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Quadric Conformal Geometric Algebra of R9,6

Stéphane Breuils, Vincent Nozick, Akihiro
Sugimoto and Eckhard Hitzer

Abstract. Geometric Algebra can be understood as a set of tools to
represent, construct and transform geometric objects. Some Geometric
Algebras like the well-defined Conformal Geometric Algebra constructs
lines, circles, planes, and spheres from control points just by using the
outer product. There exist some Geometric Algebras to handle more
complex objects such as quadric surfaces; however in this case, none
of them is known to build quadric surfaces from control points. This
paper presents a novel Geometric Algebra framework, the Geometric
Algebra of R9,6, to deal with quadric surfaces where an arbitrary quadric
surface is constructed by the mere wedge of nine points. The proposed
framework enables us not only to intuitively represent quadric surfaces
but also to construct objects using Conformal Geometric Algebra. Our
proposed framework also provides the computation of the intersection of
quadric surfaces, the normal vector, and the tangent plane of a quadric
surface.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary
00A00.

Keywords. Quadrics, Geometric Algebra, Conformal Geometric Algebra,
Clifford Algebra.

1. Introduction

Geometric Algebra provides useful and, more importantly, intuitively under-
standable tools to represent, construct and manipulate geometric objects.
Intensively explored by physicists, Geometric Algebra has been applied in
quantum mechanics and electromagnetism [3]. Geometric Algebra has also
found some interesting applications in data manipulation for Geographic In-
formation Systems (GIS) [13]. More recently, it turns out that Geometric
Algebra can be applied even in computer graphics, either to basic geomet-
ric primitive manipulations [17] or to more complex illumination processes
as in [14] where spherical harmonics are substituted by Geometric Algebra
entities.
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This paper presents a Geometric Algebra framework to handle quadric
surfaces which can be applied to detect collision in computer graphics, and to
calibrate omnidirectional cameras, usually embedding a mirror with a quadric
surface, in computer vision. Handling quadric surfaces in Geometric Algebra
requires a high dimensional space to work as seen in subsequent sections. Nev-
ertheless, no low-dimensional Geometric Algebra framework is yet introduced
that handles general orientation quadric surfaces and their construction using
contact points.

1.1. High dimensional Geometric Algebras

Following Conformal Geometric Algebra (CGA) and its well-defined proper-
ties [5], the Geometric Algebra community recently started to explore new
frameworks that work in higher dimensional spaces. The motivation for this
direction is to increase the dimension of the relevant Euclidean space (Rn
with n > 3) and/or to investigate more complex geometric objects.

The Geometric Algebra of Rp,q is denoted by Gp,q where p is the number
of basis vectors squared to +1 and q is that of basis vectors squared to −1.
Then, the CGA of R3 is denoted by G4,1. Extending from dimension 5 to 6
leads to G3,3 defining either 3D projective geometry (see Dorst [4]) or line
geometry (see Klawitter [12]). Conics in R2 are represented by the conic
space of Perwass [16] with G5,3. Conics in R2 are also defined by the Double
Conformal Geometric Algebra (DCGA) with G6,2 introduced by Easter and
Hitzer [8]. DCGA is extended to handle cubic curves (and some other even
higher order curves) in the Triple Conformal Geometric Algebra with G9,3 [9]
and in the Double Conformal Space-Time Algebra with G4,8 [7]. We note that
the dimension of the algebras generated by any n-dimensional vector spaces
(n = p + q) grows exponentially as they have 2n basis elements. Although
most multivectors are extremely sparse, very few implementations exist that
can handle high dimensional Geometric Algebras. This problem is discussed
further in Section 7.2.

1.2. Geometric Algebra and quadric surfaces

A framework to handle quadric surfaces was introduced by Zamora [18] for the
first time. Though this framework constructs a quadric surface from control
points, it supports only axis-aligned quadric surfaces.

There exist two main Geometric Algebra frameworks to manipulate gen-
eral quadric surfaces.

