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Abstract

Blind Source Separation (BSS) is one of the major tools to analyze multi-

spectral data with applications that range from astronomical to biomedical

signal processing. Nevertheless, most BSS methods fail when the number

of sources becomes large, typically exceeding a few tens. Since the ability

to estimate large number of sources is paramount in a very wide range of

applications, we introduce a new algorithm, coined block-Generalized Mor-

phological Component Analysis (bGMCA) to specifically tackle sparse BSS

problems when large number of sources need to be estimated. Sparse BSS

being a challenging nonconvex inverse problem in nature, the role played by

the algorithmic strategy is central, especially when many sources have to

be estimated. For that purpose, the bGMCA algorithm builds upon block-

coordinate descent with intermediate size blocks. Numerical experiments are

provided that show the robustness of the bGMCA algorithm when the sources

are numerous. Comparisons have been carried out on realistic simulations of

spectroscopic data.
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1. Introduction

Problem statement

Blind source separation (BSS) is the major analysis tool to retrieve mean-

ingful information from multichannel data. It has been particularly successful

in a very wide range of signal processing applications ranging from astro-

physics [1] to spectroscopic data in medicine [2] or nuclear physics [3], to

name only a few. In this framework, the observations {xi}i=1,...,m are mod-

eled as a linear combination of n unknown elementary sources {sj}j=1,...,n:

xi =
∑n

j=1 aijsj + zi. The coefficients aij are measuring the contribution of

the j-th source to the observation xi, while zi is modeling an additive noise

as well as model imperfections. Each datum xi and source sj is supposed to

have t entries. This problem can be readily recast in a matrix formulation:

X = AS + N (1)

where X is a matrix composed of the m row observations and t columns

corresponding to the entries (or samples), the mixing matrix A is built from

the {aij}i=1,...,m,j=1,...,n coefficients and S is a n × t matrix containing the

sources. Using this formulation, the goal of BSS is to estimate the unknown

matrices A and S from the sole knowledge of X.

Blind source separation methods

It is well-known that BSS is an ill-posed inverse problem, which requires

additional prior information on either A or S to be tackled [4]. Making BSS
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a better-posed problem is performed by promoting some discriminant infor-

mation or diversity among the sources. A first family of standard techniques,

such as Independent Component Analysis (ICA), assumes that the sources

are statistically independent [4].

In this study, we will specifically focus on the family of algorithms dealing

with the case of sparse BSS problems (i.e. where the sources are assumed to

be sparse), which have attracted a lot of interest during the last two decades

[5, 6, 7]. Sparse BSS has mainly been motivated by the success of sparse signal

modeling for solving very large classes of inverse problems [8]. The Gener-

alized Morphological Component Analysis (GMCA) algorithm [1, 9] builds

upon the concept of morphological diversity to disentangle sources that are

assumed to be sparsely distributed in a given dictionary. The morphological

diversity property states that sources with different morphologies are un-

likely to have similar large value coefficients. This is the case of sparse and

independently distributed sources, with high probability. In the framework

of Independent Component Analysis (ICA), Efficient FastICA (EFICA) [10]

is a FastICA-based algorithm that is especially adapted to retrieve sources

with generalized Gaussian distributions, which includes sparse sources. In

the seminal paper [11], the author also proposed a Newton-like method for

ICA called Relative Newton Algorithm (RNA), which uses quasi-maximum

likelihood estimation to estimate sparse sources. A final family of algorithms

builds on the special case where it is known that A and S are furthermore

non-negative, which is often the case on real world data [12].

However, the performances of most of these methods decline when the num-

ber of sources n becomes large. As an illustration, Fig. 1 shows the evolution
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of the mixing matrix criterion (cf. sec. 3.1, [9]) as a function of the number

of sources for various BSS methods. This experiment illustrates that most

methods do not perform correctly in the “large-scale”regime. In this case,

the main source of deterioration is very likely related to the non-convex na-

ture of BSS. Indeed, for a fixed number of samples t, an increasing number of

sources n will make these algorithms more prone to be trapped in spurious

local minima, which tends to hinder the applicability of BSS on practical

issues with a large n. Consequently, the optimization strategy has a huge

impact on the separation performances.

Contribution

In a large number of applications such as astronomical [1] or biomedi-

cal signals [2], designing BSS methods that are tailored to precisely retrieve

a large number of sources is of paramount importance. For that purpose,

the goal of this article is to introduce a novel algorithm dubbed bGMCA

(block-Generalized Morphological Component Analysis) to specifically tackle

sparse BSS problems when a large number of sources need to be estimated.

