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Abstract. The continuous wavelet transform is used to analyze potential fields 
and to locate their causative sources. A particular class of wavelets is introduced 
which remains invariant under the action of the upward continuation operator in 
potential field theory. These wavelets make the corresponding wavelet transforms 
easy to analyze and the sources' parameters (horizontal location, depth, multipolar 
nature, and strength) simple to estimate. Practical issues (effects of noise, choice 
of the analyzing wavelet, etc.) are addressed. A field data example corresponding 
to a near-surface magnetic survey is discussed. Applications to the high-resolution 
aeromagnetic survey of French Guyana will be discussed in the next paper of the 
series. 

1. Introduction 

The recovery of the causative sources of potential 
fields (e.g., magnetic and gravitational) measured at 
the surface of the Earth is a long-standing topic, and 
a number of techniques have been proposed to address 
the problem of source determination (see Blakely [1995] 
for a review). These techniques roughly fall within two 
categories: processing or inversion. The latter category 
concerns the methods for which the main goal is to re- 
cover the source distribution responsible for the mea- 
sured potential field. It is well known that the resulting 
inverse problems are dramatically ill posed both math- 
ematically and numerically and that practical solutions 
can be obtained only when reliable a priori constraints 
can be added to the problem at hand (see Parker [1994] 
and references therein for a general discussion). The 
methods belonging to the processing family do not 
transfer the information contained in the data set into 

the source distribution space, but instead transfer infor- 
mation into auxiliary spaces such as, for instance, the 
Fourier domain where the information concerning the 
depth to top of the causative sources is eventually eas- 
ier to obtain [Spector and Grant, 1970; Green, 1972]. In 
the same spirit, transformation methods produce trans- 
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formed fields (upward continuation; horizontal, vertical, 
or oblique derivatives; and reduction to the pole) where 
the desired information is hopefully enhanced [Gibert 
and Galddano, 1985; Sowerbutts, 1987]. 

The method we propose in this paper follows the pro- 
cessing approach and transfers the original information 
carried by the data into the wavelet transform space. 
The wavelet transform presents several advantages with 
respect to other methods. For instance, it allows a lo- 
cal analysis of the measured field contrary to the global 
Fourier transform. Also, the wavelet transform provides 
a mean to correctly handle the noise present in the data, 
which is not possible so easily with the local Euler de- 
convolution [Thompson, 1982]. These advantages make 
the wavelet transform attractive for processing poten- 
tial field data [Moreau et al., 1997; Hornby et al., 1999]. 
More precisely, we shall show that only a subset of the 
wavelet transform is sufficient to get the information 
necessary to identify and characterize the sources pro- 
ducing the observed potential field. This information 
is obtained from the local homogeneity properties of 
the measured field by means of the continuous wavelet 
transform, whose mathematical properties are recalled 
in section 2.1. Then, a particular class of wavelets is in- 
troduced which allows for a remarkable property of the 
wavelet transform with respect to the harmonic contin- 
uation of potential fields. Next, the properties of these 
wavelets are discussed and illustrated with several syn- 
thetic examples. Finally, a simple field example of a 
magnetic survey is presented. 
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2. Mathematical Framework 

In this section, only the main mathematical aspects 
needed to establish the method are presented. A de- 
tailed discussion can be found in the p•per by Moteau 
et al. [1997]. 

2.1. The Continuous Wavelet •ansform 

We define the continuous w•velet transform of • func- 

tion &0 (x • •" •s • convolution product, 

W [g, •o] (b, a) n a 

: (rag * •0)(b), (1) 

where g (x 6 •n) is the analyzing wavelet, a 6 •+ is 
the dilation, and the dilation operator •a is defined by 
the following action' 

The analyzing wavelet may be freely chosen in the class 
of the oscillating functions having a vanishing integral 
and whose support may be restricted to a finite inter- 
val containing the origin [Holschaeider, 1995]. Several 
wavelets are shown in Figure 1. The main mathemati- 
cal property we need in this paper is the covariance of 
the wavelet transform with respect to dilation, i.e., 