On one hand, DCGA with G8,2, defined by Easter and Hitzer [8], con-
structs quadric and more general surfaces from their implicit equation coeffi-
cients specified by the user. A quadric (torus, Dupin- or Darboux cyclide) is
represented by a bivector containing 15 coefficients that are required to con-
struct the implicit equation of the surface. This framework preserves many
properties of CGA and thus supports not only object transformations using
versors but also differential operators. However, it is incapable of handling
the intersection between two general quadrics and, to our best knowledge,
cannot construct general quadric surfaces from control points.
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On the other hand, quadric surfaces are also represented in a frame-
work of G4,4 as first introduced by Parkin [15] and developed further by Du
et al. [6]. Since this framework is based on a duplication of the projective
geometry of R3, it is referred to as Double Perspective Geometric Algebra
(DPGA) hereafter. DPGA represents quadric surfaces by bivector entities.
The quadric expression, however, comes from a so-called “sandwiching” du-
plication of the product. DPGA handles quadric intersection and conics. It
also handles versors transformations. However, to our best knowledge, it can-
not construct general quadric surfaces from control points. This incapability
seems true because, for example, wedging 9 control points together in this
space results in 0 due to its vector space dimension.

1.3. Contributions

Our proposed framework, referred to as Quadric Conformal Geometric Al-
gebra (QCGA) hereafter, is a new type of CGA, specifically dedicated to
quadric surfaces. Through generalizing the conic construction in R2 by Per-
wass [16], QCGA is capable of constructing quadric surfaces using either
control points or implicit equations. Moreover, QCGA can compute the in-
tersection of quadric surfaces, the surface tangent, and normal vectors for a
quadric surface point.

1.4. Notation

We use the following notation throughout the paper. Lower-case bold letters
denote basis blades and multivectors (multivector a). Italic lower-case letters
refer to multivector components (a1, x, y

2, · · · ). For example, ai is the ith

coordinate of the multivector a. Constant scalars are denoted using lower-
case default text font (constant radius r). The superscript star used in x∗

represents the dualization of the multivector x. Finally, subscript ε on xε
refers to the Euclidean vector associated with the point x of QCGA.

Note that in geometric algebra, the inner product, contractions and
outer product have priority over the full geometric product. For instance,
a ∧ bI = (a ∧ b)I.

2. QCGA definition

This section introduces QCGA. We specify its basis vectors and give the
definition of a point.

2.1. QCGA basis and metric

The QCGA G9,6 is defined over a 15-dimensional vector space. The base
vectors of the space R9,6 are basically divided into three groups: {e1, e2, e3}
(corresponding to the Euclidean vectors in R3), {eo1, eo2, eo3, eo4, eo5, eo6},
and {e∞1, e∞2, e∞3, e∞4, e∞5, e∞6}. The inner products between them are
as defined in Table 1.

For some computation constraints, a diagonal metric matrix may be
required. The orthonormal vector basis of R9,6 with the Euclidean basis
{e1, e2, e3}, and 6 basis vectors {e+1, e+2, e+3, e+4, e+5, e+6} each of which
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Table 1. Inner product between QCGA basis vectors.
e1 e2 e3 eo1 e∞1 eo2 e∞2 eo3 e∞3 eo4 e∞4 eo5 e∞5 eo6 e∞6

e1 1 0 0 · · · · · · · · · · · ·
e2 0 1 0 · · · · · · · · · · · ·
e3 0 0 1 · · · · · · · · · · · ·
eo1 · · · 0 −1 · · · · · · · · · ·
e∞1 · · · −1 0 · · · · · · · · · ·
eo2 · · · · · 0 −1 · · · · · · · ·
e∞2 · · · · · −1 0 · · · · · · · ·
eo3 · · · · · · · 0 −1 · · · · · ·
e∞3 · · · · · · · −1 0 · · · · · ·
eo4 · · · · · · · · · 0 −1 · · · ·
e∞4 · · · · · · · · · −1 0 · · · ·
eo5 · · · · · · · · · · · 0 −1 · ·
e∞5 · · · · · · · · · · · −1 0 · ·
eo6 · · · · · · · · · · · · · 0 −1
e∞6 · · · · · · · · · · · · · −1 0

squares to +1 along with six other basis vectors {e−1, e−2, e−1, e−4, e−5, e−6}
each of which squares to −1 corresponds to a diagonal metric matrix. The
transformation from the original basis to this new basis (with diagonal met-
ric) can be defined as follows:

e∞i = e+i + e−i, eoi =
1

2
(e−i − e+i), i ∈ {1, · · · , 6}. (2.1)