In this setting, which we will later call the large-scale regime, the algorithmic

strategy has a huge impact on the separation quality since BSS requires solv-

ing highy challenging non-convex problems. For that purpose, the proposed

bGMCA algorithm builds upon the sparse modeling of the sources, as well as

an efficient minimization scheme based on block-coordinate descent. In con-

trast to state-of-the art methods [11, 9, 13, 12], we show that making profit of

block-based minimization with intermediate block sizes allows the bGMCA

to dramatically enhance the separation performances, particularly when the

number of sources to be estimated becomes large. Comparisons with the
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Figure 1: Evolution of the mixing matrix criterion (whose computation is detailed in

sec. 3.1) of four standard BSS algorithms for an increasing n. For comparison, the results

of the proposed bGMCA algorithm is presented, showing that its use allows for the good

results of GMCA for low n (around 160 dB for n = 3) to persist for n < 50 and to

stay much better than GMCA for n > 50. The experiment was conducted using exactly

sparse sources S, with 10% non-zero coefficients, the other coefficients having a Gaussian

amplitude. The mixing matrix A was taken to be orthogonal. Both A and S were

generated randomly, the experiments being done 25 times and the median used to draw

the figure.

state-of-the art methods have been carried out on various simulation scenar-

ios. The last part of the article will show the flexibility of bGMCA, with an

application to sparse and non-negative BSS in the context of spectroscopy.
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2. Optimization problem and bGMCA

2.1. General problem

Sparse BSS [1, 9] aims to estimate the mixing matrix A and the sources

S by minimizing a penalized least-squares of the form:

min
A,S

1

2
‖X−AS‖2

F + J (A) + G(S) (2)

The first term is a classical data fidelity term that measures the discrep-

ancy between the data and the mixture model. The ‖.‖F norm refers to

the Frobenius norms, whose use stems from the assumption that the noise

is Gaussian. The penalizations J and G enforce some desired properties on

A and S (e.g. sparsity, non-negativity). In the following, we will consider

that the proximal operators of J and G are defined, and that J and G are

convex. However, the whole matrix factorization problem (2) is non-convex.

Consequently, the strategy of optimization has a critical impact on the sep-

aration performances, especially to avoid spurious local minimizers and to

reduce the sensitivity to initialization. A common idea of several strategies

(Block Coordinate Relaxation - BCR [14], Proximal Alternating Linearized

Minimization - PALM [15], Alternating Least Squares - ALS) is to benefit

from the multi-convex structure of (2) by using blocks [16] in which each

sub-problem is convex. The minimization is then performed alternately with

respect to one of the coordinate blocks while the other coordinates stay fixed,

which entails solving a sequence of convex optimization problems. Most of

the already existing methods can then be categorized in one of two families,

depending on the block sizes:
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- Hierarchical or deflation methods : these algorithms use a block of size

1. For instance, Hierarchical ALS (HALS) ([12] and references therein)

updates only one specific column of A and one specific row of S at each

iteration. The main advantage of this family is that each subproblem

is often much simpler as their minimizer generally admits a closed-form

expression. Moreover, the matrices involved being small, the computa-

tion time is much lower. The drawback is however that the errors on

some sources/mixing matrix columns propagate from one iteration to

the other since they are updated independently.

- Full-size blocks : these algorithms use as blocks the whole matrices A

and S (the block size is thus equal to n). For instance, GMCA [1],

which is reminiscent of the projected Alternating Least Squares (pALS)

algorithm, is part of this family. One problem compared to hierarchical

or deflation methods is that the problem is more complex due to the

simultaneous estimation of a high number of sources. Moreover, the

computational cost increases quickly with the number of sources.

The gist of the proposed bGMCA algorithm is to adopt an alternative

approach that uses intermediate block sizes. The underlying intuition is that

using blocks of intermediate size can be recast as small-scale source separation

problems, which are simpler to solve as testified by Fig. 1. As a byproduct,

small-size subproblems are also less costly to tackle.

2.2. Block based optimization

In the following, bGMCA minimizes the problem in eq. (2) with blocks,

which are indexed by a set of indices I of size r, 1 6 r 6 n. In practice, the
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minimization is performed at each iteration on submatrices of A (keeping

only the columns indexed by I ) and S (keeping only the rows indexed by I ).

2.2.1. Minimizing multi-convex problems

Block coordinate relaxation (BCR, [14]) is performed by minimizing (2)

according to a single block while the others remain fixed. In this setting,

Tseng [14] proved the convergence of BCR to minimize non-smooth opti-

mization problems of the form (2). Although we adopted this strategy to

tackle sparse NMF problems in [13], BCR requires an exact minimization for

one block at each iteration, which generally leads to a high computational

cost. We therefore opted for Proximal Alternating Linearized Minimization

(PALM), which was introduced in [15]. It rather performs a single proximal

gradient descent step for each coordinate at each iteration. Consequently,

the PALM algorithm is generally much faster than BCR and its convergence

to a stationary point of the multi-convex problem is guaranteed under mild

conditions. In the framework of the proposed bGMCA algorithm, a PALM-

based algorithm requires minimizing at each iteration eq. (2) over blocks of

size 1 6 r 6 n and alternating between the update of some submatrices of A

and S (these submatrices will be noted AI and SI). This reads at iteration

(k) as:

1 - Update of a submatrix of S using a fixed A:

