weights, entries from a mathematical handbook, numbers
contained in an issue of Reader’s Digest, the street addresses of the first persons
listed in American Men of Science, death rates, etc.). Most of the empirical
data, as physical data (Knuth in [I2] or Burke and Kincanon in [5]), economic
and demographic data (Nigrini and Wood in [I4]) or genome data (Friar et al.
in [7]), follow approximately Benford’s Law. To such an extent that this law is
used to detect possible frauds in lists of socio-economic data ([19]) or in scientific
publications ([6]).

First restricted to the experimental field, it is now established that this
law holds for various mathematical sequences (see for example [3]). In the
situation, where the distribution of first digits is scale, unit or base invariant,
this distribution is always given by Benford’s Law ([I5] and [9]). Selecting
different samples in different populations, under certain constraints, leads also



to construct a sequence that follows the Benford’s Law ([I0]). Furthermore
independant variables multiplication conducts to this law ([4]). One might add
that some sequences satisfy Benford’s Law exactly (for example see [17],[20] or
1)),

We can note that there also exist distributions known to disobey Benford’s
Law ([I6] and [1]). And even concerning empirical data sets, this law appears
to be a good approximation of the reality, but no more than an approximation
(B).

In the model we build in the article, the naturally occurring data will be
considered as the realizations of independant random variables following the
hereinafter constraints: (a) the data is strictly positive and is upper-bounded
by an integer n, constraint which is often valid in data sets, the physical, bi-
ological and economical quantities being limited ; (b) each random variable is
considered to follow a discrete uniform distribution whereby the first ¢ strictly
positive integers are equally likely to occur (¢ being uniformly randomly selected
in [1,n]). This model relies on the fact that the random variables are not al-
ways the same. The article is divided into two parts. In the first one, we will
accurately study the case where the leading digit is 1. In the second one, we
will generalize our results to the eight last cases.

Through this article we will demonstrate that the predominance of 1 as first
digit (followed by those of 2 and so on) is all but surprising, and that the ob-
served fluctuations around the values of probability determined by Benford’s
Law are also predictible. The point is that, since 1938, Benford’s Law prob-
abilities became standard values that should exactly be followed by most of
naturally occurring collections of data. However the reality is that the propor-
tion of each d as leading digit, d € [1, 9], structurally fluctuates. There is not a
single Benford’s Law but numerous distinct laws that we will hereafter examine.

1 The chosen probability space

1.1 Notations

In order to determine the proportion of numbers whose leading digit is d € [1, 9],
we will first build our probability space and further explain the model we choose.

Let ¢ be a strictly positive integer. Let Uy;, denote the discrete uniform
distribution whereby the first ¢ strictly positive integers are equally likely to be
observed.

Let n be a strictly positive integer. Let us consider the random experiment
&, of tossing two independent dice. The first one is a fair n-sided die showing
n different numbers from 1 to n. The number 7 rolled on it defines the number
of faces on the second die. It thus shows i different numbers from 1 to 3.

Let us now define the probability space Q, as follows: Q, = {(i,j) : i €
[1,n] and j € [1,4]}. Our probability measure is denoted by P.

Let us denote by L,, the random variable from 2,, to [1,9] that maps each
element w of €2, to the leading digit of the second component of w.



1.2 Why such a model?

Let us imagine a perfect consumer shopping in a perfectly structured supermar-
ket: (a) in the it" (i being a strictly positive integer) section of this supermarket,
the products prices range between 1 and i cents of the considered currency; (b)
the prices in a section are uniformly distributed; (c) each section contains the
same quantity of products and (d) the consumer randomly chooses his products
in the whole store.

Under these constraining hypotheses, these perfect entities enable us to use
our model. Note that conditions (c¢) and (d) gathered avoid us to conduct a
double drawing every time: first the section then the product. In that respect,
the sales receipt will verify the following results in terms of proportion of d as
leading digit, d € [1,9].

Among the different domains studied by Benford ([2]), some could be well
adapted to our model: sizes of populations (sections here gathering all the
populations having the same usable areas, the geographic constraints preventing
the surface area to be broader; populations being not neccessary settled on the
entire area, their sizes fluctuate) or street adresses for example (sections here
gathering the adresses of a selected street; the lenght of the considered streets
might be uniformly distributed to fit model criteria).

Hence the defined model is relevant when the studied data can be consid-
ered as realizations of a homogeneous and expanded range of random variables
approximately following discrete uniform distributions.

2 Proportion of d

Through the below proposition, we will express the probability P(L,, = d), for
each n € N*| j.e. the probability that the leading digit of our second throw in
our random experiment is d.

Proposition 2.1. Let k denote the positive integer such that k = min{i € N :
dx 10° > n}. If n < (d+ 1) x 10*71, the value of P(L,, = d) is:

1 k=2 (d+1)x10' -1 b— (9d—1)x10l—8  daxiottl_1 q1glt+l_4 n b— (9d—1)x10kF—1_g
9 9 9
I M S e e e
n b a b
=0 p=dx1ol a=(d+1)x10! b=dx10k—1

Otherwise the value of P(L,, = d) is:

1 k=2 (d+1)x10l—1 b (9d—1)x 10l —8 dx10ltl 1 10l+1_g
9 9
O S
n b a
1=0 p—gx1iol a=(d+1)x 10!
(d+1)x10kF=1_1 p_ (ed=1)x10F71_1 n 10k 1
> ; > a
b=dx10k—1 a=(d+1)x10k—1

Proof. Let us denote by D,, the random variable from ,, to [1,n] that maps
each element w of €, to the first component of w. It returns the number obtained
on the first throw of the unbiased n-sided die. For each ¢ € [1,n], we have:

(1)



According to the Law of total probability, we state:

n

P(L, =d) =Y P(L,=d|D, =i)P(D, =1). (2)

=1

Thereupon two cases appear in determining the value of P(L,, = d|D,, = i),
for i € [1,n]. Let us study the first case where the leading digit of 7 is d. Let k;
be the positive integer such that k; = min{k € N : d x 10*¥ > i} in both cases.
Among the first d x 10~ — 1 non-zero integers (all lower than 7), the number
of integers whose leading digit is d is (if k; > 2):

k;’.
: 1—10%—1  10k—1 1
Z 10t =1 x —

1-10 9

This equality still holds true for k; = 1. From d x 10%~! to i, there exist
i—d x 10¥~1 4+ 1 additional integers whose leading digit is d. It may be inferred
that:

- . (9d71)lgki_178
p—d x 107~ 1) =
9 +1 X +1) ; ,
(3)

1,10F-1 -1
P(L, =d|D, =1i) = 2(7

the leading digit of ¢ being here d.