W •,•x•0] (b,a)- •W[g, •0] (•, •). (3) 
This property implies a remarkable behavior of the 
wavelet transform of homogeneous functions •0 of de- 
gree a 6 • for which 

•0 (•x) - •0 (x) V• > 0. (4) 

Let us recall that the Dirac and Heaviside distributions 

are homogeneous with • - -n and • - 0, respectively. 
For a function satisfying (4), (3) simplifies to 

w [•, •0] (•, •a) - •w •, •0] (•, a), (•) 

which indicates that the whole wavelet transform of 

a homogeneous function can be obtained by dil•ting 
and scaling any single voice (as originally named by 

Goupillaud et al. [1984]) 14/[#, ;b0] (b, a = constant) of 
the wavelet transform: 

, -- -- •Da,/aW [g, (b0] (b, a). (6) ]42 Is, •0] (b a') a 
This analytical property translates into a nice geometri- 
cal property since the points where (O•/Ob •) W [g, •0] 
(b,a) = 0 are unions of straight lines forming a cone- 
like pattern whose apex is the center of homogeneity 
of the analyzed function when a • 0. Such lines cor- 
responding to (O/Ob)W •, •0] (b, a) = 0 are shown in 
Figure 2. These lines will hereinafter be referred to as 
the ridges of the wavelet transform. Along such ridges 
the magnitude of the wavelet transform varies according 
to a power law of the form a •, which provides a simple 
way to estimate the regularity a of the analyzed homo- 
geneous function (Figure 2)[Grossmann et al., 1987; 
Holschaeider, 1988]. A more detailed discussion of this 
technique and applications to geomagnetic time series 
can be found in the work of Alexaadrescu et al. [1995, 
lSS6]. 

2.2. Harmonic Continuation of Potential Fields 

and Homogeneous Sources 

We now recall the mathematical properties of poten- 
tial fields that we need in this paper. Consider the fol- 
lowing boundary value problem of the harmonic contin- 
uation for a field •: 

v• (q): 0, Vq: (•, z) e a• • a+ (7) 
•(•,z: 0) = •0(•) (8) 

d• [• (•, z k 0)1 • < •. (S) 
Here •0 (x) is a bounded and square-integrable func- 
tion, and condition (9)implies that the field • (x, z)is 
uniquely determined by •0 (x) and its boundary behav- 
ior at infinity. The field • is the harmonic continuation 
of •0 from the hyperplane • into the upper half-space 
defined by z > 0. The harmonic continuation can be 
done through a convolution, 

• (•, z) = (V•p , •o) (•) (10) 
•(x,z) = W•,•0](x,z), (11) 

a) 
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Figure 1. Examples of wavelets # belonging to the class defined by equation (22), including the 
cases (a) 7 - 1, (b) 7 - 2, and (c) 7- 3. The cases correspond to an operator œ (see equations 
(24) and (25)) acting as O/Ox, OU/Ox u, and Oa/Ox a respectively. 
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Figure 2. Wavelet transforms of a (a) Dirac distribution with regularity c• -- -1 and a (b) 
Heaviside distribution with c• = 0. The grey maps (dark grey levels for negative values and 
light grey levels for positive values) represent the amplitude (in arbitrary units) of the wavelet 
transform of the signals shown just below. The analyzing wavelet is shown in Figure lb. Observe 
the typical cone-like structure of the wavelet transforms pointing toward the homogeneity center 
of the analyzed functions. This cone-like geometry can easily be tracked with the ridges (black 
solid lines) of the wavelet transforms. (c,d) The modulus of the wavelet transform is taken along 
the ridge and plotted as a function of the dilation a. In this log-log diagram, the modulus 
of the wavelet transform varies linearly with a slope equal to the regularity c• of the analyzed 
homogeneous function. 

where the Poisson kernel is given by 

p (x)- c,+z (1 + Ixl=) 
Also, observe that the harmonic continuation may be 
written under the form of a wavelet transform and that 

the Poisson kernel verifies the semigroup property, 

7)zp * 7)z,p- 7)z+z'p, (13) 

which will play a fundamental role in the remainder of 
this paper. 