S
(k)
I = prox γG(.)∥∥∥∥A(k−1)T

I
A

(k−1)
I

∥∥∥∥
2

S
(k−1)
I − γ∥∥∥A(k−1)T

I A
(k−1)
I

∥∥∥
2

A
(k−1)T

I (A(k−1)S(k−1) −X)


(3)
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2 - Update of a submatrix of A using a fixed S:

A
(k)
I = prox δJ (.)∥∥∥∥S(k)

I
S
(k)T

I

∥∥∥∥
2

A
(k−1)
I − δ∥∥∥S(k)

I S
(k)T

I

∥∥∥
2

(A(k−1)S(k) −X)S
(k)T

I


(4)

In eq. (3) and (4), the operator proxf is the proximal operator of f

(cf. Appendix and [17] [18]). The scalars γ and δ are the gradient path

lengths. The ‖.‖2 norm is the matrix norm induced by the `2 norm for

vectors. More specifically, if x is a vector and ‖.‖`2 is the `2 norm for vectors,

the ‖.‖2 induced matrix norm is defined as:

‖M‖2 = sup
x 6=0

‖Mx‖`2
‖x‖`2

(5)

Block choice

Several strategies for selecting at each iteration the block indices I have

been investigated: i) Sequential : at each iteration, r sources are selected se-

quentially in a cyclic way; ii) Random: at each iteration, r indices in [1, n]

are randomly chosen following a uniform distribution and the corresponding

sources updated; iii) Random sequential : this strategy combines the sequen-

tial and the random choices to ensure that all sources are updated an equal

number of times. In the experiments, random strategies tended to provide

better results. Indeed, compared to a sequential choice, randomness is likely

to make the algorithm more robust with respect to spurious local minima.

Since the results between the random strategy and the random sequential

one are similar, the first was eventually selected.

Examined cases and corresponding proximal operators

In several practical examples, an explicit expression can be computed for
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the proximal operators. In the next, the following penalizations have been

considered:

1 - Penalizations G for the sources S:

- `1 sparsity constraint in some transformed domain: The sparsity

constraint on S is enforced with a `1-norm penalization: G(S) =∥∥ΛS � (SΦT
S )
∥∥

1
, where the matrix ΛS contains regularization pa-

rameters and � denotes the Hadamard product. ΦS is a trans-

form into a domain in which S can be sparsely represented. In the

following, ΦS will be supposed to be orthogonal. The proximal

operator for G in (3) is then explicit and corresponds to the soft-

thresholding operator with threshold ΛS, which we shall denote

SΛS
(.) (cf. Appendix). Using γ = 1 and assuming ΦS orthogonal,

the update is then:

S
(k)
I = SΛS

S
(k−1)
I ΦS

T − 1∥∥∥A(k−1)
I A

(k−1)T

I

∥∥∥
2

A
(k−1)T

I (A(k−1)S(k−1) −X)ΦS
T

ΦS

(6)

- Non-negativity in the direct domain and `1 sparsity constraint in

some transformed domain: due to the non-negativity constraint,

all coefficients in S must be non-negative in the direct domain in

addition to the sparsity constraint in a transformed domain ΦS. It

can be formulated as G(S) = ‖ΛS �
(
SΦS

T
)
‖`1 + ι{∀j,k;S[j,k]≥0}(S)

where ιU is the indicator function of the set U . The difficulty is

to enforce at the same time two constraints in two different do-

mains, since the proximal operator of G is not explicit. It can
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either be roughly approximated by composing the proximal oper-

ators of the individual penalizations to produce a cheap update

or computed accurately using the Generalized Forward-Backward

splitting algorithm [19].

2 - Penalizations J for the mixing matrix A:

- Oblique constraint : to avoid obtaining degenerated A and S ma-

trices (‖A‖ → ∞ and ‖S‖ → 0), the columns of A are constrained

to be in the `2 ball, i.e. ∀j ∈ [1, n], ‖Aj‖2 6 1. More specifically,

J can be written as J (A) = ι{∀i;‖Ai‖22≤1}(A). Following this con-

straint, the proximal operator for J in eq. (4) is explicit and can

be shown to be the projection Π‖.‖2 (cf. Appendix) on the `2 unit

ball of each column of the input. The update (4) of AI becomes:

A
(k)
I = Π‖.‖261

A
(k−1)
I − 1∥∥∥S(k)

I S
(k)T

I

∥∥∥
2

(A(k−1)S(k) −X)S
(k)T

I


(7)

- Non-negativity and oblique constraint : Adding the non-negativity

constraint on A reads: J (A) = ι∀i;‖Ai‖22≤1(A) + ι∀i,j;A[i,j]≥0(A).