In the second case, we consider the integers ¢ whose leading digits are differ-
ent from d. Among the first (d + 1) x 10¥~! — 1 non-zero integers (i is greater
than or equal to (d + 1) x 10%~1), the number of integers whose leading digit

is d is:
e (L
>0t = —5
t=0
From 2 x 10%:~1 to i, there exists no additional integers whose leading digit is
d. It can be concluded that:
10%i -1

P(L, =d|D, =1i) = %, (4)

the leading digit of ¢ being here different from d.
Using equalities , , and , we get our result. O
For example, we get:

Examples 2.2. If n = 20, we have k = 2. The value of P(Lyy = 1) is then
(second case of Proposition [2.1)):

10°—1 9 100+1 8101—1 102—1

P(L20:1):2710<$+Z Jrz 290 >

a=2 b=10

—1(1+ SR S +11+11)
20 2 9 10 19 20

~ 0.381.




The value of P(Lsg = 8) is (first case of Proposition [2.1)):

1 o9xiol—1 b_ (9x8—1)10l—8  sx10ttl_1 1ol+171 806 4 _ 71><102—8
P(Lgs = 8) = 306 (Z( Z — o + Z )+ Z —_—
1=0 p=gx10! a=9x10! b=800
- (L +1+ +—+—+ +—+—+ +—+E +£)
86 799 800 806

~0,034.

3 Study of two subsequences

It is natural that we take a specific look at the values of n positioned just before
a long sequence of numbers whose leading digit is d ; or conversely, at those
positioned just before a long sequence of numbers whose leading digit is all but
d.

To this end we will consider the sequence (P(L,, = d))nen+. In the interests
of simplifying notation, we will denote by (P(g,n))nen- this sequence. Let us
study two of its subsequences.

3.1 The first subsequence

The first one is the subsequence (P(q,4,(n)))nen+ Where ¢g is the function from
N* to N that maps n to d x 10™ — 1. We get the below result:

Proposition 3.1. The subsequence (Pq, 4, (n)))nen- converges to:

9—(9d—1)In(E2) +10In(324) 9+ 1010+ 9(d+ 1) In(1 — 77)
81d B 81d '

Proof. Let n be a positive integer such that n > 2. According to Proposition

we have:

Pla,pq(n)) = Pla,axion -1

1 n—1 (d+1)x10'—1 p_ (9d=1)x10'-8 dx10ttt—1 1oltl_g
NI D S ]
dx 10" =1 =0  b=dx10! b a=(d+1)x10! @

Let us first find an appropriate lower bound of P(g,4,(n)):

1_ 1_ 141
1 n—1 (d+1)x10" -1 (9d — 1)101 (d+1)x10°—1 1 1001 1 dx10 -1
Plasgonn 2 —— S (S 1-22 20 Sy o — - S )
d x 10 9 b 9
=1 b=dx 10! b=d x 10! a=(d+1)x10!
n—1 1 1+1 I+1
(d+1) x 10" =1 100+ — 1 d x 10
> 10 — 10 1
—dxmnz( ot )t T n(d+1)x1ol)

knowing that for all integers (p, ¢), such that 1 < p < ¢:

q+1 1
gg%




Therefore we have:
n—1 n—1 L 1

1 . 9d—1 . d+1 10" — 337
P, nyy > 100 — —— 10" (1 1
(d’(ﬁd( D= d > 10™ ( ; 9 ; ( n( d )+ n( 1OL - % ))

ln( 10d n—1

d+1 2(1014-17 )

S 1 (10(10”* —1)  (9d—1)In(%t) “ 10(10"~ — 1)
= dx 10m 9 9 9

d—172 354 102(10" 1 — 1
S = )

L _
— 10 9 9

— (9d — 1) In(%4}) + 101n(394)

- 81d
1
n(204) 1
9+101n(§$ﬁ)+¢n 9d — 1 =1 10lln(1+%)
- 81d x 1071 = d x 107

we know that for all €] — 1; +o00[ we have: In(1 + z) < z, thus:

1
_ 1 d+1 _ —
Cod -1 100+ ) gy xa0t i a
9 = dx 107 = T10n & dx 10 -1 1om lel =T 1on

Consequently, we obtain this lower bound:

9—(9d — 1) In(EHL) +10In(324) 90 +1001n(394) + 91In(394)n + 81dn

d+1

Pla,ggmy 2 31d 81d x 107
Let us now find an appropriate upper bound of P(d7¢d(n)):

n—1 (d+1)x10l—1 (9d — 1)10! — 8 (d+1)x10l—1

Pason S el L 1mtg— X g

b=dx 10! b=dx 10!
101+1 dxlOH'l—l 1
2)
a=(d+1)x10!
1 0™ . (d+1) x 10
< - = 9d — 1)10° — 8) In(————
_d><10"—1( Z(( ) ) I o

=1

—! 10!+t dx 10t —1 )

+§ s M aEryxi0 =1

)

(6)



thanks to inequalities ([5)). Thus we get:

1 10" ln( - .
Plagan < 7770m 1 (o™ Z (9d — 1)10" — 8)
1ottt 10d 10! — -
Z (In( ) + In( 1?d ))
d+1 Bl ==
1 10" In(4H) (9d — 1)10(10" 1 — 1) 10In(24) 10" —1
< ( _ ( —8n) +
dx 10" —1° 9 9 9 9 9
1 l
Z 10" In(1 + T~ 101 dEL 10 )
108 — 7
< 1 " -2+ 4 (L X((9d71)(10"7%+% 10) &)
— 1
d(1on — 1) 9 9 9
WG 10— d4do1 0% Lk
EERN — S 10" In(1
9 9 +9§ n(erl—ﬁ))

10 1n( 104 )
L9 (9d- (&) + 101n(%ﬁ) 9 4 90d1In(4EL) + 72nIn(4HL) 4+ %
= 81d

81(d x 10™ — 1)

10 n—1 104( di1y

+ — 7104
9(d x 10™ — 1) i

l
—~ (d+1)100 — 1

- 9 — (9d — 1) In(%4) + 101n(394)
81d
10 n—1

— Y 1.
+9(d><10"71)§

101n(10d )
L4 +90dIn( %Ly 4 72n In(4HL) 4 ——AFL
81(d x 107 — 1)

The last step is easy to demonstrate even for [ = 0. Consequently, we obtain
this upper bound:

— (94— 1) In(%:1) 4 10In(204)
P <2
(dspg(n)) = 81d
In
| 3 90dIn(4) + 72nin(HE) + 100
81(d x 10" — 1)

+ 90n

The bound just above and the one brought to light in inequality @ added to
the following limits:

FEy m)nJrSldn

90 + 1001n (122 4 9in(10d
( )=0 and
81d x 10™

10 1n( 104
i (% +90dIn(4HL) 4 72n In(ddd) 4 10D +90n, _ g
81(d x 10 — 1) -

lead to the expected result.