For clarity, we also define the 6-blades

I∞= e∞1 ∧ e∞2 ∧ e∞3 ∧ e∞4 ∧ e∞5 ∧ e∞6,

Io = eo1 ∧ eo2 ∧ eo3 ∧ eo4 ∧ eo5 ∧ eo6,
(2.2)

the 5-blades

IB∞= (e∞1 − e∞2) ∧ (e∞2 − e∞3) ∧ e∞4 ∧ e∞5 ∧ e∞6,

IBo = (eo1 − eo2) ∧ (eo2 − eo3) ∧ eo4 ∧ eo5 ∧ eo6,
(2.3)

the pseudo-scalar of R3

Iε = e1 ∧ e2 ∧ e3, (2.4)

and the pseudo-scalar

I = Iε ∧ I∞ ∧ Io. (2.5)

The inverse of the pseudo-scalar results in

I−1 = −I. (2.6)

The dual of a multivector indicates division by the pseudo-scalar, e.g., a∗ =
−aI, a = a∗I. From eq. (1.19) in [10], we have the useful duality between
outer and inner products of non-scalar blades a and b in Geometric Algebra:

(a ∧ b)∗ = a · b∗, a ∧ (b∗) = (a · b)∗, a ∧ (bI) = (a · b)I, (2.7)

which indicates that

a ∧ b = 0 ⇔ a · b∗ = 0, a · b = 0 ⇔ a ∧ b∗ = 0. (2.8)
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2.2. Point in QCGA

The point x of QCGA corresponding to the Euclidean point xε = xe1+ye2+
ze3 ∈ R3 is defined as

x = xε+
1
2 (x2e∞1+y2e∞2+z2e∞3)+xye∞4+xze∞5+yze∞6+eo1+eo2+eo3.

(2.9)
Note that the null vectors eo4, eo5, eo6 are not present in the definition of
the point. This is merely to keep the convenient properties of CGA points,
namely, the inner product between two points is identical with the squared
distance between them. Let x1 and x2 be two points, their inner product is

x1 · x2 =
(
x1e1 + y1e2 + z1e3 +

1

2
x21e∞1 +

1

2
y21e∞2 +

1

2
z21e∞3

+ x1y1e∞4 + x1z1e∞5 + y1z1e∞6 + eo1 + eo2 + eo3

)
·(

x2e1 + y2e2 + z2e3 +
1

2
x22e∞1 +

1

2
y22e∞2 +

1

2
z22e∞3

+ x2y2e∞4 + x2z2e∞5 + y2z2e∞6 + eo1 + eo2 + eo3

)
. (2.10)

from which together with Table 1, it follows that

x1 · x2 =
(
x1x2 + y1y2 + z1z2 −

1

2
x21 −

1

2
x22 −

1

2
y21 −

1

2
y22 −

1

2
z21 −

1

2
z22

)
= −1

2
‖x1ε − x2ε‖2 . (2.11)

We see that the inner product is equivalent to minus half the squared Eu-
clidean distance between x1 and x2.

3. QCGA objects

QCGA is an extension of CGA, thus the objects defined in CGA are also
defined in QCGA. The following sections explore the plane, the line, and
the sphere to show their definitions in QCGA, and similarity between these
objects in CGA and their counterparts in QCGA.

3.1. Plane

3.1.1. Primal plane. As in CGA, a plane π in QCGA is computed using the
wedge of three linearly independent points x1, x2, and x3 on the plane:

π = x1 ∧ x2 ∧ x3 ∧ I∞ ∧ IBo . (3.1)

The multivector π corresponds to the primal form of a plane in QCGA, with
grade 14, composed of six components. The eo2o3, eo1o3, eo1o2 components
have the same coefficient and can thus be factorized, resulting in a form
defined with only four coefficients xn, yn, zn and h:

π =
(

xne23 − yne13 + zne12

)
I∞ ∧ Io

+
h

3
e123I∞ ∧

(
eo2o3 − eo1o3 + eo1o2

)
∧ eo4o5o6. (3.2)
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Proposition 3.1. A point x with Euclidean coordinates xε lies on the plane π
iff x ∧ π = 0.