The proximal operator can be shown to be the composition of

the proximal operator corresponding to non-negativity followed by

Π‖.‖261. The proximal operator corresponding to non-negativity

is the projection ΠK+ (cf. Appendix) on the positive orthant K+.
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The update is then:

A
(k)
I = Π‖.‖261

ΠK+

A
(k−1)
I − 1∥∥∥S(k)

I S
(k)T

I

∥∥∥
2

(A(k−1)S(k) −X)S
(k)T

I


(8)

2.2.2. Minimization: introduction of a warm-up stage

While being provably convergent to a stationary point of (2), the above

PALM-based algorithm suffers from a lack of robustness with regards to a

bad initialization, which makes it more prone to be trapped in spurious local

minima. Moreover, it is quite difficult to automatically tune the thresholds Λ

so that it yields reasonable results. On the other hand, algorithms based on

GMCA [1, 9] have been shown to be robust to initialization. Furthermore,

in this framework, fixing the parameters Λ can be done in an automatic

manner. However, GMCA-like algorithms are based on heuristics, which

preclude provable convergence to a minimum of (2).

The proposed strategy consists in combining the best of both approaches to

build a two-stage minimization procedure (cf. Algorithm 1): i) a warm-up

stage building upon the GMCA algorithm to provide a fast and reliable first

guess, and ii) a refinement stage based on the above PALM-based algorithm

that provably yields a minimizer of (2). Moreover, the thresholds Λ in the

refinement stage will be naturally derived from the first stage. Based on the

GMCA algorithm [1, 9], the warm-up stage is summarized below:

0 - Initialize the algorithm with random A. For each iteration (k):

1 - The sources are first updated assuming a fixed A. A submatrix SI is

however now updated instead of S. This is performed using a projected
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least square solution:

S
(k)
I = proxG(.)(A

(k−1)†
I RI ) (9)

where: RI is the residual term defined by RI = X−A
(k)

IC
S

(k)

IC
(with

IC the indices of the sources outside the block), which is the part of

X to be explained by the sources in the current block I . A
(k)†
I is the

pseudo-inverse of A
(k)
I , the estimate of AI at iteration (k).

2 - The mixing sub-matrix AI is similarly updated with a fixed S:

A
(k)
I = proxJ (.)(RIS

(k)†
I ) (10)

The warm-up stage stops after a given number of iterations. Since the pe-

nalizations are the same as in the refinement stage, the proximal operators

can be computed with the formulae described previously, depending on the

implemented constraints. For S, eq. (6) can be used to enforce sparsity. To

enforce non-negativity and sparsity in some transformed domain, the cheap

update described in section 2.2.1 consisting in composing the proximal oper-

ators of the individual penalizations can be used. For A, equations (7) and

(8) can be used depending on the implemented constraint.

2.2.3. Heuristics for the warm-up stage

In the spirit of GMCA, the bGMCA algorithm exploits heuristics to make

the separation process more robust to initialization, which mainly consists

in making use of a decreasing thresholding strategy. In brief, the entries of

the threshold matrix Λ first start with large values and then decrease along

the iterations towards final values that only depend on the noise level. This

13



stategy has been shown to significantly improve the performances of the sep-

aration process [1, 9] as it provides: i) a better unmixing, ii) an increased

robustness to noise, and iii) an increased robustness to spurious local min-

ima.

In the bGMCA algorithm, this strategy is deployed by first identifying the

coefficients of each source in I that are not statistically consistent with noise.

Assuming that each source is contaminated with a Gaussian noise with stan-

dard deviation σ, this is performed by retaining only the entries whose ampli-

tude is larger than τ σ, where τ ∈ [2, 3]. In practice, the noise standard devi-

ation is estimated empirically using the Median Absolute Deviation (MAD)

estimator. For each source in I, the actual threshold at iteration k is fixed

based on a given percentile of the available coefficients with the largest am-

plitudes. Decreasing the threshold at each iteration is then performed by

linearly increasing the percentage of retained coefficients at each iteration:

Percentage = k
]iterations

× 100.

2.2.4. Convergence

The bGMCA algorithm combines sequentially the above warm-up stage

and the PALM-based refinement stage. Equipped with the decreasing thresh-

olding strategy, it cannot be proved that the warm-up stage neither converges

to a stationary point of eq. (2) nor converges at all. In practice, after con-

secutive iterates, the warm-up stage tends to stabilize. However, it plays

a key role to provide a reasonable starting point, as well as threshold val-

ues Λ for the refinement procedure. In the refinement stage, the thresholds

are computed from the matrices estimated in the warm-up and fixed for the

whole refinement step. Based on the PALM algorithm, and with these fixed
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thresholds, the refinement stage converges to a stationary point of eq. (2).

The convergence is also guaranteed with the proposed block-based strategy,

as long as the blocks are updated following an essentially cyclic rule [20] or

even if they are chosen randomly and updated one by one [21].

2.2.5. Required number of iterations

Intuitively, the required number of iterations should be inversely propor-

tional to r, since only r sources are updated at each iteration, requiring dn/re

times the number of iterations needed by an algorithm using the full matri-

ces. As will be emphasized later on, the number of required iterations will

be smaller than expected, which reduces the computation time.