Let us denote by ag the limit of (P4 ¢,(n)))nen-:

9+ 1010+ 9(d+ 1) In(1 — )
81d

Here is the first values of Py g(,)) (a1 =~ 0.241):
Here is a few values of P(g,¢,(n)), for d € [2,9]:

Qg =




¢(n) | Pligm) | Plswmy) — o
9 0.314 7.30 x 1072
99 0.253 1.12 x 102

999 0.243 1.55 x 1073

9999 0.242 1.99 x 10~4

99999 | 0.241 243 x 1075

QY x| W N~ 3

Table 1: First five values Pq ¢(n)) and Py ¢(n)) — @1. We round off these values
to three significant digits.

d || Plaga) | Paoa@) | Plaga) | Pass@) ||

2 [ 0.134 0.131 0.130 0.130 || 0.130
3] 0.085 0.089 0.089 0.089 || 0.089
4 0.062 0.067 0.068 0.068 || 0.068
5| 0.049 0.054 0.055 0.055 || 0.055
6 [ 0.040 0.045 0.046 0.046 || 0.046
7 0.034 0.039 0.039 0.040 || 0.040
8 [ 0.030 0.034 0.035 0.035 || 0.035
9 [ 0.026 0.030 0.031 0.031 || 0.031

Table 2: Values of Pg ¢,(n)) and ag, for n € [1,4]. These values are rounded
to the nearest thousandth.

3.2 The second subsequence

The second subsequence we will consider is (P(q,y,(n)))nen+ Where 14 is the
function from N* to N that maps n to (d + 1) x 10™ — 1. We get the following
result:

Proposition 3.2. The subsequence (P(q .y, (n)))nen+ converges to:
10(9 — (9d — 1) In(H1) + In(794)) _ 10(9 +In 10+ 9d1In(1 — 315))
81(d+1) 81(d+1)

Proof. Let n be a positive integer such that n > 2. According to Proposition

we have:

Pa,pg(n)) = Pa,(a+1)x10m 1)

n (d+1)x10t—1 b (9d—1)10l =8  n—1 dx1oltl_1 qoltl_y

1
:(d+1)><10"—1(z bg > > Z )

=0  p=ax1o0! 1=0 g=(d+1)x10!

Let us first find an appropriate lower bound of Py, (n)) in a way very similar
to that used in the proof of Proposition

1 10(10™ — 1 9d — 1) In( L 10(10™ — 1
Pla,ggny) 2 ( ( ) _( )In(T) | 10( )
d (d+1) x 10™ 9 9 9
n 1 10d 2 n—1
9d —1 1 FIGESY) In(735) 102(10m"~ % — 1)
————5S 10'Im(1 % Cn—1
5 lzzl n(1 4 10l = %) + ) ( 5 (n )))
_ 90— 10(9d = 1)In(4) +10In(344) 90 +100In($54) + 9n In(494)
= 81(d + 1) 81(d + 1) x 10
n 10! d-}—T

dx10l—1
—d —_—
Z (d+ 1) x 10™

=1



Then:

» N 90 — 10(9d — 1) In(£H) + 101n(39%) 90 + 1001n(39%) 4 9nIn(394) + 81dn
(d:q(n) = 81(d + 1) (d+1) x 10m '

(7

Let us now find an appropriate upper bound of P4 ,(»)) using the proof of
Proposition 3.1}

n

((9d — 1)10' — 8)

1 l
Plapyny < (D1
(d+1)><101—1(l:0 l:U

,_.
—

nol 1ol+1 1 4 -

> —°d1>+1n<1+ )

da+1
1 10"t — 1 In(4H) (94 — 1)(10" Tt — 1)
s(dH)(lOn_m)( T 5 —8(n+1)

L0In(53) 10" —1, 105 IM)

9 1 _
9 9 9 =5 (d+1)10' -1
- 1 10(10’L—ﬁ)—1+% N 101n(%)(10”—ﬁ+ﬁ—1)
(4 1)(10" — ) 9 81

In(24L) (9d — 1)(10(10™ — 37) — 1+ 2&5) 10 =1
_ 9d ( 5 —8(n+1))+321>.

=0

Thereby:

90 — 10(9d — 1) In(&H) +101n(394) 2% + 72(n + 1) In(L) + 90n

P < 8
(dwg(n)) = 81(d+ 1) 81((d+1) x 10m — 1) ®

Bounds brought to light in inequalities and and the fact that:

90 + 100 1n +9nln(292) 4 81dn
(d 1) (d+1) )=0 and

i
n= oo (d+1) x 107

25+ 72(n+ 1) In(HL) + 90n

ot 81((d+1) x 107 — 1)

lead to the expected result. O

Let us denote by £ the limit of (P(q,y,(n)))nen-:

10(9 +In10 + 9d1In(1 — z5))
81(d+1)

d =

Here is the first values of Py yn)) (61 = 0.313):
Here is a few values of Pd,wd(n))’ for d € [2,9]:

4 The graph of (P,))nen

Let us first plot the graph of the sequence (P(; ,))nen- for values of n from
1 to 1200 (Figure [1)). Then we plot a second graph of Py ) versus log(n),
for n € [1,32000] (Figure [2| ' On this graph, the four dots represented by red
circles are associated with the first values of (P1,4(n)))nen+ and the blue ones are



() | Paywmy | Pawm) =B
19 0.373 6.00 x 102
199 0.321 7.93x 1073

1999 0.314 1.01 x 1073

19999 0.313 1.23 x 1074

199999 | 0.313 1.45 x 1077

Y| W o= 3

Table 3: First five values 1,y (n)) and P(1 y(n)) — 1. We round off these values
to three significant digits.

d || Pawa) | Plava@) | Pdwae) | Pavaa) || Ba

2 [ 0.176 0.166 0.165 0.165 || 0.165
3 0.110 0.109 0.109 0.109 || 0.109
4] 0078 0.080 0.081 | 0.0.081 || 0.081
5 [ 0.060 0.063 0.064 0.064 || 0.064
6 [ 0.049 0.052 0.052 0.053 || 0.053
7 0.041 0.044 0.045 0.045 || 0.045
8 [ 0.035 0.038 0.039 0.039 || 0.039
9 [ 0.031 0.034 0.034 0.034 || 0.034

Table 4: Values of Pg y,(n)) and By, for n € [1,4]. These values are rounded
to the nearest thousandth.

associated with the subsequence (P(q y(n)))nen-. Their distances to the same-
coloured horizontal dotted asymptote tend towards 0. The linear equations of
these lines are y = a7 and y = 31 respectively (see Propositions and .

Through Figure [2] it is clear that the proportion of 1 as leading digit struc-
turally fluctuate and does not follow Benford’s Law.

Let us additionally plot graphs of sequences (P(q,,))nen for values of n
from 1 to 400 (Figure. Then we plot graphs of Pg,) versus log(n), for
n € [1,32000] (Figure [4).

Through Figure [4] it is once more clear that the proportion of each d as
leading digit, d € [1,9], structurally fluctuate and does not follow Benford’s
Law.