We shall now specialize our study to the particu- 
lar class of potential fields produced by homogeneous 
sources. So, consider now the Poisson equation 

V•½5 (q) -- -er (q) q e I• "+'•, 

where the source term rr (q) is assumed to be a homo- 
geneous distribution of degree c• (for example, a dipole) 

with respect to the point (0, zo _< 0) and whose support 
is a subset of the lower half-space IR" x IR-. We have 

½ - zo], 
and the potential field corresponding to such a homo- 
geneous source also is homogeneous of degree c• + 2, 
i.e., 

½ 5, z (16) 

or, introducing the measured field d0 (as), 

/).x½o (x) - A-"-ø•-2½ Ix, (1 - A) Zo.], (17) 

where the dilation operator acts on the first n variables 
(i.e., x) only. This last expression shows that for ho- 
mogeneous potential fields the dilation operator essen- 
tially acts like a continuation operator. Indeed, compar- 
ing (10) and (17), we obtain the following equivalence: 

/•(z-x)•.P* - 
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2.3. Wavelet Analysis of Homogeneous 
Potential Fields 

We now use the properties recalled in sections 2.1 and 
2.2 to derive the main result of this paper. We begin 
with the covariance of the wavelet transform (equation 
(3)) with respect to dilation and the homogeneity of the 
field •b (equation (17)) to obtain the following' 

w [•, •0] (•, •) - •"w [•, v•0] (•, •) 
= ,X-"-2W [#, • (x, (1 - A) z•)] (Ab, Aa)(19) 

Now the harmonic continuation (equation (10)) gives 

d [x, (1 - A) z•] - [V(•_•)•.p, d0] (x), (20) 
which, inserted into (19), reads 

w Is, •0] (•, •) - •-•-• [(v(•_•)•p, v•) g, •0] (•). 
(21) 

Here we have written the wavelet transform as a convo- 

lution product as in (1). 

2.4. Wavelets Based on the Poisson Semigroup 

We now introduce a new class of wavelets possessing 
remarkable properties under the Poisson semigroup and 
which allows a nice simplification of (21) into a form 
very similar to (5) obtained for homogeneous functions. 
The wavelets belonging to this class are such that the 
harmonic continuation acts like a dilation as in (18), 

(vp , ) - ) 
where both the scaling factor c and the dilation a" 
depend on a, a', and g only. Provided the analyzing 
wavelet g satisfies (22), (21) simplifies into 

w[g, 40] (•, a) - •-•-• [cV•,,g, 40] (•) 

which furnishes a relation between the voices of the 

wavelet transform of the homogeneous field. 
A remaining task is to obtain explicit expressions for c 

and a" in terms of a, A, and z•. It can be shown [Moreau 
et al., 1997] that a whole class of wavelet satisfying (22) 
can be constructed by applying a linear operator i to 
the Poisson kernel p, i.e., 

g - Cp. (•4) 

We have shown that a su•cient condition to satisfy (22) 
is that i be a Fourier multiplier homogeneous of degree 
7, i.e., such that 

A A A 

c -•(•), ) •(•)•(•) •(•) - • (•), (•) 

where fi(u) stands for the Fourier transform of p(x). 
Several wavelets obtained with the operator œ acting 
as O/Ox, 02/Ox •, and Oa/Ox a are shown in Figure 1. 
Their expressions are 

#(x) - -(2/rr) x(lq-x•) -2 (26) 
#(x) - -(2/•r)(1-3x 2) (lq-x•) -a, (27) 
#(x) - (24/•r)(1-x •) (l+x2) -4, (28) 

respectively. For this class of wavelets, (23) can be re- 
duced to the following simple form' 

w[a, o0] (,, •): 