In the refinement stage, the stopping criterion is based on the angular dis-

tance for each column of A, i.e. the angle between the current column and

that of the previous iteration. Then, the mean over all the columns is taken:

∆ =

∑
j∈[1,n]

∥∥∥A(k)
j �A

(k−1)
j

∥∥∥
1

n
(11)

The stopping criterion itself is then a threshold τ used to stop the algorithm

when ∆ > τ . In addition, we also fixed a maximal number of iterations.

3. Numerical experiments on simulated data

In this part, we present our results on simulated data. The goal is to

show and to explain on simple data how bGMCA works.

3.1. Experimental protocol

The simulated data were generated in the following way:
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Algorithm 1 bGMCA

Warm-up step

for 0 6 k < nmax do

Choose a set of indices I

Estimation of S with a fixed A: S
(k)
I = proxG(.)(A

(k−1)†
I RI )

Estimation of A with a fixed S: A
(k)
I = proxJ (.)(RIS

(k)†
I )

Choice of a new threshold Λ(k) . heuristic - see section 2.2.3

end for

Refinement step

while ∆ > τ and k < nmax do

Choose a set of indices I

S
(k)
I = prox γG(.)∥∥∥∥A(k−1)T

I
A

(k−1)
I

∥∥∥∥
2

S
(k−1)
I − γ∥∥∥∥A(k−1)T

I A
(k−1)
I

∥∥∥∥
2

A
(k−1)T

I (A(k−1)S(k−1) −X)


A

(k)
I = prox δJ (.)∥∥∥∥S(k)

I
S
(k)T

I

∥∥∥∥
2

A
(k−1)
I − δ∥∥∥∥S(k)

I S
(k)T

I

∥∥∥∥
2

(A(k−1)S(k) −X)S
(k)T

I


∆ =

∑
j∈[1,n]

∥∥∥A(k)
j �A

(k−1)
j

∥∥∥
1

n

k = k + 1

end while

return A, S

1 - Source matrix S: the sources are sparse in the sample domain without

requiring any transform (the results would however be identical for

any source sparse in an orthogonal representation). The sources in

S are exactly sparse and drawn randomly according to a Bernoulli-

Gaussian distribution: among the t samples (t = 1, 000), a proportion

p (called sparsity degree—unless specified, p = 0.1) of the samples
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is taken non-zero, with an amplitude drawn according to a standard

normal distribution.

2 - Mixing matrix A: the mixing matrix is drawn randomly according to

a standard normal distribution and modified to have unit columns and

a given condition number Cd (unless specified, Cd = 1).

The number of observations m is taken equal to the number of sources:

m = n. In this first simulation, no noise is added. The algorithm was

launched with 10, 000 iterations. It has to be emphasized that since neither

A nor S are non-negative, the corresponding proximal operators we used

did not enforce non-negativy. Thus, we used soft-thresholding for S and the

oblique constraint for A according to section 2.2.1.

To measure the accuracy of the separation, we followed the definition in [9]

to use a global criterion on A: CA = median(|PA†A∗| − Id), where A∗ is the

true mixing matrix and A is the solution given by the algorithm, corrected

through P for the permutation and scale factors indeterminacies. Id is the

identity matrix. This criterion quantifies the quality of the estimation of the

mixing directions, that is the columns of A. If they are perfectly estimated,

|PA†A∗| is equal to Id and CA = 0. The data matrices being drawn randomly,

each experiment was performed several times (typically 25 times) and the

median of −10 log(CA) over the experiments will be displayed. The logarithm

is used to simplify the reading of the plots despite the high dynamics.

3.2. Modeling block minimization

In this section, a simple model is introduced to describe the behavior of

the bGMCA algorithm. As described in section 2.2, updating a given block

17



is performed at each iteration from the residual RI = X − AICSIC . If the

estimation were perfect, the residual would be equal to the part of the data

explained by the true sources in the current block indexed by I, which would

read: RI = A∗IS
∗
I , A∗ and S∗ being the true matrices.

It is nevertheless mandatory to take into account the noise N, as well as a

variety of flaws in the estimation by adding a term E to model the estimation

error. This entails:

RI = X−AICSIC = A∗IS
∗
I + E + N (12)

A way to further describe the structure of E is to decompose the S matrix

in the true matrix plus an error: SI = S∗I + εI and SIC = S∗IC + εIC , where S

is the estimated matrix, and ε is the error on S∗. Assuming that the errors

are small and neglecting the second-order terms, the residual RI can now be

written as:

RI = X−AICSIC = A∗IS
∗
I + A∗ICS∗IC −AICS∗IC −AICεIC + N (13)

This implies that:

E = (A∗IC −AIC )S∗IC −AICεIC (14)

Equation (14) highlights two terms. The first term can be qualified as inter-

ferences in that it comes from a leakage of the true sources that are outside

the currently updated block. This term vanishes when AIC is perfectly es-

timated. The second term corresponds to interferences as well as artefacts.