For each d € [1,9] the values seem to fluctuate between two values, under
the following constraint:

Proposition 4.1. For all n € N* such that n > 10 and for all (p,q) € [1,9]?
such that p < q, we have:

Pip,n) > Pgn) -

The relative position of graphs of P4 ), for d € [1,9], can be observed on
Figures [3] and [4

Proof. For all n € N* such that n > 10 and for all (p, q) € [1,9]? such that p < g,
we denote by k, and k, the positive integers such that k, = min{i € N : px 10° >
n} and k, = min{i € N: ¢ x 10’ > n}. We note that k, > k,. For (r,l) € N?,
let A; and B, ; be real numbers such that 4; = % and B, = W.
We consider that A_; = 0. Third cases can be distinguished:

10



Py

P

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

log(n)

Figure 1: Graph of (P(1,,))nen--

Figure 3: Graphs of (P(g,n))nen-, for
d e [1,9].

Figure 2: Graph of P ;) versus log(n),
values of Py 4(n)) being in red and
those of Py yn)) being in deep blue.
Limits oy and S; of these two subse-
quences are represented by horizontal
asymptotes.

log(n)

Figure 4: For d € [1,9], graphs of
P(4,n) versus log(n). Note that points
have not been all represented.

In the first case (¢ + 1) x 10%72 < p x 10~ < n < (p+1) x 10k~ <

11



g x 10*»=1. Thus we have kp = kg + 1. Thanks to Proposition we obtain:

kp—2 (p+1)x10f—1 px1ottl_q n

1 b— Bp,l A], b— Bp,kpfl
Pom ~Pam=-(2C X =2+ X H+ X —)
=0 b=px 10! a=(p+1)x 10! b=px10Fp—1
kp—3 (q+1)x10f—1 gx1oltl_1
1,2 b— By, Ay
SETO D VIR DI
n b a
1=0 b=gx 10! a=(g+1)x10!
(a+Dx10Fp =21 5 n A
— Bg,kp—2 kp—2)
+ —r —2=
> 3 >
b=gx10"P a=(gq+1)x10"P
ko3 1 I+1_ 1
s (pt1)x10l—1 By px10 Loy, Gernxaotoig By
= (X X e X = 3
=0 b=px 10! a=(p+1)x10! b=gx 10!
gx10ttt 1 (p+1)x10FP=2 1 px10Fp—1_1
D R S
a b a
a=(q+1)x10! b=px10Fp—2 a=(p+1)x10%p =2
kp—2
n b— By k, (g+1)x10"P~%—1 b— By,
b3 B TS T Pun
b=px10Fp—1 b=gx10%p 2
DI
a
a=(q+1)x10FP—2
kp—2 (p+1)x10t—1 ax10l—1

1 b—Bp1— A1 A — A
( ; ( Z b + Z a

n
b=px 10! a=(p+1)x10!

1_ I+1_
. (g+1)x10' —1 Ay — (b= Byy) . px10 1 A, —Al)
Z b Z
b=gx 10! a=(q+1)x10!

n

+

b— Bpkp—1 — Akpfz)

b
b=px10Fp—1

Furthermore, for all (r,1) € N2, we have 4; > A;_; and:

Vs € [r x 10, (r + 1) x 101 — 1],

O9r—1)x 10" =8 10t —1
S—Br,l—Alq:S—(r ) -

9 9
=s5—(rx10'=1)>0
1041 —1 9 —1) x 10" — 8
Al*(S*Br,l):T*SJF( )9

=(r+1)x10'-=1-5>0.

Consequently, in this case, P, ) — Pgn) > 0.
In the second case (p + 1) x 10%~1 < n < ¢ x 10*~1. Thus we have

12



k, = kq + 1. Thanks to Proposition [2.1] we obtain:

kp—2 (p+1)x10l—1 px1oltl_1
1,2 b— By Ay
Pomy = Pam=—( 2 X P D D)
=0 b=px 10! a=(p+1)x10!
kp—1
p+yx1fPlo1, B n A kp—3
pkp—1 kp—1 1
X s 2 ) (X
b=px10Fp—1 a=(p+1)x10Fp 1 =0
(g+1)x10t—1 gx10itl_q (g+1)x10Fp—2 1
b—B’z Al b*Bq,k -2
« > D D P DR

b=gx 10! a=(q+1)x 10! b=gx10%P—
d A
kp—2
SR
a
a=(q+1)x10FP—2

kp—2 (p+1)x10l—-1

:l( Z ( Z b—Bp1 — A1 + ax10i-1 Ay — A
b

TYIZ0 popxaol a=(p+1)x 10!
+1)x10t—1 +1yx10kp =11
b b
b=gx 10! b=px10Fp—1
“ App,—1— Aky—2
P P
+ > ).

a=(p+1)x10Fp —1

Consequently, in this case, P, n) — Pgn) > 0.
In the third case ¢ x 10"~ < n < p x 10*». Thus we have kp = kq. Thanks
to Proposition we obtain:

kp=2 (p+1)x10t—1 ax10l—1
1,2 b— By — A1 A — A1
Pl ~Pam=2( S (3 BmiAua A
=0 b=px 10! a=(p+1)x10!
1_ kp—1_
+(q+1>xl0 lAl_(b_Bq,l))+<p+1)X10 4 1bin’kp_17Akp_2
b b
b=gx 10! b=px10Fp—1
kp—1 . kp—1_1 n
+ BN A’WD*1 — Ak‘p*2 (a2 b A — (b— Bq,z))
a b ’
a=(p+1)x10Fp 1 b=gx10Fp—1
Consequently, in this latter case, P, ) — Pgn) > 0. O]

Remark 4.2. For n € N*, we have, if d > n, Py ,) = 0. Hence for all n € N*
and for all (p,q) € [1,9]? such that p < ¢, we have:

Popny = F

q,n)

Let us from now on denote by kg the positive integer such that kg = min{i €
N :d x 10° > n}. Through Figures [2/ and |4} ”delayed effects” appear to exist,
in particular after a long sequence of numbers whose leading digit is d. Let us
examine these features in more detail. We study for this purpose the increasing
or decreasing nature of sequences (P(q,,))nen-, for d € [1,9]:

Proposition 4.3. i € {0,1}.
1 C;

P — Py = ——(———P,

(@nt1) = Plam = =7 = Plam),

where:
. mp1— QIZDIMSS e 4 e [dx 104, (d+ 1) x 10F — 1]
' SULCREES] if n+1€[(d+1)x10% dx 105+ — 1]

13



Proof. Tt is based on the formulas of Proposition Indeed:

C; 1 (&5
= P _ —
n—l—l) (d’”)+n+1(n+l

Py = (nPn) + Plan))-

n+1
O

Through this proposition the obvious condition regarding the increasing or
decreasing nature of the sequence is underscored: whether P ,) value, for
d € [1,9], is less or greater than the appropriate nﬁil value, for n € N* and
i € {0,1}. Finding the approximate values of n for which the increasing or
decreasing nature of the sequence (P(q,,))nen- appears is henceforth the aim of

that section. We first provide a proposition similar to the previous one:

Proposition 4.4. Ifn € [d x 10¥¢ (d + 1) x 10¥¢ — 1], then we have:

n b— (9d—1)10%a —8

1
Plan) = *(P(d,dxmkdq) X (dx 10% — 1) + Z %)
n b=dx10%d

Ifn € [(d+1) x 10%,d x 108+ — 1], then we have:

1 n 10kt
Plany = E(P(d,(d—i-l)xlokd_l) x ((d+1) x 10%e — 1)+
a=(d+1)x10%d

Proof. Results are directly derived from Proposition [21] O

~

We now consider the sequence (Pg))nen+ defined as follows.
If n € [d x 10k (d + 1) x 10%¢ — 1]:

10k 9d — 1 10k« 10k
1 1 Ind) .
e+ (In( - ) + Ind)

ﬁ(d,n) = d(ad — 1)

If n € [[(d+1) x 10k, d x 10+ —1]:

~ 10k« 10 10%« 10%4
Py = 1 - = 1 1 1)).
(an) = (d+1)Ba—— = 5 ——(In(——) +In(d + 1))

We denote by 74 a real number such that v4 €]1; 1—|—é[ and [(4.~,) the set such
that I(q.~,) = j:of ([[dfy(i x10%, (d+1) x 10° = 1JU[(d+ 1)y x 10°,d x 10°+ — 1]])
The below proposition can thereupon be stated:

Proposition 4.5.

Pamy ~  Pan-

n—-+oo
n€l(d,y)

Proof. Let us study both cases. In the first one, n € [y4d x 1084 (d+1) x 10%¢ —
1]. Let I; be the interval such that, I; = (J;* [dvya x 107, (d+ 1) x 10° — 1]. We
have:

9)

Before we go any further, let us prove the following lemma:

14



Lemma 4.6. Forn > d x 10%4:

n

n n 1
ln( H)Td)—ind-‘rln(l‘i'm

107;%) < In(

—lnd—i—ln(l—i—l)g ).
n

1
b

b=dx10%d
Proof. This result is directly related to inequalities Indeed for n > d x 10%¢ >
1, we have:

n+1

- 1 n
S - <In(——).
n(dxlokd)_ Z b — n(dxlokd—l)
b=dx10Fd

Thanks to Proposition [£.4) we get:

d><10kd—1+n—d><10kd+1 (9d — 1)10%2 — 8 i 1
b

Py =P
(d,n) (d,dx10Fd —1) n n In &
b=dx107d

1Okd+1 (9d — 1)10%d 2”: 1

=d z
( In

P(d,dxlokd—l) -1

b=dx10%d

P k n
(1,dx10%d —1) 1 8 1
n n In Z &
b=dx10"%d

Thanks to inequalities and knowing that > ;. 1ok 3 = In(-2%=) — Ind +

10%d
A (1) (thanks to Lemma[4.6 being greater than or equal to 4 > 1)
n—+00
nel;

and that Py gx10ra—1) ~ «a (see Proposition , we finally have:
) foo

_n__
dx10kd

10k« 9d — 1 10%« 10k«
Plany , > d(eg — 1) T (In( - ) +Ind) .
nel

In the second case n € [(d+ 1)y4 x 10%¢,d x 10%a+1 —1]. Let I5 be the interval
such that, Iy = UV [(d + 1)va x 10, d x 10T — 1]. We have:

1 10%a 1
< < )
10d = n ~ (d+ 1)y

(10)

Before we go any further, let us prove this additional lemma:

Lemma 4.7. Forn > (d+1) x 10%4:

1 . 1
— )< —
)—In(d+ 1) +In(1 + n) < E " and,
a=(d+1)x10%d

n
ln(—lokd

n

>

a=(d+1)x10Fd

n 1
10kd)fln(d+1)+ln(1+ (d+1)><10kd—1)'

ISHE

<In(

Proof. This result is directly related to inequalities [5
Indeed for n > (d + 1) x 10¥¢ > 1, we have:

n+1 - 1 n
In(— ) < S <1 .
Mg <10k S 2. o< YTy =10k =1

15



Thanks to Proposition we get:

_ (d+1)x10Fa —1 1  10katl —1 = 1
Plan) = Pla,(a+1)x10ka—1) o Tgx n > g
a=(d+1)x10%d
10k 10  10kd = 1
=@+ VP gr1)xioka—1)— n T > -

a
a=(d+1)x10%d

n

. P(l,(d+1)><10kd—1) 1 Z

n

a
a=(d+1)x10%d

Thanks the inequalities and knowing that >_'_ (d+1)x 105 1= In(i5r) —

In(d+1) + nﬁcioo( ) (thanks to Lemma H m bemg greater than or
nels

equal to yq > 1) and that Py (g41)x10%a—1) o~ Ba (see Proposition , we

finally have:

10%¢ 10 10k4 10k«
- = 1 In(d + 1)) .
o~ (In(=—=) +In(d+1))

P(d,n) n;\:roo (d + 1)6d
nels

O

To find the approximate values of n for which the increasing or decreasing
nature of (Pg,,))nen- appears, we need to study two distinct functions:
Lemma 4.8. The minimum mgy of the function fq from [%7 é] that maps x
onto d(og — 1)z + 1+ 2=22(In(x) 4 Ind) is reached when:

T o d+1
1079000 (1= g7) ™1
xr =
d
10 _ d+1
T 9(9d—1) 9d—1
(9d—1)10" 9041 (1- 1)

Its value is mg =1 — 5d

Proof. Yz € (717, 3], fu(x ) = d(og — 1) + 242 (1 + In(z) + Ind). By solving the
equation d(ag — 1) + 251 (1 +In(z) + Ind) = 0, we have:

10~ 9(931071) (1 _ ﬁ)_gddtll
T = ¥ .
- 5oty -5t T — gL
Finally fy(22— (ld_#) ) — o g(gd_:d(l_ﬁ) - O
Remark 4.9. We note that:
1
fd(a):ad—l—i—l:ad and
1 d 9d — 1 1 d
= -1 1 1
Ja(gig) = (=D x gg H 1+ —g—= > gmg (=)
94+ 10In10+9(d + 1) In(1 — d+1) 81d+ N 9d — 1 In d )
= n
81(d+1) 9(d+1) ‘d+1
10(9 + In 10+ 9d1In(1 — 317)) 5

81(d+1)

16



Using the approximation of Proposition the definition of (ﬁ(d,n))nGN*
(for n € [d x 10, (d + 1) x 10%*¢ — 1]) and the properties of f; (Lemma ,
we can approximate the ranks of local minima. Let ¢ be a strictly positive
integer. Let us denote by mq;) the rank of the local minimum of P4 ,) in
[d x 107, (d+1) x 10" — 1] and by M4, the estimate of this rank. Let us gather
in the following table the first values of those ranks and values of local minima,
ford =1.

M) | M | Pama)
12 11 0.300
116 | 116 0.242

1158 | 1158 | 0.234

11578 | 11579 | 0.232

=W N | .

