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Abstract

We propose two methods to deconvolve experimen-
tal data from the distorsions introduced by the instru-
mental devices. If we suppose the total acquistion sys-
tem (emission-reception line, amplifier, pre-amplifier) as
a global experimental filter, we can define it experimen-
tally from the generation of a family of source signals di-
lated in time. The estimation of this filter allows us to de-
convolve the recorded output signal. The first approach is
based on the simple reconstruction formula of the contin-
uous wavelet transform. The second method is based on
the construction of a normalized family of a finite number
of specific filters, independent of the frequency range used.
In both case, experimental results in an acoustic tank are
presented. We show that after deconvolution, the source
signal is correctly reconstructed from the recorded output
signal and the global instrumental filter.

1. Introduction

A signal measured by an instrumental device can be rep-
resented by the following equation:

O (t) = (Fins xm x I) (t) (1)

where Fins corresponds to the response of the instru-

mental device, m to the impulse response of the medium

and I to the input signal sent by the generator to the exper-

imental system. O is the propagated signal measured by
the receiver.

The problem to solve is therefore the following: Is it
possible to get back the input signal I(2) in abstaining one-
self from the effects of the different measurement devices.
In fact, it is the same than doing the contrary operation of
the equation (1) that means a deconvolution.
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Numerous deconvolution methods dealing with differ-
ent problems and input parameters of the system exist ([1]-
[4],[6]-[8],[11]). The most robust method is the one of
Wierner-Levinson ([5],[10]), where the filter is defined by
the minimization of a quadratic form : the measurement er-
ror in the sens of least squares method. Our approach con-
sists first to build the global instrumental response of our
device, in the case of a test medium, then to apply its in-
verse to the measured output signals. These methods have
been applied in real acoustic experiments for low ultra-
sound frequencies with omnidirectional transducers, and
high ultrasound frequencies with plan directional transduc-
ers. We will present the calculated filters as well as the de-
convolved data of the instrumental response of the devices
for two kinds of source-signals.

2. Experimental conditions

We have an acoustic tank in which one we do different
propagation experiments. The scheme of the experiment is
presented Fig 1. Figure 2 shows the comparison between
the theoretical signal emitted in the medium and the one
recorded after having crossed our devices.

We can see that the device has an instrumental response
variable with respect to the frequency range of the gener-
ated signal. The water leads only to a time-delay dephas-
ing, without dispersion effect, but the geometrical diver-
gence for omnidirectional transducer is considered, just as
a weak absorption of sound during the travel of the wave
between the two kinds of transducers.

Although all sensors have a limited frequency range, we
have to choice this range in accordance to the geometrical
and mechanical parameters that we want studied in real ex-
perimental applications. We need to keep a constant ratio
between the geometrical dimensions and the wavelenght of
the source, if we want to transpose in acoustic laboratory
experiments, real experimental conditions. For examples
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Figure 1. Scheme of the experimental set-up
in the water-tank.

examples the size of heterogeneities in front of the emit-
ted wavelenght in diffusion problem or the distance be-
tween the scatterer or the source with regard to the re-
ceiver in propagation or scatering problem. Moreover, a
transposition in low ultrasound frequencies implies multi-
ple parasite reflections on the walls of the acoustic tank.
These waves can be partially attenuated with the help of
alveoled and conics absorbers (latex or polyethyrene ma-
terial mixed to hight density composites). In geoexplo-
ration experiments the frequency range currently used is
around 0.1Hz-10kHz. This corresponds to a wavelenght
transposition of 100m-1dm in the acoustic tank respec-
tively to a water mean velocity of 1500m/s. To keep a
constant ratio between the physical phenomena to be an-
alyzed and experimental geometric parameters, we need
to work in a frequency range of 10Hz-1MHz. The limi-
tations on one hand of tank dimensions and on the other
hand of the piezo-electric technology imply to work with
two kinds of ultrasound source. A signal limited to a
frequency-range of 20kHz-140kHz (omnidirectional trans-
ducer) and to ultrasound-range 100kHz-1MHz (directional
transducer). This corresponds to a global wavelenght of
I5cm to 0.15mm.