, - •a 29) a -- za a q- za • 

It can be observed that this expression is very similar to 
(5) except that the zo term is present in both the scal- 
ing and dilation factors on the right-hand side. This 
results in a fundamental difference in the geometrical 
translation of this equation since, contrary to the case 
of homogeneous functions for which the cone-like pat- 
tern converges on the hyperplane a = 0 (Figure 2), the 
cone-like pattern implicit in (29) converges below this 
hyperplane at the negative dilation a = zo (see Figure 
3 and the discussion in section 2.5). Indeed, up to the 
following scaling and change of coordinates, 

w[g, 40] (•, •) ) w[g, 40] (•, •) (•0) 

a ) a- z•, (•1) 

(29) can be rewritten under a form identical to (6)' 

w Is, O0] (,, a') - va,/•w Is, O0] (,, a). 

(•) 
In a way very similar to that which can be done for ho- 
mogeneous functions, the wavelet transform then allows 
for a straightforward determination of the regularity c• 
of the source causing the analyzed potential field. 

2.5. Synthetic Example 

This example illustrates the application of (32) to po- 
tential fields created by isolated homogeneous sources. 
We work in a two-dimensional physical space corre- 
sponding to n - 1. The first example is shown in Figure 
3a and corresponds to the potential of a vertical dipole 
located at x = 300 and zo = -20. This dipolar source 
can be written as a (x, z) = (O/Oz)5 (x - 300, z + 20) 
and has a homogeneity c• = -3. The example shown in 
Figure 3b corresponds to a quadrupolar source with a 
regularity c• = -4. The wavelet transforms of the fields 
produced by these sources have been computed with 
the wavelet shown in Figure i (7 = 1) and have a cone- 
like structure very similar to the one obtained when 
analyzing homogeneous functions. However, as already 
said, the ridges now converge toward the homogeneity 
center of the source, i.e., below the line a = 0. We 
then observe that the wavelet transform of potential 
fields caused by homogeneous sources possesses a re- 
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Figure 3. Wavelet transforms of potential fields caused by a (a) vertical dipole and by a (b) 
quadrupole. The analyzing wavelet is the one shown in Figure la. As for pure singularities 
(see Figure 2), these wavelet transforms also display a cone-like pattern, but it points toward 
the location of the homogeneity center at a negative dilation corresponding to the depth of the 
causative source. (c,e) When plotted in a log-log diagram, the amplitude of the wavelet transform 
along the ridges does not vary linearly. (d,f) Instead, both a change of coordinates and a scaling 
are necessary to recover the linear variation with a slope equal to the homogeneity of the source 
term. 

markable geometrical property which allows for an easy 
location, both horizontal and vertical, of the causative 
sources. The amplitude of the wavelet transforms taken 
along the ridge does not vary linearly as observed for the 
ridges of the wavelet transforms of homogeneous func- 
tions; instead, a scaling (equation (30)) and a change 
of coordinates (equation (31)) are necessary to recover 
a linear law with a slope fi: -7 + • + 2. 

3. Practical Issues 

3.1. Analyzing Noisy Da•a 

We now address the influence of noise in the detection 

procedure explained above. Suppose that the data d (x) 
are such that 

(x) - (x) +. (x), (aa) 

where y (x) represents the noise present in the data to 
be analyzed. Of course, 

142 [g, d] (b, a) - 142 [g, •b0] (b, a) + 142 [g, ,] (b, a), (34) 

which shows that the wavelet transform of the data 

is the sum of a deterministic part 142 [g, •b0] (b, a) with 
a stochastic process 142 [g, y] (b, a) whose influence de- 
pends on the statistical nature of the noise. For in- 
stance, if • (x) is Gaussian white noise with zero mean 

2 the linearity of the wavelet transform and variance •r•, 
ensures that 142 [g, •] (b, a) is also Gaussian noise with a 
variance 

rr•v[a,v ] (a) 