Proof.

x ∧ π =
(
xe1 + ye2 + ze3 +

1

2
x2e∞1 +

1

2
y2e∞2 +

1

2
z2e∞3

+ xye∞4 + xze∞5 + yze∞6 + eo1 + eo2 + eo3

)
∧
(

(xne23 − yne13 + zne12)I∞ ∧ Io

+
h

3
e123I∞ ∧ (eo2o3 − eo1o3 + eo1o2) ∧ eo4o5o6

)
. (3.3)

Using distributivity and anticommutativity of the outer product, we obtain

x ∧ π =
(
xxn + yyn + zzn −

1

3
h(1 + 1 + 1)

)
I

=
(
xxn + yyn + zzn − h

)
I

= (xε · nε − h) I, (3.4)

which corresponds to the Hessian form of the plane with Euclidean normal
nε = xne1 + yne2 + zne3 and with orthogonal distance h from the origin. �

3.1.2. Dual plane. The dualization of the primal form of the plane is

π∗ = nε +
1

3
h(e∞1 + e∞2 + e∞3). (3.5)

Proposition 3.2. A point x with Euclidean coordinates xε lies on the dual
plane π∗ iff x · π∗ = 0.

Proof. Consequence of (2.8). �

Because of (2.11), a plane can also be obtained as the bisection plane of two
points x1 and x2 in a similar way as in CGA.

Proposition 3.3. The dual plane π∗ = x1−x2 is the dual orthogonal bisecting
plane between the points x1 and x2.

Proof. From Proposition 3.2, every point x on π∗ satisfies x · π∗ = 0,

x · (x1 − x2) = x · x1 − x · x2 = 0. (3.6)

As seen in (2.11), the inner product between two points results in the squared
Euclidean distance between the two points. We thus have

x · (x1 − x2) = 0 ⇔ ‖xε − x1ε‖2 = ‖xε − x2ε‖2 . (3.7)

This corresponds to the equation of the orthogonal bisecting dual plane be-
tween x1ε and x2ε. �
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3.2. Line

3.2.1. Primal line. A primal line l is a 13-vector constructed from two linearly
independent points x1 and x2 as follows:

l = x1 ∧ x2 ∧ I∞ ∧ IBo . (3.8)

The outer product between the 6−vector I∞ and the two points x1 and x2

removes all their e∞i components (i ∈ {1, · · · , 6}). Accordingly, they can be
reduced to x1 = (eo1 + eo2 + eo3 + xε1) and x2 = (eo1 + eo2 + eo3 + xε2)
respectively. For clarity, (3.8) is simplified “in advance” as

l = x1 ∧ (eo1 + eo2 + eo3 + xε2) ∧ I∞ ∧ (eo1 − eo2) ∧ (eo2 − eo3) ∧ eo4o5o6

= x1 ∧ (xε2 ∧ (eo1 − eo2) ∧ (eo2 − eo3) + 3eo1 ∧ eo2 ∧ eo3) ∧ I∞ ∧ eo4o5o6

=
(
3eo1 ∧ eo2 ∧ eo3 ∧ (xε2 − xε1) + xε1 ∧ xε2 ∧ (eo1 − eo2) ∧ (eo2 − eo3)

)
∧ I∞ ∧ eo4o5o6. (3.9)

Setting uε = xε2 − xε1 and vε = xε1 ∧ xε2 gives

l =
(
3eo1 ∧ eo2 ∧ eo3 ∧ uε + vε ∧ (eo1o2 − eo1o3 + eo2o3)

)
∧ I∞ ∧ eo4o5o6

= −3uε I∞ ∧ Io + vε I∞ ∧ IBo . (3.10)

Note that uε and vε correspond to the 6 Plücker coefficients of a line in R3.
More precisely, uε is the support vector of the line and vε is its moment.

Proposition 3.4. A point x with Euclidean coordinates xε lies on the line l iff
x ∧ l = 0.