3 Methods of deconvolution
3.1. first method

If S(b,a) are the wavelet coefficients of the global in-
strumental filter Fy,, (£) associated to a dilated family of
“wavelet-source™ signals (D) (¢), we can write under
some conditions ([9]) an exact formula allowing us to re-
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Figure 2. Comparison of emitted source sig-
nal (left) and received signal after crossing
the experimental dispositif (right).

construct for each time 7 the global filter:

+co
Fine (7) = R, [K, / S (r,a) ‘i—“] @
1]

where Ky is a non nul constant defined by
K= 0+°° %dw. I* is the complex conjuguated of the
analyzing wavelet I such that S(b,a) = (F % Da_f) (b),

with I(t) = I*(—¢).

The instrumental filter expression in this discrete form
is then:

max A "
Fi(t) =K, 3 Sk, (tan) ==, 3)

where min and max correspond to the minimal and max-
imal value of the emitted frequency. The fact of being lim-
ited on the number of dilation parameters may lead to a
loss of information during the reconstruction of the filter.
Nevertheless, it is necessary to apodise I* (w) to obtain a
good result in the time domain. This method easy to ap-
ply depends on the frequency range of the generated input
signals. A necessary condition for the reconstruction is to
generate a wavelets family with a scale-range of 3 octaves,
decomposed linearly into 10 voices (linear intervals). It
means that the result depends on the number of wavelets
generated. Nevertheless the results of the deconvolution
with an apodistion window show that the source signal is
correctly reconstructed from the recorded transmitted sig-
nal and the instrumental global filter (see Figures 3 and 4).
These results are obtained in low ultrasound frequencies



with omnidirectional hydrophones for two different tran-
sient signals a ricker function (derivative of second order
of a Gaussian function) and a Morlet’s wavelet (modulated
Gaussian). The number of octaves of the dilation parame-
ters is close to three (40-140kHz). We can observe a weak
difference in the amplitude between the input signal A and
the reconstructed signal C. Nevertheless the waveforms are
correctly rebuilt.

3.2. Extended method

Let us denote in Fourier space a general family of filters
of controlled input signals I, (u). After passage through
the acquisition system we obtain, as previously, the mea-
surements: .

On(“) = Fins (u)jn (u).

Instead of recovering E'(u) we can only hope to obtain

K (u)F(u), where x(u) is a suitable window function that
we can choose such that Y, (hn * I,)(t) = x(t). We are
looking for a solution:

R(W) Fins () = > b (u) O (w).

The filters h,, should be regular in order to obtain stable in-
versions. A solution to this problem is obtained by setting

I* (w .
L) s w). 4)
Yo [Fn(w)

The main point is the choice of the function X which

plays an important role in the stability of calculus. This
choice will be made by studying the behavior of the ratio:

Bin (w) =

)
o [E (@)

The signal deconvolved for the voice n will be calculated
as following:

0% (1) = Fipy (1) Op (u) . 5)
where N
- X' (u)
Finv =z 6
)= Fm ©

where x' (u) is an adapted function deduced from X (u)
allowing us to limit the numerical instabilities (division by
zero). The deconvolved signal verifies:

A ! (u
0f (u) = & () 0
On (u)
So, we dispose in fact of a very general method of the
construction of a filter appropriate to the experiment re-
gardless of the input signal and the used frequency range.

4 Application to acoustic data

Experiments are performed in the frequency range of
40kHz-140kHz with omnidirectional transducers and ap-
propriated amplifier and pre-amplifier for the first method,
and around 200kHz-900kHz with directional transducers
for the extended method. The source signals emitted in the
water tank are respectively a Morlet’s wavelet:

2
g (t) = cos (uot) exp (—;7) , (8)

and a ricker:

r(t) = (1 —2(x ft)2> exp (=7 ft)? ©)

The results of the deconvolution in the case of the first
method are shown (Fig. 3). The signal A corresponds to
the output signal, B is the source signal generated by the
synthetizer and send to the emitter. C is the result of the de-
convolution. The phasis and the modulus of the global in-
strumental filter is presented Fig.(4) for an omnidirectional
source.and low frequencies. The deconvolution ex-
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Figure 3. Deconvolution examples for a
ricker (top) and a Morlet’s wavelet (bottom)
using the simple reconstruction formula of
the C.W.T (first method). The curves repre-
sent respectively A: the sighal measured to
the receiver after crossing the experimental
dispositif, B: the source signal and C: the
rebuilt signal.

amples based on the extended method for omnidirectional
transducers with a family of Morlet’s function (left) and
ricker function (right)is shown Fig.5 with the same nota-
tion for the curves A,B,C than 3. In this case, the ampli-
tude and the waveform of the reconstructed signals C are
in perfect concordance with the emitted signal A.
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Figure 4. Modulus and phase of the instru-
mental filter using the simple reconstruction
formula of the continuous wavelet transform
(first method).