(35) 

where Eg - f_+• g2 (()d( is the energy of the analyz- 
ing wavelet. Equation (35) shows that the variance of 
]4; [/7, u] (b, a), which is also the variance of the wavelet 
transform of the data, varies like a -1 Thus the fluc- 
tuations of W [g, u] (b, a) decrease like a -1/2, and the 
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wavelet transform at small dilations will be more cor- 

rupted by the noise than it is at large dilations. Asymp- 
totically, we expect that 

w is, 4 a >> W iS, a), 

and 

14' [g, d] (b, a << ac) •- W[g, u] (b, a) , (37) 

where ac is a corner dilation corresponding to a signal- 
to-noise ratio of the order of 1. This asymptotic be- 
havior can be checked in Figure 4, which represents 
the wavelet transforms of the same potential fields as 
those in Figure 3 but corrupted by a Gaussian white 
noise. We observe that for small dilations the ampli- 
tude of the wavelet transform taken along the ridges 
strongly departs from the linear variation related to the 
deterministic part of the wavelet transform (after apply- 
ing the scaling and the translation). This linear vari- 
ation is preserved at sufficiently large dilations where 
the stochastic part of the wavelet transform becomes 
negligible. As can be checked in Figure 4, the corner 
dilation a• is well defined, and the slope of the ridge is 
stable for a > a•. The cone-like pattern is distorted by 
the stochastic part of the wavelet transform, but as can 
be observed, this distortion is minimized for the lines 
of extrerna where the signal-to-noise ratio is maximum. 
This is why these lines remain accurately straight and 
intersect near the right depth zo as long as only the 
dilations a > a• are considered. This example shows 
that the wavelet analysis can be locally adapted with 
respect to the signal-to-noise ratio depending on the 
relative amplitude of the analyzed anomalies compared 
with the noise amplitude. This constitutes an advan- 
tage not shared by the Euler deconvolution method. 

3.2. Fields Produced by Extended Sources 

The analyzed potential fields are always caused by 
distributed sources which cannot be represented by a 
single homogeneous source. In such a situation the mea- 
sured field ½0 can be written as a convolution product, 

½0 (x) - dz [s (., z), (7 (., z)] (x), (38) 

where s (x, z) is the source term and (7 (x, z) is a suit- 
able Green function. The wavelet transform of the field 

½0 reads 

W[g, d0] (b, a) - rag * s (., z), G (., z) dz (b) 

= 7)aœp, s (-, z), G (-, z)dz (b) 

= V•L, V•p, s (-, z), G (., z)dz (b)(39) 

where the last line h• been obtained by writing the 
action of the Fourier multiplier • as the convolution 
product L.. Rearranging the terms and introducing 
the transformed source distribution 

(x, (., (x), (40) 

we obtain 

W [g, do] (a, a) = 

vp, a(-,4d 

a •sœ (., z), G (-, z)dz] (b). (41) 

1 2 

•.,,,,,,.,,,....•..............:•...•....,.•:••.,..,•...,....•`...•...,.:•,,.,.•`:•,...,,....•,;.,.••.•.:!I•::.::. ........ ............ '•;•" 
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Figure 4. (left) Wavelet transform of the example signal shown in Figure 3a but polluted by 
Gaussian white noise. Many lines of extrema have appeared owing to this noise, but the two 
lines (labeled I and 2) observed in Figure 3 and corresponding to the deterministic part of the 
wavelet transform remain unaltered except for small dilations, and they converge toward the right 
location of the source. (right) When properly scaled, the ridges are accurately straight beyond a 
well-defined corner dilation. 
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The source sL (x, z) produces the transformed potential 
field 

•0,L (x) - dz [sr (-, z), G (., z)] (x), (42) 

and we finally obtain the following expression for the 
wavelet transform of the measured field •b0: 

142 [#, q•0] (b, a) = a • [•ap * •0,r] (b). (43) 