Proof.

x ∧ l = (xε + eo1 + eo2 + eo3) ∧ (−3uε I∞ ∧ Io + vε I∞ ∧ IBo )

= −3xε ∧ uε I∞ ∧ Io + xε ∧ vε I∞ ∧ IBo + vε I∞ ∧
(
(eo1 + eo2 + eo3) ∧ IBo

)
= −3(xε ∧ uε − vε) I∞ ∧ Io + xε ∧ vε I∞ ∧ IBo . (3.11)

The 6-blade I∞∧Io and the 5-blade I∞∧IBo are linearly independent. There-
fore, x ∧ l = 0 yields

x ∧ l = 0⇔
{

xε ∧ uε= vε,
xε ∧ vε= 0.

(3.12)

As xε,uε and vε are Euclidean entities, (3.12) corresponds to the Plücker
equations of a line [11]. �

3.2.2. Dual line. Dualizing the entity l consists in computing with duals:

l∗ = (−3uε I∞ ∧ Io + vε I∞ ∧ IBo )(−I)
= 3uε Iε + (e∞3 + e∞2 + e∞1) ∧ vε Iε. (3.13)

Proposition 3.5. A point x lies on the dual line l∗ iff x · l∗ = 0.

Proof. Consequence of (2.8). �

Note that a dual line l∗ can also be constructed from the intersection of two
dual planes as follows:

l∗ = π∗1 ∧ π∗2 . (3.14)
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3.3. Sphere

3.3.1. Primal sphere. We define a sphere s using four points as the 14-blade

s = x1 ∧ x2 ∧ x3 ∧ x4 ∧ IB∞ ∧ IBo . (3.15)

The outer product of the points with IB∞ removes all e∞4, e∞5, e∞6 compo-
nents of these points, i.e., the cross terms (xy, xz, and yz). The same remark
holds for IBo and eo4, eo5, eo6. For clarity, we omit these terms below. We thus
have

s = x1∧x2∧x3∧
(1

2
(x24e∞1+y24e∞2+z24e∞3)IB∞∧IBo −3IB∞∧Io+x4εI

B
∞∧IBo

)
.

(3.16)

Note the similarities with a CGA point x4ε + eo + 1
2 ‖x4ε‖2 e∞. Then, the

explicit outer product with x3 gives:

s =x1 ∧ x2 ∧ (x3ε ∧ x4εI
B
o ∧ IB∞ + 3(x3ε − x4ε)Io ∧ IB∞

+
1

2
‖x4ε‖2 x3εI∞ ∧ IBo −

1

2
‖x3ε‖2 x4εI∞ ∧ IBo (3.17)

+
3

2
(‖x4ε‖2 − ‖x3ε‖2)Io ∧ I∞.

Again we remark that the resulting entity has striking similarities with a
point pair of CGA. More precisely, let cε be the Euclidean midpoint between
the two entities x3 and x4, dε be the unit vector from x3 to x4, and r be half
of the Euclidean distance between the two points in exactly the same way
as Hitzer et al in [10], namely

2r = |x3ε − x4ε| , dε =
x3ε − x4ε

2r
, cε =

x3ε + x4ε

2
. (3.18)

Then, (3.17) can be rewritten by

s =x1 ∧ x2

∧ 2r
(
dε ∧ cε I

B
o ∧ IB∞ (3.19)

+ 3dε Io ∧ IB∞ +
1

2

(
(c2ε + r2)dε − 2cεcε · dε

)
I∞ ∧ IBo

)
.

The bottom part corresponds to a point pair, as defined in [10], that belongs
to the round object family. Applying the same development to the two points
x1 and x2 again results in round objects:

s = −1

6

(
‖xcε‖2− r2

)
Iε∧ I∞∧ IBo +e123∧ IB∞∧ Io+ (xcεIε)∧ I∞∧ Io. (3.20)

Note that xcε corresponds to the center point of the sphere and r to its radius.
It can be further simplified into

s =
(
x′c −

1

6
r2(e∞1 + e∞2 + e∞3)

)
I, (3.21)

which is dualized to

s∗ = x′c −
1

6
r2(e∞1 + e∞2 + e∞3), (3.22)

where x′c corresponds to xc without the cross terms xy, xz, yz. Since a QCGA
point has no eo4, eo5, eo6 components, building a sphere with these cross terms
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is also valid. However, inserting these cross terms (that actually do not appear
in the primal form) raises some issues in computing intersections with other
objects.

Proposition 3.6. A point x lies on the sphere s iff x ∧ s = 0.