Table 5: First four values of above defined ranks and associated values of local
minima of P ). We round off values of P; ;) to three significant digits and
values of My ;) to unity. Note that m; ~ 0.232.

Indeed, for n € [10, 19], our approximation of the rank my; 1) for which the

minimum is reached verifies: ml(?ll) =25 x 0.2%, i.ec. me1) ~ 12.

Both values of minima (approximately 0.232 according to Lemma [.8)) and
ranks for which these minima are reached are correctly approximated by our
results as illustrated in Table [5] for d = 1.

Let us similarly gather in the below table the first values of those ranks and

values of local minima, for d € [2,9].

M) | M) | Md | Plamaa)
21643 | 21642 | 0.127 | 0.127
31669 | 31668 | 0.088 | 0.088
41683 | 41681 | 0.067 | 0.067
51692 | 51690 | 0.054 | 0.054
61698 | 61696 | 0.046 | 0.046
71703 | 71701 | 0.039 | 0.039
81706 | 81704 | 0.034 | 0.034
91709 | 91707 | 0.031 | 0.031

O 00| || U x| W N &

Table 6: Values of above defined ranks and associated values of local minima, of
Plan, for n € [d x 104, (d+1) x 10* — 1]. We round off values of Pg.ny and mq
to three significant digits and values of Mm(g,4) to unity.

Indeed, for n € [20000,29999], our approximation of the rank m s 4) for

- 10 _
10 10 9(9x2-1) (1,241&) 9x2—1

which the minimum is reached verifies:

m(274) 2
_ 10 _ 3
10~ 153 ( ) 17

I\

s i.€. T/fl(274) ~~ 21643.

Both values of minima and ranks for which these minima are reached are
correctly approximated by our results as illustrated in Table [6]

The second function we need to study is defined below:
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Lemma 4.10. The mazimum My of the function gq from | that maps

L1

10d° d+1

109 (1_L)d

z onto (d+1)Bgx — Lx(In(x) + In(d + 1)) is reached when x = — .
10 L\

105 (1-g4)"

Its value is My = S(a1)

Proof. Vx € |1, Wll]’ gy(x) = (d+1)B4— P (1 +In(z) +In(d+1)). By solving

1 Y
the equation (d+1)84— 2 (1+1n(z)+1n(d+1)) = 0, we obtain = = %.
1
9

d 10 d
. 109 (1— 15 109 (1
Finally gq( <d+f+ ) )= 9(((1-5-{1;r ) : =
Remark 4.11. We note that:
(L) =4 and
Ga\g 1)~ "
1 1 10 1
)= (d+1 — —x—(1 In(d+1
9al5q) = (d+ DB x 355 = g % qpq (Inlggg) + In(d+1))
94+m10+9dIn(l — z) 1 1
_ — —(In(——) +In(d+1
814 gq ((gg) +1n(@+1))
_9+10In10+9(d + 1) In(1 — 7iy) W
81d 4

Using the approximation of Proposition the definition of (ﬁ(d,n))nEN*
(for n € [(d+1) x 10, d x 10¥a+! —1]) and the properties of g4 (Lemma [4.10)),
we can approximate the ranks of local maxima. Let ¢ be a strictly positive
integer. Let us denote by M4 ) the rank of the local maximum of P ) in
[(d+1) x 10%, (d+1) x 10°*! —1] and by ]/\/[\(dﬂ-) the estimate of this rank. Let us
gather in the following table the first values of those ranks and values of local
maxima, for d = 1.

Mg | Mas | Pamga)
31 27 0.402
310 | 304 0.364

3007 | 3090 0.359

30971 | 30963 | 0.359

= W DN | =,

Table 7: First four values of above defined ranks and associated values of local
maxima of Py ). We round off values of F(; ,) to three significant digits and

values of My ;) to unity. Note that M; ~ 0.359.

Indeed, for n € [20,99], our approximation of the rank M, ;) for which the

1 8 o
maximum is reached verifies: % = %, i.e. M1y~ 31,

Both values of maxima (approximately 0.359 according to Lemma 4.10) and
ranks for which these maxima are reached are correctly approximated by our
results as illustrated in Table[7} for d = 1.

Let us gather in the following table the first values of those ranks and values

of local maxima, for d € [2,9].

18



Mg | M@y | Ma | Planmg.)
52263 | 52258 | 0.213 | 0.213
73412 | 73409 | 0.151 | 0.151
94515 | 94515 | 0.118 | 0.118
115597 | 115600 | 0.096 | 0.096
136668 | 136673 | 0.081 | 0.081
157733 | 157741 | 0.070 |  0.070
178793 | 178803 | 0.062 | 0.062
199851 | 199863 | 0.056 | 0.056

OO || U x| W Do &

Table 8: Values of above defined ranks and associated values of local maxima
of Py, forn € [(d+1) x 10%,d x 10° — 1]. We round off values of P4,ny and

M, to three significant digits and values of ]\//T(dA) to unity.

Indeed, for n € [30000,199999], our approximation of the rank M 4 for

2
. . . . 104 10% (1*#) 4><10% .
which the maximum is reached verifies: = = 5 = 25—, ie
M2,4) +

—

M 3,4y ~ 52263.

Both values of maxima and ranks for which these maxima are reached are
correctly approximated by our results as illustrated in Table

When considering the random experiment defined in the beginning of the ar-
ticle, we have thus determined the values of the proportions of selected numbers
whose leading digit is d and its bounds: these values seem to fluctuate between
mq and.ﬂ4g.

5 Central values

From previous Figures, we notice that there exist fluctuations in the graph
of (P(gn))nen-- We can calculate over each "pseudo-cycle”, i.e. for all n €
[d x 10%,d x 101 — 1] where i € N, the mean value Ca,iy of Pgpy. For
example, we obtain:

Ezxamples 5.1.

1 19

Ceo =13 Z Posy ~0.197
s

Com = 155 2 (5,) ~ 0.074
1 8999

Clo) = 3100 2920 Py =~ 0.043.

We will now consider the sequence (C(d,n))neN and will demonstrate that it
converges. Before we go any further, let us prove the following lemma:

Lemma 5.2. For all (p,q) € N2, such that 4 < p < q, we have:
_ _a_ q atl
In (q(p — 1)) In(5%3) In (g + 1)p) In(7) .