It originates indeed from the error on the sources outside the block I. The

artefacts are the errors on the sources induced by the soft thresholding cor-

responding to the `1-norm.
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Equation (14) also allows us to understand how the choice of a given block

size r 6 n will impact the separation process:

- Updating small-size blocks can be recast as a small-size source sepa-

ration problem where the actual number of sources is equal to r. The

residual of the sources that are not part of the block I then plays the

role of extra noise. As testified by Fig. 1, updating small-size block

problems should be easier to tackle.

- Small-size blocks should also yield larger errors E . It is intuitively due

to the fact that many potentially badly estimated sources in IC are used

for the estimation of AI and SI through the residual, deteriorating this

estimation. It can be explained in more details using equation (14):

with more sources in IC , the energy of AIC , A∗IC , S∗IC and εIC increases,

yielding bigger error terms (A∗IC −AIC )S∗IC and −AICεIC . Therefore

the errors E become higher, deteriorating the results.

3.3. Experiment

In this section, we investigate the behavior of the proposed block-based

GMCA algorithm with respect to various parameters such as the block size,

the number of sources, the conditioning of the mixing matrix and the sparsity

level of the sources.

3.3.1. Study of the impact of r and n

In this subsection, bGMCA is evaluated for different numbers of sources

n = 20, 50, 100. Each time the block sizes vary in the range 1 ≤ r ≤ n. In this

experiment and to complete the description of section 3.1, the parameters
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for the matrices generation were: p = 0.1, t = 1, 000, Cd = 1, m = n, with a

Bernoulli-Gaussian distribution for the sources. These results are displayed

in Fig. 2a. Interestingly, three different regimes characterize the behavior of

the bGMCA algorithm:

- For intermediate and relatively large block sizes (typically r > 5 and

r < n − 5): we first observe that after an initial deterioration around

r = 5 , the separation quality does not vary significantly for increasing

block sizes. A degradation of several dB can then be observed for r

close to n. In all this part of the curve, the error term E is composed

of residuals of sparse sources, and thus E will be rather sparse when

the block size is large. Based on the MAD, the thresholds are set

according to dense and not to sparse noise. Consequently the automatic

thresholding strategy of the bGMCA algorithm will not be sensitive to

the estimation errors.

- A very prominent peak can be observed when the block size is of the

order of 3. Interestingly, the maximum yields a mixing matrix crite-

rion of about 10−16, which means that perfect separation is reached

up to numerical errors. This value of 160 dB is at least 80 dB larger

than in the standard case r = n, for which the values for the different

n are all below 80 dB. In this regime, error propagation is composed

of the mixture of a larger number of sparse sources, which eventually

entails a densely distributed contribution that can be measured by the

MAD-based thresholding procedure. Therefore, the threshold used to

estimate the sources is able to filter out both the noise and the estima-

tion errors. Moreover, r = 5 is quite small compared to n. Following
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the modeling introduced in section 3.2, small block sizes can be recast as

a sequence of low-dimensional blind source separation problems, which

are simpler to solve.

- For small block sizes (typically r < 4), the separation quality is deteri-

orated when the block size decreases, especially for large n values. In

this regime, the level of estimation error E becomes large, which en-

tails large values for the thresholds Λ. Consequently, the bias induced

by the soft-thresholding operator increases, which eventually hampers

the performance quality. Furthermore, for a fixed block size r, E in-

creases with the number of sources n, making this phenomenon more

pronounced for higher n values.

3.3.2. Condition number of the mixing matrix

In this section, we investigate the role played by the conditioning of the

mixing matrix on the performances of the bGMCA algorithm. Fig. 2b dis-

plays the empirical results for several condition numbers Cd of the A matrix.

There are n = 50 sources generated in the same way as in the previous ex-

periment: with a Bernoulli-Gaussian distribution and p = 0.1, t = 1, 000.

One can observe that when Cd increases, the peak present for r close to 5

tends to be flattened, which is probably due to higher projection errors. At

some iteration k, the sources are estimated by projecting X − AIcSIc onto

the subspace spanned by AI . In the orthogonal case, the projection error is

low since AIc and AI are close to orthogonality at the solution. However,

this error increases with the condition number Cd.
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(a) Number of sources.

(b) Condition number.

Figure 2: Left: mixing matrix criterion as a function of r for different n. Right: mixing

matrix criterion as a function of r for different Cd.
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Figure 3: Mixing matrix criterion as a function of r for different sparsity degrees.

3.3.3. Sparsity level p

In this section, the impact of the sparsity level of the sources is inves-

tigated. The sources are still following a Bernoulli-Gaussian distribution.

The parameters are: n = 50, t = 1, 000, Cd = 1. As featured in Figure 3,

the separation performances at the maximum value decrease slightly with

larger p, while a slow shift of the transition between the small/large block

size regimes towards larger block sizes operates. Furthermore, the results

tend to deteriorate quickly for small block sizes (r < 4). Indeed, owing to

the model of subsection 3.2, the contribution of S∗IC and εIC in the error

term (14) increases with p, this effect being even more important for small r

(which could also explain the shift of the peak for p = 0.3, by a deterioration

of the results at its beginning, r = 3). When p increases, the sources in SI

become denser. Instead of being mainly sensitive to the noise and E , the

MAD-based thresholding tends to be perturbated by SI , resulting in more
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artefacts, which eventually hampers the separation performances. This effect

increases when the sparsity level of the sources decreases.