Comparing this equation with (10), we observe that the 
wavelet transform of •0 is the harmonic continuation 
•r (x, a) of the field •0,r (x) caused by the transformed 

3.3. Choosing the Analyzing Wavelet 

We now address the question of the choice of the an- 
alyzing wavelet g. In the case of a distributed source 
s (x, z), the analyzing wavelet plays an important role 
since it controls the properties of the transformed source 
distribution sr (x, z). In practice, we want the analyz- 
ing wavelet to produce a transformed source composed 
of scattered homogeneous sources in order to locally 
apply the theory developed in section 2. However, re- 
call that the operator • which defines the analyzing 
wavelet acts through a convolution over the x variable 
only (see equation (40)) and that the vertical dimen- 
sion z is not directly accessible. From the point of 
view of inverse problem theory, this translates into the 
fact that all sources s (z) independent of the horizon- 
tal variable x belong to the null space of the wavelet 
transform in the sense that such sources produce con- 
stant potential fields with a vanishing wavelet trans- 
form. This implies that the wavelet transform only en- 
ables the detection of horizontal variations in the source 

s (x, z). For the frequently encountered situation where 
the source is smooth almost everywhere and possesses 
sharp variations occupying a sparse subset of • x •- 
(e.g., juxtaposition of homogeneous blocks), the trans- 
formed source s• (x, z) takes large values only in the 
neighborhood of the horizontal sharp variations. 

Figure 5 shows the example of a prismatic source with 
a constant vertical magnetization inside the prism and 
no magnetization elsewhere. The left edge of the prism 
is vertical, and the right one is inclined rightward (45ø). 
The depth to top equals 20, and the depth to bottom 
equals 80 units of length. The wavelet transform com- 
puted with g (x)= (d/dx)p(x) (7 = 1) (Figure 5, top) 
takes large values above the lateral edges of the prism 
and small ones above the horizontal edges. The trans- 
formed source s• (x, z) = (d/dx) s (x, z) is physically 
made of two lines of dipolaf sources located on the lat- 
eral edges of the prism. Since there is only one line of 
maxima above each edge, the depth of the source can- 
not be determined by looking for the intersection of the 
lines of maxima as in the preceding examples. Instead, 
the depth can only be determined by looking for the 
values of z• at which the ridges become linear under 

12 

I i i , 

-45 

7 =3, d3/dx3 1 2 3 4 S 6 

,000 
ß .. 

-2• 
-33 

i [ i , I i i i i I [ [ i i I i i i i I , ] i , I 

1000.0 2000.0 3000.0 4000.0 5000.0 

Horizontal Distance 

Figure 5. Wavelet transforms of the potential field 
produced by a prismatic body with a vertical left edge 
and an inclined (45 ø ) right one. The depth to top of 
the prism equals 20 units length and the depth to bot- 
tom equals 80 units length. The prism has a constant 
vertical magnetization. These wavelet transforms have 
been obtained with the three wavelets shown in Figure 
i and corresponding to different operators /2 (see text 
for a detailed discussion). 

the scaling defined by (30) and (31). Since 7 is known, 
the only variable parameter is zo, which, in practice, is 
determined by spanning an a priori depth interval and 
by quantifying the linear character of the transformed 
experimental ridge by fitting (in the least squares sense 
in the present study) a polynomial of degree 1. This is 
shown in Figure 6 (middle) where the L2 misfit curves 
possess a single minimum. The slope fi of the fitted 
lines is also given in Figure 6 (top). We observe that 
fi _• -1 so that c• _• -2, which is compatible with the 
fact that the transformed source is a line of dipoles, i.e., 
a finite integral of dipoles along the edges of the prism. 
The best-fitting depths are 37 and 47 units of length for 
the left and right edge, respectively. The ridges rescaled 
according to these values are shown in Figure 6 (bot- 
tom) and appear accurately linear. The depth obtained 
for the vertical edge falls near the upper third of the 
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Figure 6. Results of the inversion of the ridges extracted from the wavelet transform displayed 
in the top of Figure 5 and obtained with the L - d/dx operator producing the 7 = i wavelet 
shown in Figure la. (top) Corresponding slope/• of the least squares line is adjusted for each 
value of z•,. (middle) Misfit between the least squares line and the rescaled ridge is shown as a 
function of the parameter z•,. (bottom) Ridges were rescaled with the best z•, obtained by the 
least squares analysis. 

edge, while the depth derived for the inclined edge falls 
near the barycenter of the edge. 