5 p—! §annn§ 5

n=p
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Proof. The function from [3; +oo[ to R that maps x onto z Inz is increasing on
[3; +00[. Thus:

q q q+1
/ zlnxdeannng/ zlnzdzx
p—1 P

n=p
219 q 274q+1
{(ln;) } SannnS [(ln;) ]
p—1 n=p p
The result follows. O

The below proposition can thereupon be stated:

Proposition 5.3.

o N (18d(ag — 1) — (9d — 1) In(4E2)) In(L52) + 18 + 2(9(d + 1) Ba + 51n(394)) In(394)
(dm) {3 162d ‘

Proof. Let &£ be a real number such that 0 < £ < 1.
For all n € N*, we have:

1 dx10mtl—1
Clam) = goo7om 2o Pl
9d x 10 im0
1 [(d+&)x10™ | —1 (d+1)x 10" —1
= 9dx 10" > Pant > Pay
i=dx10™ i=[(d+&)x10m |
L((d+1)+E)x10™ | —1 ax1on+t1l_q
+ > Plas) + > P(d,z')) :
i=(d+1)x10m i=[((d+1)+E&)x 107 |

. ] . ~ _ 1 dx10"+l_1 =~
For all n € N*, let us consider C(q,n) = g7x107 2oimdxion  1(d,i)- We know

that:
Vie N*,  |Pgy — ﬁ(d,i)| <Pl + |ﬁ(d,i)| <2.

There also exists an integer ¢ such that for all i > t and i € I¢, |Pg,) —ﬁ(dﬂ-)| <&
(see Proposition |4.5)).
Thus, for all n € N* such that 10™ > ¢, we have:

1 dx10™ 11

[Cany — Ca,my| < IR Z [Pea,iy — Pa,il

i=dx10™
1 [(d+&)x10™]—1 (d+1)x10™—1
S 9ax 107 > 1Pla.iy = Pra.ol + > [Pla,iy = Pla.il
i=dx10™ i=|(d+E)x10™ |
[((d+1)+E)x10™ | —1 ax1omtl_q
+ > [Pea,iy = Pa,ol + > [Pa,y — Pra,) \)
i=(d+1)x107 i=[((d+1)+E)x10™ |

1
<

= 9d x 10"
+2([((d+1)+ &) x 10" | — (d+ 1) x 10™)

+(dx 10"t — [((d+1) + &) x 10”J)5)

(2(L(d+£) x 10" | —d x 10™) + ((d+ 1) x 10" — |(d+ &) x 10" ))&

1

< 5+ (9d —1)E
~ 9d x 10n '

(25 X 10™ + 10™E€ + 26 x 10" + 8 10"5) < 5
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Consequently C(g,,) o é(d,n). We will henceforth study (é(dm))neN. We have
for all n € N*:

1 (d+1)x10" -1 35 dx10mtl_1 =

P P
O(d””:@( > 1((()15) + > 1(gn))' (11)

i=dx 10" i=(d+1)x 10"

We consider the first term of this sum:

LS P LTS e ) 1,10 )
9d 10" 9d i 10m 9d

i=dx10m i=dx10m
(d+1)x10™ -1

9d(ag — 1) + (9d — 1)nIn(10) + (9d — 1) Ind

81d i=dx10m
9d-1 (d“)xzwu i 1
81d ) 7 9d
i=dx10™
The proofs of Lemma [£.6] and Proposition [3.1] allow us to state:
(d+1)x10m—1
(d+1) x 107 1 (d+1)x 10" — 1
In(——) < ~ <1
e S 2 st )
i=dx 107
(d+1)x10" —1 1
d+1 1 d+1 d(d+1)
In(——) < - <1 In(1+ ———=),
R D AL T

i.e. ng;ilxoion_l 1 =In(%) + O (10") Then thanks to Lemma

In (((d+1) x 10" — 1)(d x 10" — 1)) In({FLXI0"=1) - (@D x10"—1 )

< -
2 i=dx10™ v
1
In(d(d + 1) x 10" — (2d + 1) x 10" + 1)(In() + In(1 + LEE)) - (d41)x10m -1 s
-3 o Z ni
2 -
i=dx10™
We have:
2d+1) — 2=
In(d(d + 1) x 102® — (2d + 1) x 10" + 1) = In(d(d + 1) x 10?") + In(1 — —————20"
n(d(d + 1) x (2d+1) x 10™ + 1) = In(d(d + 1) x ) +In( d(d+1)><10")
2d+ 1
=In(d(d + 1)) + 2nIn(10) + O (L).

+oo d(d+ 1) x 10m
We obtain:
1 da+1 1 n
(In(d(d+ 1)) 4+ 2n1n(10) + +Ooo(1T")) (In(2H) + +000(1(7)) (d+1)><210 -1 i
2 i=dx10™ ¢
(In(d(d + 1)) + 2nIn(10)) In( <L) + K (1)  (d+1)x10"—1
> <

IN

In?

2 i=dXx10™ ¢

Thanks to Lemma [5.2] we also have:
(d+1) X107 ~1 Ini _ In(d(d+1)x10%")In 7(d+1)an)

Z 5 dx10™

i=dx10m
(d4+1)x10™—1

i _ (In(d(d+1)) + 2n In(10)) In( ) :

i 2

1=dXx10™
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Finally the first term of equality verifies:

“””iéo” Pasn  (9d(ag—1)+ (9d — 1)nn 10+ (9d — 1) Ind) In(*

)

9d . 10" o0 81d
i=dx10™

(9d — 1)(In(d(d + 1)) 4+ 2nIn(10)) In(=L) 1

2 x 81d *9d
(18d(ag — 1) — (9d — 1) In(4H2)) In(4HL) + 18
foo 162d

We consider henceforth the second term of the equality :

dx10mtl—_1 5 dx10mtl—1
1 P 1 10 10"
0d 2 1(0n) =00 2 ((d“)ﬂd*_@(ln(dH)Hn( i )))
i=(d+1)x 107 i=(d+1)x 107

n+4+1_
9(d+1)B4 — 10In(d + 1) — 10In(10)n. %=~ ' 1

81d Z i

i=(d+1)x10™

dx10™tl—1
10 Ins
* 814 2 i

i=(d+1)x 10"

The proofs of Lemma [4.7] and Proposition [3.2] allow us to state:

n+1
d x 107+1 AT Ly dx 107+ — 1
LS e D S Y
(@10 = A (d+1) x 10" — 1

dx10m -1 1 1

10d 1 10d a1~ 107
In(—)< Y = <In(5—)+ (14210,

AR A 107 — 4

i.e. Z?:X({iojr)lx_llon 7= ln( 1)+ O (10” ). Then thanks to Lemma

In ((d x 10" = 1)((d + 1) x 10" — 1)) In((RAITo1) axagntioa
<

d+1) <107 —1 Inq
2

i=(d+1)x10m °

In(10d(d 4 1) x 10" — (11d + 1) x 10" + 1)(In(3%%) + In(1 + f;;} 10 ) axion+l_1 .
d+1 na

<

5 <

i=(d+1)x10m "

We have:

11d+1 — 2+
In(10d(d + 1)10%™ — (11d + 1)10™ 4 1) = In(10d(d + 1)10®*™) + In(1 — ———— 107
n(10d(d + 1) (11d +1)10" 4 1) = In(10d(d + 1) ) =+ In( 1Od(d+1)10"+1)
11d + 1

= In(10d(d + 1)) 4+ 2n In(10) + O (m)

We obtain:

(In(10d(d + 1)) +2n1n(10) + O (53w)) (In(F24) + O (15m))
<

By >

dx10mtl_q .
Ins

i=(d+1)x10m ©

(In(10d(d + 1)) + 2n1n 10) 1n(%)++%o(1) § axiontion

2

i=(d+1)x10m °
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Thanks to Lemma [5.2] we also have:

A1 G In(d(d 4 1) x 10271) In(204)
i=(d+1)x10™ @ 2

IN

10" 1 G (In(10d(d 4 1)) + 2n In(10)) In( 294 )

% 2

IN

i=(d+1)x 107
Finally the second term of equality verifies:

A By (9(d+1)Ba — 101n(d + 1) — 10n1n(10)) In(224)

1 a1
9d Z 10" 4o 81d
i=(d+1)x10m

, 5(In(10d(d + 1)) + 2n1n(10)) In(z99)

—+1
81d
(9(d+1)Ba +5In(33%)) In(53%)
Yoo 81d '
Hence:
& (18d(aq — 1) — (9d — 1) In(452)) In(4HL) 4 18 (9(d + 1)Ba + 51n(394)) In(204)
) 7 162d + 81d
_ (18d(aq —1) — (9d — 1) In(442)) In(4HL) + 18 + 2(9(d + 1)Ba + 51n(394)) In(294)
ol 162d '
The result follows. O

Let us denote by Cy the limit of (Cg,5))nen-

Note that our first choice of ”pseudo-cycle” give more weight at the values
of proportion situated at the end of intervals [d x 10¢,d x 10+ — 1] where i € N.
We can also have defined the sequence (é(d,n))nGN as follows:

1 (d+1)x10™*T1 -1

Copmy = Pos.
@m) = 9(d + 1) x 107 iz(gl):m (1,4

If so, we would state that the limit Cy of the sequence (C’(dm))neN is:

(90d(ag — 1) = 5(9d — 1) In( L)) In(EHE) 4+ 90 + (9(d + 1)Ba + 51n(394)) In(199)
81(d+1) '

Proof. C'(dm) o CA'(dm) where, for all n € N*:

1 dx10"t1-1 5 (d+1)x10"T' -1 P
@m) = 9@+ 1)\ 2 o 2 107 (12)
i=(d+1)x10™ i=dx10n+t1
The first term of this sum is similar to the second term of the associated sum

in the proof of Proposition The second one verifies:

1 @B 90d(ag — 1)+ 1009d = D((n + 1) In(10) + Ind) LT
od+1) L= ., 107 N 81(d + 1) A orr PR
10(9d — 1) FDA0TE 10
B m i=dx10nt1 B m .
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Finally the second term of equality is:

(d+1)x10ntl_1 5

1 Py (90d(era —1) +10(9d — 1)((n + 1) In 10 + In d)) In( 4ty

9(d+1) gy 10m e 81(d + 1)
5(9d — 1)(In(d(d + 1)) + 2(n + 1) In(10)) In( <L) 10
B 81(d + 1) + 9(d+1)
(90d(aq — 1) — 5(9d — 1) In(<EL)) In(<HL) 4+ 90
Hoo 81(d + 1) '
Hence:

Bany ~ (9(d + 1)Ba + 51n(394)) In(394) N (90d(cvg — 1) — 5(9d — 1) In(<H1)) In(4HL) + 90
)

81(d + 1) 81(d+ 1)
(90d(ag — 1) — 5(9d — 1) In(4H)) In(L42) + 90 + (9(d + 1)Ba + 51n(39%)) In(304)
+oo 81(d+ 1) '
The result follows. O

Once more, means values over both ”"pseudo-cycles” are very close to the
theoric value highlighted by Benford: log(1 + %) ([2]). Table |§| below gathers
the whole values:

Cy log(l aF é) Cy
0.281 0.301 0.301
0.160 0.176 0.191
0.113 0.125 0.139
0.088 0.097 0.109
0.072 0.079 0.090
0.061 0.067 0.077
0.053 0.058 0.067
0.047 0.051 0.059
0.042 0.046 0.053

OO0 || U | W N —|

Table 9: Values of Cy, Cy and Benford’s Law probabilities, these values being
rounded to the nearest thousandth.

Indeed, according to Hill ([I0]), it is absolutely normal. In a way, it can be
considered as an equivalent to the central limit theorem ([8]).

Conclusion

To conclude, through our model, we have seen that the proportion of d as leading
digit, d € [1,9], in certain naturally occurring collections of data is more likely
to follow a law whose probability distribution is (d, P(4,n))ae[1,0], Where n is the
smaller integer upper bound of the physical, biological or economical quantities
considered, rather than Benford’s Law. These probability distributions fluctuate
around Benford’s value as can be seen in the literature (see [12], [B], [14] or [7]
for example) in accordance with our model. Knowing beforehand the value of
the upper bound n can be a way to find a better adjusted law than Benford’s
one.
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The results of the article would have been the same in terms of fluctuations
of the proportion of d € [1,9] as leading digit, of limits of subsequences, or of
results on central values, if our discrete uniform distributions uniformly ran-
domly selected were lower bounded by a positive integer different from 0: first
terms in proportion formulas become rapidly negligible. Through our model we
understand that the predominance of 1 as first digit (followed by those of 2 and
so on) is all but surprising in experimental data: it is only due to the fact that,
in the lexicographical order, 1 appears before 2, 2 appears before 3, etc.

However the limits of our model rest on the assumption that the random
variables used to obtain our data are not the same and follow discrete uni-
form distributions that are uniformly randomly selected. In certain naturally
occurring collections of data it cannot conceivably be justified. Studying the
cases where the random variables follow other distributions (and not necessarily
randomly selected) sketch some avenues for future research on the subject.
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Appendix: Python script

Using Propositions we can determine the terms of (Pygn))nen-, for d €
[1,9]. To this end, we have created a script with the Python programming
language (Python Software Foundation, Python Language Reference, version
3.4. available at http://www.python.org, see [I8]). The implemented function
expvalProp has two parameters: the rank n of the wanted term of the sequence
and the value Id of the considered leading digit. Here is the used algorithm:

def expvalProp(n,ld):
if(ld>n):
return(0)
else:
k=0
while(1d*10**k<=n):
k=k+1
u=1;0=1d-1:5=0; T=0;
for i in range(0,k-1):
for b in range(ld*10%**i,(1d+1)*10%*%i):
T=T+(b-v)/b
for a in range((ld+1)*10**,1d*10**(i+1)):
S=S+u/a
u=u+10**(i+1)
v=v*10+8
if (n<(ld+1)*10%*(k-1)):
for b in range(1d*10**(k-1),n+1):
T=T+(b-v)/b

else:
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for b in range(ld*10**(k-1), (ld+1)*10**(k-1)):
T=T+(b-v)/b
for a in range((ld+1)*10**(k-1),n+1):
S=S+u/a
return((S+T)/n)
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