3.3.4. Complexity and computation time

Figure 4: Right: number of iterations in logarithmic scale as a function of r.

Beyond improving the separation performances, the use of small block

sizes decreases the computational cost of each iteration of the bGMCA algo-

rithm. Since it is iterative, the final running time will depend on both the

complexity of each iteration and of the number of iterations. In this part,

we focus only on the warm-up stage, which is empirically the most com-

putationally expensive stage. Each iteration of the warm-up stage can be

decomposed into the following elementary steps: i) a residual term is com-

puted with a complexity of O(mtr), where m is the number of observations,

t the number of samples and r the block size; ii) the pseudo-inverse is per-

formed with the singular value decomposition of a r × r matrix, which yield

an overall complexity of O(r3 + r2m + m2r); iii) the thresholding-strategy
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first requires the evaluation of the threshold values, which has a complexity

of rt; iv) then the soft-thresholding step which has complexity O(rt); and v)

updating A is finally performed using a conjugate gradient algorithm, whose

complexity is known to depend on the number of non-zero entries in S and

on the condition of this matrix Cd(S). An upperbound for this complexity is

thus O(rt
√
Cd(S)). The final estimate of the complexity of a single iteration

is finally given by:

r[mt+ rm+m2 + r2 + t
√
Cd(S)] (15)

With Cd(S) the conditioning number of S. Thus, both the r factor and the

behavior in r3 show that small r values will lower the computational budget

of each iteration. We further assess the actual number of iterations required

by the warm-up stage to yield a good initialization. To this end, the following

experiment has been conducted:

1. First, the algorithm is launched with a large number of iterations (e.g.

10000) to give a good initialization for the A and S matrices. The

corresponding value of CA is saved and called C∗A.

2. Using the same initial conditions, the warm-up stage is re-launched and

stops when the mixing matrix criterion reaches 1.05 × C∗A (i.e. 5% of

the “optimal”initialization for a given setting).

The number of iterations needed to reach the 5% accuracy is reported in

Fig. 4. Intuitively, one would expect that when the block size decreases,

the required number of iterations should increase by about n/r to keep the

number of updates per source constant. This trend is displayed with the
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straight curve of Fig. 4. Interestingly, Fig. 4 shows that the actual number

of iterations to reach the 5% accuracy criterion almost does not vary with r.

Consequently, on top of leading to computationally cheaper iterations, using

small block sizes does not require more iterations for the warm-up stage to

give a good initialization. Therefore, the use of blocks allows a huge decrease

of the computational cost of the warm-up stage and thus of sparse BSS.

4. Experiment using realistic sources

4.1. Context

The goal of this part is to evaluate the behavior of bGMCA and show its

efficiency in a more realistic setting. Our data come from a simulated LC -

1H NMR (Liquid Chromatography - 1H Nuclear Magnetic Resonance) exper-

iment. The objective of such a experiment is to identify each of the chemicals

compounds present in a fluid, as well as their concentrations. The LC - 1H

NMR experiment enables a first physical imperfect separation during which

the fluid goes through a chromatography column and its chemicals are sep-

arated according to their speeds (which themselves depend on their physical

properties). Then, the spectrum of the output of the column is measured at

a given time frequency. These measurements of the spectra at different times

can be used to feed a bGMCA algorithm to refine the imperfect physical sep-

aration.

The fluids on which we worked could for instance correspond to drinks. The

goal of bGMCA is then to identify the spectra of each compound (e.g. caffein,

saccharose, menthone...) and the mixing coefficients (which are proportional

to their concentrations) from the LC - 1H NMR data. BSS has already been
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successfully applied [22] to similar problems but generally with lower number

of sources n.

The sources (40 sources with each 10, 000 samples) are composed of elemen-

tary sparse non-negative theoretical spectra of chemical compounds taken

from the SDBS database1, which are further convolved with a Laplacian

having a width of 3 samples to simulate a given spectral resolution. There-

fore, each convolved source becomes an approximately sparse non-negative

row of S. The mixing matrix A of size (m,n) = (320,40) is composed of

Gaussians (see Fig. 5), the objective being to have a matrix that could be

consistent with the first imperfect physical separation. It is designed in two

parts: the first columns have relatively spaced Gaussian means while the

others have a larger overlap to simulate compounds for which the physical

separation is less discriminative. More precisely, an index m̄ ∈ [1,m] is

chosen, with m̄ > m/2 (typically, m̄ = d0.75me). A set of bn/2c indices

(mk)k=1...bn/2c is then uniformly chosen in [0, m̄] and another set of dn/2e in-

dices (mk)k=dn/2e...n is chosen in [m̄+1,m]. Each column of A is then created

as a Gaussian whose mean is mk. Monte-carlo simulations have been carried

out by randomly assigning the sources and the mixing matrix columns. The

median over the results of the different experiments will be displayed.