The wavelet transform shown in Figure 5 (middle) 
corresponds to the analyzing wavelet g (x)= (d2/dx ') 
p (x) (7 = 2), and the transformed source corresponds 
to two lines of quadrupolar sources located on the lat- 
eral edges of the prism. Two lines of extrema exist 
above each edge, and as for the preceding example, 
the misfit curves possess a single minimum. The depths 
found for the left vertical edge are very similar, as and 
30 for lines 1 and 2, respectively, while those for the 
right inclined edge are quite different: 32 for line 3 lo- 
cated near the shallow end of the edge and 64 for line 
4 located toward the deep end of the edge. The depth 
obtained from the intersection of the ridges (see Figure 
5) equals 31 for the left edge and is consistent with the 
results obtained from the least squares analysis just dis- 
cussed. The depth obtained for the right edge roughly 
falls just between the two depths obtained by analyzing 
the two ridges independently. The ridges rescaled ac- 
cording to the optimal depths are found to be accurately 
linear as in the preceeding example. The slopes for lines 
1, 2, and 3 fall near -1.75, and the slope for line 4 is 
larger (-2.14). These values fall near the theoretical 
value -2 corresponding to a pure dipolaf source, and 
they are compatible with the fact that the transformed 
sources are finite integrals of quadrupolar sources. 

The wavelet transform shown in Figure 5 (bottom) 
corresponds to the analyzing wavelet # (x) - da/dxap (x) 
(7- 3). The transformed source corresponds to two 
lines of octupolar sources located on the lateral edges 
of the prism, and now three lines of extrema converge 
above each lateral edge of the prism (Figure 5). Lines 
1, 2, and 3 form a symmetrical pattern above the left 
edge of the prism and converge toward a common point 
located at a depth of 33 units of length. The three lines 
associated with the right edge are not symmetrical and 
do not converge toward a common point. Instead, lines 
4 and 5 converge at a depth of 24 units while the right- 
most line cuts the two companion lines at greater depths 
(50 and 75). The depths obtained for each of the three 
ridges located on the left edge are quite similar: 21.5, 
23.9, and 21.5 for lines 1, 2, and 3, respectively. The 
best fi are also very similar: -2.29,-2.50, and -2.29 
for lines 1, 2, and 3. As in the former two examples, 
the rescaled ridges are linear. The depths obtained by 
analyzing the three ridges located above the right edge 
are consistent with the one derived from the intersec- 

tion of the lines of extrema (see Figure 5). Lines 4 and 
5 have corresponding depths equal to 17.9 and 21.5, 
respectively, and they fall near the shallow end of the 
right edge, while the depth for line 6 equals 75.2 and 
falls near the deep end of the edge. 

Although the theory derived for homogeneous sources 
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is not directly applicable to extended sources, the three 
examples presented above show that the wavelet trans- 
form yet enables us to locate, both horizontally and ver- 
tically, the sharp edges of extended sources. The depths 
obtained with the ridges fall within the depth range 
of the detected edges, and for the vertical edge these 
depths correspond to the upper part of the source. Fur- 

thermore,• the larger 7, the shallower the depths. This 
can be explained by the fact that the transformed source 
is made of multipoles of larger order when 7 is larger 
and that the resulting potential field is less controlled 
by the deep parts of the source. For the inclined edge, 
the depth obtained with the 7 - i wavelet falls near 
the barycenter of the edge, but for larger 7 the situa- 
tion becomes more complicated since the higher order 
of derivation eventually allows the separation of the ex- 
tremities of the edge as is particularly clear for the 7 = 3 
example. However, it must be recalled that the 7 = 3 
analyzing wavelet amplifies the noise present in the data 
and that the small dilations are more corrupted than 
those for the 7 - i case. 