Proof. Since the components e∞4, e∞5 and e∞6 of x are removed by the
outer product with s of (3.17), we ignore them to obtain

x ∧ s = x ∧ (s∗I) = x · s∗ I (3.23)

=
(
xε + eo1 + eo2 + eo3 +

1

2
x2e∞1 +

1

2
y2e∞2 +

1

2
z2e∞3

)
(3.24)

·
(
x′c −

1

6
r2(e∞1 + e∞2 + e∞3)

)
I,

which can be rewritten by

x ∧ s =

(
xxc + yyc + zzc −

(1

2
x2
c −

1

6
r2
)
−
(1

2
y2
c −

1

6
r2
)
−
(1

2
z2c −

1

6
r2
)

− 1

2
x2 − 1

2
y2 − 1

2
z2
)
I = 0. (3.25)

This can take a more compact form defining a sphere

(x− xc)
2 + (y − yc)

2 + (z − zc)
2 = r2. (3.26)

�

3.3.2. Dual sphere. The dualization of the primal sphere s gives:

s∗ = x′c −
1

6
r2(e∞1 + e∞2 + e∞3). (3.27)

Proposition 3.7. A point x lies on the dual sphere s∗ iff x · s∗ = 0.

Proof. Consequence of (2.8). �

4. Quadric surfaces

This section describes how QCGA handles quadric surfaces. All QCGA ob-
jects defined in Section 3 become thus part of a more general framework.

4.1. Primal quadric surfaces

The implicit formula of a quadric surface in R3 is

F (x, y, z) = ax2 + by2 + cz2 + dxy+ exz + fyz + gx+ hy+ iz + j = 0. (4.1)

A quadric surface is constructed by wedging 9 points together with 5 null
basis vectors as follows

q = x1 ∧ x2 ∧ · · · ∧ x9 ∧ IBo . (4.2)
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The multivector q corresponds to the primal form of a quadric surface with
grade 14 and 12 components. Again 3 of these components have the same co-
efficient and can be combined together into the form defined by 10 coefficients
a, b, . . . , j, as in

q = e123

((
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
· I∞

)
∧ Io

+
(
ge1 + he2 + ie3

)
e123 I∞ ∧ Io +

j

3
e123 I∞ ∧

(
(e∞1 + e∞2 + e∞3) · Io

)
=

(
−
(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
+
(
ge1 + he2 + ie3

)
− j

3

(
e∞1 + e∞2 + e∞3

))
I = q∗I, (4.3)

where in the second equality we used the duality property. The expression
for the dual quadric vector is therefore

q∗ = −
(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
+
(
ge1 + he2 + ie3

)
− j

3
(e∞1 + e∞2 + e∞3). (4.4)

Proposition 4.1. A point x lies on the quadric surface q iff x ∧ q = 0.

Proof.

x ∧ q = x ∧ (q∗I) = (x · q∗)I

=

(
x ·
(
−
(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
+
(
ge1 + he2 + ie3

)
− j

3
(e∞1 + e∞2 + e∞3)

))
I

=
(
ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j

)
I. (4.5)

This corresponds to the formula (4.1) representing a general quadric surface.
�

4.2. Dual quadric surfaces

The dualization of a primal quadric surface leads to the 1-vector dual quadric
surface q∗ of (4.4). We have the following proposition whose proof is a con-
sequence of (2.8).

Proposition 4.2. A point x lies on the dual quadric surface q∗ iff x · q∗ = 0.

5. Normals and tangents

This section presents the computation of the normal Euclidean vector nε
and the tangent plane π∗ of a point x (associated to the Euclidean point
xε = xe1 + ye2 + ye3) on a dual quadric surface q∗. The implicit formula of
the dual quadric surface is considered as the following scalar field

F (x, y, z) = x · q∗. (5.1)
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The normal vector nε of a point x is computed as the gradient of the implicit
surface (scalar field) at x:

nε = ∇F (x, y, z) =
∂F (x, y, z)

∂x
e1 +

∂F (x, y, z)

∂y
e2 +

∂F (x, y, z)

∂z
e3. (5.2)

Since the partial derivative with respect to the x component is defined by

∂F (x, y, z)

∂x
= lim
h7→0

F (x+ h, y, z)− F (x, y, z)

h
, (5.3)

we have
∂F (x, y, z)