4.2. Experiments

There are two main differences with the previous experiments of section 3:

i) the sources are sparse in the undecimated wavelet domain ΦS, which is

1 National Institute of Advanced Industrial Science and Technology (AIST), Spectral

database for organic compounds: http://sdbs.db.aist.go.jp
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Figure 5: Exemple of A matrix with 8 columns: the four first columns have spaced means,

while the last ones are more correlated

chosen as the starlet transform [23] in the following, and ii) the non-negativity

of S and A is enforced. Fig. 6 (left) displays the evolution of the mixing

matrix criterion with varying block sizes with and without the non-negativity

constraints. The algorithm was launched with 2, 000 iterations.

These results show that non-negativity yields a huge improvement for all

block sizes r, which is expected since the problem is more constrained. This

is probably due to the fact that all the small negative coefficients are set to 0,

thus artificially allowing lower thresholds and therefore less artefacts. This

is especially advantageous in the present context with very low noise2 (the

2Depending on the instrumentation, high SNR values can be reached in such an exper-

iment
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Figure 6: Left: mixing criterion on realistic sources, with and without a non-negativity

constraint. Right: example of a retrieved source, which is almost perfectly superimposed

on the true source, therefore showing the quality of the results.

Signal to Noise Ratio - SNR - has a value of 120 dB) where the thresholds

do not need to be high to remove noise.

Furthermore, the separation quality tends to be constant for r ≥ 10. In

this particular setting, non-negativity helps curing the failure of sparse BSS
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when large blocks are used. However, using smaller block sizes still allows

reducing the computation cost while preserving the separation quality. The

bGMCA with non-negativity also compares favorably with respect to other

tested standard BSS methods (cf. Section 1 for more details), yielding better

results for all values of r. In particular, it is always better than HALS,

which also uses non-negativity. As an illustration, a single original source is

displayed in the right panel of Fig. 6 after its convolution with a Laplacian.

Its estimation using bGMCA with a non-negativity constraint is plotted in

dashed line on the same graph, showing the high separation quality because

of the nearly perfect overlap between the two curves. Both sources are drawn

in the direct domain.

The robustness of the bGMCA algorithm with respect to additive Gaus-

sian noise has further been tested. Fig. 7 reports the evolution of the mixing

matrix criterion for varying values of the signal-to-noise ratio. It can be

observed that bGMCA yields the best performances for all values of SNR.

Although it seems to particularly benefit from high SNR compared to HALS

and EFICA, it still yields better results than the other algorithms for low

SNR despite the small block size used (r = 10), which could have been

particularly prone to error propagations.

Conclusion

While being central in numerous applications, tackling sparse BSS prob-

lems when the number of sources is large is highly challenging. In this ar-

ticle, we describe the block-GMCA algorithm, which is specifically tailored

to solve sparse BSS in the large-scale regime. In this setting, the minimiza-

30



Figure 7: Mixing criterion on realistic sources, using a non-negative constraint with r =

10

tion strategy plays a key role in the robustness of BSS methods due to the

non-convex nature of the problem. Therefore, and in contrast to the state-of-

the-art algorithms, bGMCA builds upon block-coordinate optimization with

intermediate-size blocks. Experiments on exactly sparse simulated data and a

model presented in this work hightlight the mechanisms improving the results

over the full block version, which can potentially lead to some numerically

perfect separations. Furthermore, comparisons have been carried on simu-

lated spectroscopic data, which demonstrate the reliability of the proposed

algorithm in a realistic setting and its superior performances for high SNR.

All the numerical comparisons conducted show that bGMCA performs at

least as well as standard sparse BSS on mixtures of a high number of sources

and most of the experiments even show dramatically enhanced separation

performances. As a byproduct, the proposed block-based strategy yields a

significant decrease of the computational cost of the separation process.
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Appendix

Definition of proximal operators

The proximal operator of an extended-valued proper and lower semi-

continuous convex function f : Rn → (−∞,∞] is defined as:

proxf (v) = argminx(f(x) +
1

2
‖x− v‖2

2) (16)

Definition of the soft thresholding operator

The soft thresholding operator Sλ(.) is defined as:

∀M,∀i ∈ [1, n],∀j ∈ [1,m],Sλ(Mij) =

 Mij − λ× sign(Mij) if |Mj| > λ

0 otherwise

(17)

Definition of the projection of the columns of a matrix M on the `2 ball

∀M ∈ Rm×n,∀j ∈ [1, n],Π‖.‖261(Mj) =

 Mj if ‖Mj‖2 6 1

Mj/ ‖Mj‖2 otherwise

(18)

Definition of the projection of a matrix M on the positive orthant K+

∀M ∈ Rm×n,∀i ∈ [1,m],∀j ∈ [1, n],ΠK+(Mij) =

 Mij if Mij > 0

0 otherwise

(19)
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