4. Field Example 

We now briefly discuss an application of the wavelet 
transform to a near-surface magnetic survey where the 
two-dimensional approximation is valid. This enables 
a much easier representation of the results than that 
in a full three-dimensional geometry. In this example 
the data were acquired in a small area over a steel pipe 
carrying hot water across our university campus. Since 
the location of the pipe is well known, this example 
provides a tight control of the method. The measure- 
ments were made with a magnetometer operating at 
a sampling interval of 0.25 m. The total duration of 

the survey was less than a quarter of an hour so that 
no diurnal correction was needed. The intensity of the 
magnetic field recorded along tracks perpendicular to 
the pipes is shown in Figure 7 (bottom). 

The wavelet transform of the data is also shown in 

Figure 7 (top) and was computed with the analyzing 
wavelet shown in Figure la. The analysis of the ridges 
associated with these two lines (Figure 8) gives a depth 
of 5.8 and 5.3 unit lengths, i.e., 1.5 and 1.3 m. These 
values fully agree with the value (1.6 m) given on the 
campus map. The best slopes fi equal -2.65 and -2.85 
and give source homogeneities a of the same value be- 
cause one must add one more derivative to 7 since we 
analyze a magnetic field instead of a potential. The 
a values obtained fall very near the theoretical value 
(-3.0) corresponding to a pure dipolar source. The 
ridges rescaled according to the best depths found are 
shown in Figure 8 (bottom). One can observe that the 
rescaled ridges are accurately linear on the whole dila- 
tion interval and that no noise effect is apparent in the 
small dilation part (for comparison, refer to Figure 4 
and to section 3.1 concerning the effects of noise). 

5. Conclusion 

The method presented in this study belongs to the 
class of the processing methods which transfer the in- 
formation content of the data into an auxiliary space. 
Here the target space is the continuous wavelet trans- 
form domain where the local homogeneity of the ana- 
lyzed field can be easily obtained. We have shown that 
the lines of extrema of the wavelet transform provide 
a sufficient subset containing the relevant information 
necessary to recover the main parameter of the homo- 
geneous causative sources (depth, horizontal location, 

5xlO 4 

4.8x10 4 

wavelet transform 

Time 

Figure 7. (top) Wavelet transform and (bottom) magnetic profile displayed for the analyzing 
wavelet shown in Figure la. The analyzing wavelet was obtained with the L - d/dx operator. 
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Figure 8. (top and middle) Results (see caption of Figure 6 for details) of the inversion of 
the ridges extracted from the wavelet transform displayed in Figure 7 and obtained with the 
L - d/dx operator (analyzing wavelet in Figure la). (bottom) Observe that the rescaled ridges 
are linear on the whole dilation interval and that no noise effect is visible at small dilations. 

strength, and degree of homogeneity). The comprehen- 
sive theory available for homogeneous sources is use- 
ful to understand the wavelet transforms of fields pro- 
duced by extended sources, for which the homogeneity 
hypothesis is not valid. For such sources the choice of 
the analyzing wavelet is important since it allows for a 
segmentation of the initial extended source into a small 
number of quasi-homogeneous sources. In the case of 
extended sources the wavelet transform allows a local 

analysis of the measured field. The synthetic examples 
show that the noise can efficiently be taken into account 
and in a nonstationary way. The examples concerning 
an extended source show that the wavelet analysis al- 
lows a local study of the structural elements (edge, cor- 
ner, etc.) of the whole source. The application of the 
method to a simple field example further demonstrates 
the easy use of this technique, which can easily be im- 
plemented on portable computers and operated by field 
practitioners. 
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