∂x
= lim
h 7→0

x2 · q∗ − x · q∗

h
=
(

lim
h7→0

x2 − x

h

)
· q∗, (5.4)

where x2 is the point obtained by translating x along the x-axis by the
value h. Note that x2 − x represents the dual orthogonal bisecting plane
spanned by x2 and x (see Proposition 3.3). Accordingly, we have

lim
h7→0

x2 − x

h
= xe∞1 + ye∞4 + ze∞5 + e1

= (x · e1)e∞1 + (x · e2)e∞4 + (x · e3)e∞5 + e1. (5.5)

This argument can also be applied to the partial derivative with respect to
the y and z components. Therefore, we obtain

nε =
((

(x · e1)e∞1 + (x · e2)e∞4 + (x · e3)e∞5 + e1
)
· q∗
)
e1

+
((

(x · e2)e∞2 + (x · e1)e∞4 + (x · e3)e∞6 + e2
)
· q∗
)
e2

+
((

(x · e3)e∞3 + (x · e1)e∞5 + (x · e2)e∞6 + e3
)
· q∗
)
e3. (5.6)

On the other hand, the tangent plane at a surface point x can be com-
puted from the Euclidean normal vector nε and the point x. Since the plane
orthogonal distance from the origin is

√
−2(eo1 + eo3 + eo3) · x, the tangent

plane π∗ is obtained as

π∗ = nε +
1

3

(
e∞1 + e∞2 + e∞3

)√
−2(eo1 + eo3 + eo3) · x. (5.7)

6. Intersections

Let us consider two geometric objects corresponding to dual quadrics1 a∗

and b∗. Assuming that the two objects are linearly independent, i.e., a∗ and
b∗ are linearly independent, we consider the outer product c∗ of these two
objects

c∗ = a∗ ∧ b∗. (6.1)

If a point x lies on c∗, then

x · c∗ = x · (a∗ ∧ b∗) = 0. (6.2)

The inner product computation of (6.2) leads to

x · c∗ = (x · a∗)b∗ − (x · b∗)a∗ = 0. (6.3)

1The term “quadric” (without being followed by surface) encompasses quadric surfaces
and conic sections.
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Our assumption of linear independence between a∗ and b∗ indicates that
(6.3) holds if and only if x · a∗ = 0 and x · b∗ = 0, i.e. the point x lies on
both quadrics. Thus, c∗ = a∗ ∧ b∗ represents the intersection of the linearly
independent quadrics a∗ and b∗, and a point x lies on this intersection if and
only if x · c∗ = 0.

6.1. Quadric-Line intersection

For example, in computer graphics, making a Geometric Algebra compatible
with a raytracer requires only to be able to compute a surface normal and a
line−object intersection. This section defines the line−quadric intersection.

Similarly to (6.1), the intersection x± between a dual line l∗ and a
dual quadric q∗ is computed by l∗ ∧ q∗. Any point x lying on the line l
defined by two points x1 and x2 can be represented by the parametric formula
xε = α(x1ε − x2ε) + x2ε = αuε + x2ε. Note that uε could also be computed
directly from the dual line l∗ (see (3.13)). Any point x2 ∈ l can be used,
especially the closest point of l from the origin, i.e. x2ε = vε·u−1ε . Accordingly,
computing the intersection between the dual line l∗ and the dual quadric q∗

becomes equivalent to finding α such that x lies on the dual quadric, i.e.,
x ·q∗ = 0, leading to a second degree equation in α, as shown in (4.1). In this
situation, the problem is reduced to computing the roots of this equation.
However, we have to consider four cases: the case where the line is tangent
to the quadric, the case where the intersection is empty, the case where the
line intersects the quadric into two points, and the case where one of the
two points exists at infinity. To identify each case, we use the discriminant δ
defined as:

δ = β2 − 4(x2ε · q∗)
6∑
i=1

(u · eoi)(q∗ · e∞i), (6.4)

where

β = 2u · (a(x2ε · e1)e1 + b(x2ε · e2)e2 + c(x2ε · e3)e3)+

d
(
(u ∧ e1) · (x2ε ∧ e2) + (x2ε ∧ e1) · (u ∧ e2)

)
+

e
(
(u ∧ e1) · (x2ε ∧ e3) + (x2ε ∧ e1) · (u ∧ e3)

)
+

f
(
(u ∧ e2) · (x2ε ∧ e3) + (x2ε ∧ e2) · (u ∧ e3)

)
+ q∗ · uε. (6.5)

If δ < 0, the line does not intersect the quadric (the solutions are complex).