For directional transducers, the results of the deconvolu-
tion are presented with a ricker source signal of central fre-
quency fc = 300kH z (Fig.6) and fc = 500k H z (Fig. 7).
The associated global instrumental filter is shown Fig.9.

The family of ricker’s function are generated by lin-
ear step of 20kHz in the frequency range 200kHz-900kHz.
Thoses frequencies cover the band pass of transducers cen-
tred on 500kHz. The acquistion parameters are fixed dur-
ing all the experiment (sampling frequency, voltage cal-
ibration, power gains for amplifier and preamplifier,..).
Consequently, the differences obtained between the source
emitted and the propagated signal measured to the receiver
are only due to the global filter of the experimental devices.

The initial § (u) function used for the determination of
the individual filters h,, (u) are presented Fig. 10 in ap-
pendix. The adapted function X' (u) deduced from the
X (u) function to limit numerical instability in the com-
putation of the h,, (u) filters are presented Fig. 8 for two
kinds of window, the ¥ (u) function and a rectangular win-
dow.

The figure 9 is the computed global filter of the exper-
imental devices. The inverse global filter is then applied
to the recorded sgnals in order to remove the effect of the
instrumental filter from data. The comparisons between
the experimental results (source signal convolved with the
X' (w)’s function) and the theoreticals ones are both in time
and frequency domain, in a perfect concordance (see Fig.
6 and 7). Some small high frequencies oscillations are
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Figure 5. Deconvolution examples based
on the general method for a ricker (right)
and a Morlet’s wavelet (left), for two differ-
ent frequencies. The variation between the
recorded signal, for two differents frequen-
cies, confirms the necessity to deconvolve
data of the instrumental filter.
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Figure 6. Results from the deconvolution of
recorded signal with inverse instrumental fil-
ter in time (top) and frequency (bottom) do-

main for the frequency source of 300 kHz.
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Figure 7. Results from the deconvolution of
recorded signal, in time (top) and frequency
(bottom) domain for the frequency source of
500 kHz.

6 and 7). Some small high frequencies oscillations are
presents in curves A. We can associate these small oscil-
lations to the convolution of the transmitted signals with
the inverse filter whose modulus reaches a maximum for
these values. This method is nevertheless very effecient
considering the weak differences between theoritical and
rebuilt signals

We notice that the methods of deconvolution are effi-
cient independently of the emitted signal (Morlet or ricker
functions), space distribution (directivity pattern of tran-
ducers), and for the last method independently of the fre-
quency range of the source signal.

5 Conclusion

These methods presented to build the global instrumen-
tal filter are easy to implement from an experimental point
of view as well as from a numerical one. They give simi-
lar results. The first one, based on the wavelet theory and
more precisely on the simple reconstruction formula of the
wavelet transform depends on dilations range generated. It
means that the amplitude of the reconstructed signal can be
lower than the emitted signal, because we need to have a
minimum frequency range of three octaves during experi-
ments. These conditions limit the efficiency of this method
in laboratory experiments, in particular in acoustic tank.
The second one, more general, is based on a family filter
construction that enables to free ourselves from the work

frequency range.
Acoustical experiments have shown the validity of both
methods because of the good deconvolution of measured
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output signals. A new interest is the use of the presented
methods to compute more general filters for example, of an
object inserted in the middle of the tank.

6 appendix

The function ¥ (u) used for the determination of the in-
dividual filters Ay, (w) is initialized with a phase zero and
an amplitude modulus of one. The characteristics of this
function are presented Fig. 10. The rebuilt function ¥ (u)
using rickers as recorded family functions in the computa-
tion of the global filter is presented in phase and modulus

Fig.11.
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Figure 10. Phase and modulus of the func-
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Figure 11. Phase and modulus of the func-
tion y(w) rebuilt using rickers as recorded
data in the computation of the global filter.