If δ = 0, the line and the quadric are tangent. If δ > 0 and
∑6
i=1(u · eoi)(q∗ ·

e∞i) = 0, we have only one intersection point (linear equation). Otherwise,
we have two different intersection points x± computed by

x± = u(−β ±
√
δ)/
(

2

6∑
i=1

(u · eoi)(q∗ · e∞i)
)

+ x2ε. (6.6)

7. Discussion

7.1. Limitations

The construction of quadric surfaces by the wedge of conformal points pre-
sented in Sections 3 and 4 is a distinguished property of QCGA that is missing
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Table 2. Comparison of properties between DPGA,
DCGA, and QCGA. The symboli • stands for “capable”,
◦ for “incapable” and � for “unknown”.

Framework DPGA [6] DCGA [8] QCGA
vector space dimensions 8 10 15

construction from wedge of points ◦ ◦ •
quadrics intersection ◦ ◦ •

quadric plane intersection • • •
versors • • �

Darboux cyclides ◦ • ◦

in DPGA and DCGA. However, QCGA also faces some limitations that do
not affect DPGA and DCGA, as summarized in Table 2.

First, DPGA and DCGA are known to be capable of transforming all
objects by versors [6, 8] whereas it is not yet clear whether objects in QCGA
can be transformed using versors. An extended version of CGA versors can
be used to transform lines in QCGA (and probably all round and flat ob-
jects of CGA), but more investigation is needed. Second, the number of basis
elements spanned by QCGA is 215(' 32, 000) components for a full multi-
vector. Although multivectors of QCGA are in reality almost always very
sparse, this large number of elements may cause implementation issues (see
Section 7.2). It also requires some numerical care in computation, especially
during the wedge of 9 points. This is because some components are likely to
be multiplied at the power of 9.

7.2. Implementations

There exist many different implementations of Geometric Algebra, however,
very few can handle dimensions higher than 8 or 10. This is because higher
dimensions bring a large number of elements of the multivector used, resulting
in expensive computation. In many cases, the computation then becomes
impossible in practice. QCGA has a 15 vector space dimension and hence
requires some specific care during the computation.

We conducted our tests with an enhanced version of Breuils et al. [1,
2] which is based on a recursive framework. We remark that most of the
products involved in our tests were the outer products between 14-vectors
and 1-vectors, applying one of the less time consuming products of QCGA.
Indeed, QCGA with vector space dimension of 15 has 215 elements and this
number is 1,000 times as large as that of elements for CGA with vector space
dimension of 5 (CGA with vector space dimension of 5 is needed for the
equivalent operations with QCGA with dimension of 15). The computational
time required for QCGA, however, did not need 1,000 times but only 70
times of that for CGA. This means that the computation of QCGA runs
in reasonable time on the enhanced version of Breuils et al. [1, 2]. More
detailed analysis in this direction is left for future work. Figure 1 depicts
a few examples generated with our OpenGL renderer based on the outer
product null-space voxels and our ray-tracer.
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Figure 1. Example of our construction of QCGA objects.
From left to right: a dual hyperboloid built from its equa-
tion, an ellipsoid built from its control points (in yellow), the
intersection between two cylinders, and a hyperboloid with
an ellipsoid and planes (the last one was computed with our
ray-tracer).

8. Conclusion

This paper presented a new Geometric Algebra framework, Quadric Confor-
mal Geometric Algebra (QCGA), that handles the construction of quadric
surfaces using the implicit equation and/or control points. QCGA naturally
includes CGA objects and generalizes some dedicated constructions. The in-
tersection between objects in QCGA is computed using only outer products.
This paper also detailed the computation of the tangent plane and the nor-
mal vector at a point on a quadric surface. Although QCGA is defined in a
high dimensional space, most of the computations run in relatively low di-
mensional subspaces of this framework. Therefore, QCGA can be used for
numerical computations in applications such as computer graphics.
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