Khadija Akherfi

Micheal Gerndt

Hamid Harroud

Mobile cloud computing for computation offloading: Issues and challenges

Keywords: Cloud computing, Mobile cloud computing, Computational offloading, Algorithms, Partitioning

Despite the evolution and enhancements that mobile devices have experienced, they are still considered as limited computing devices. Today, users become more demanding and expect to execute computational intensive applications on their smartphone devices. Therefore, Mobile Cloud Computing (MCC) integrates mobile computing and Cloud Computing (CC) in order to extend capabilities of mobile devices using offloading techniques. Computation offloading tackles limitations of Smart Mobile Devices (SMDs) such as limited battery lifetime, limited processing capabilities, and limited storage capacity by offloading the execution and workload to other rich systems with better performance and resources. This paper presents the current offloading frameworks, computation offloading techniques, and analyzes them along with their main critical issues. In addition, it explores different important parameters based on which the frameworks are implemented such as offloading method and level of partitioning. Finally, it summarizes the issues in offloading frameworks in the MCC domain that requires further research.

Introduction

The main goal of CC is to allow IT departments to focus on their businesses and projects instead of just taking care of their data centers and keeping them working [START_REF] Barga | The client and the cloud: democratizing research computing[END_REF][START_REF] Huth | The Basics of Cloud Computing[END_REF][START_REF] Zekrifa | Information System Security and Performance Modeling and Simulation for Future Mobile Networks[END_REF]. CC is a new concept that aims to provide computational resources as services in a quick manner, on demand, and paying as per usage.

The CC paradigm is presented in three cloud delivery models:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) as shown in Fig. 1.

According to Gartner [START_REF] Butler | Gartner: Cloud Putting Crimp in Traditional Software[END_REF], CC will have in 2016 a Global Compounded Annual Growth Rate (CAGR) of IaaS: 41%, PaaS:

26.6% and SaaS: 17.4%.

Recently, user preferences for computing have changed because of the latest developments and enhancements in mobile computing technologies. Several reports and studies have presented the importance of MCC and its impact on mobile clients and enterprises. For instance, and according to a recent study by ABI Research, more than 240 million business will use cloud services through mobile devices by 2015 and this will push the revenue of the MCC to $5.2 billion [START_REF] Dinh | A survey of mobile cloud computing: architecture, applications, and approaches[END_REF].

Moreover, the usage of smartphones has increased rapidly in various domains, including enterprise, management of information systems, gaming, e-learning, entertainment, gaming, and health care. Although the predictions that mobile devices will be dominating the future computing devices, mobile devices along with their applications are still restricted by some limitations such as the battery life, processor potential, and the memory capacity of the SMDs [START_REF] Shiraz | A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing[END_REF]. Nowadays, modern mobile devices have sufficient resources such as fast processors, large memory, and sharp screens. However, it is still vices. It refers to an on-demand infrastructure that allows 121 users to access computing resources anytime from anywhere 122 [START_REF] Mell | The Nist Definition of Cloud Computing[END_REF]. CC offers to users and business three main advantages: centers [START_REF] Tulloch | Introducing Windows Azure for IT Professionals[END_REF]. AWS, which is considered as an example of a public computing tool, provides users with two models: infrastructure as a service and software as a service. These services allow the user to use virtualized resources in cloud data centers [START_REF] Mathew | Overview of Amazon Web Services[END_REF].

Computational clouds implement a variety of service models in order to use them in different computing visions [START_REF] Buyya | Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility[END_REF].

Mobile cloud computing

MCC can be seen as a bridge that fills the gap between the limited computing resources of SMDs and processing requirements of intensive applications on SMDs.

The Mobile Cloud Computing Forum defines MCC as follows [START_REF] Dinh | A survey of mobile cloud computing: architecture, applications, and approaches[END_REF]: ''Mobile Cloud Computing at its simplest form refers to an infrastructure where both the data storage and the data processing happen outside of the mobile device.

Mobile cloud applications move the computing power and data storage away from mobile phones and into the cloud, bringing applications and mobile computing to not just smartphone users but a much broader range of mobile subscribers".

MCC has attracted the attention of business people as a beneficial and useful business solution that minimizes the development and execution costs of mobile applications, allowing mobile users to acquire latest technology conveniently on an on-demand basis.

Fig. 2 shows the general view of MCC which is composed of three main parts: the mobile device, wireless communication means, and a cloud infrastructure that contains data centers.

These latter provide storage services, processing, and security mechanisms for both the cloud environment and mobile devices.

Computation offloading

Computation offloading is the task of sending computation intensive application components to a remote server. Recently, a number of computation offloading frameworks have been proposed with several approaches for applications on mobile devices. These applications are partitioned at different granularity levels and the components are sent (offloaded) to remote servers for remote execution in order to extend and enhance the SMD's capabilities. However, the computation offloading mechanisms are still facing several challenges.

In the remaining part of this section, our objective was to give a summary about the MCC offloading research by discussing the following: The computation offloading has experienced a remarkable improvement which makes it applicable in a wide range of domains. Table 1 shows some of these domains.

As it is known, the battery life of mobile devices and the limited processors' capabilities remain key limiting factors in the design of mobile applications. Today, the demand for resource intensive applications such as 3D video games and voice recognition is increasing day by day. To close this gap between the users demand and the mobile devices limitations, research studies have been exploring computation offloading in MCC to bring the power of cloud computing to the otherwise limited mobile devices capacity. the application is run.

Preparation

The preparation step performs all actions required for offloadable components to enable their use in mobile applications.

This includes the selection of a remote server, the transfer and installation of the code, as the start of proxy processes that receive and execute tasks on behalf of the SMD. Besides the transfer of the code, also data might be transferred to prepare for the remote execution. Table 1 Areas of the research work related to computation offloading.

Domain Research work

Contribution of some research work Artificial intelligence based applications [START_REF] Chun | CloneCloud: elastic execution between mobile device and cloud[END_REF][START_REF] Cuervo | Maui: making smartphones last longer with code offload[END_REF][START_REF] Hakak | A review on mobile cloud computing and issues in it[END_REF][START_REF] Nimmagadda | Real-time 995 moving object recognition and tracking using computation 996 offloading[END_REF][START_REF] Yang | On effective offloading services for resource-constrained mobile devices running heavier mobile internet applications[END_REF] The proposed work aims to reduce computation time on robots by using an offloading technique.

The system is designed for real-time moving object recognition and tracing using computation offloading [START_REF] Nimmagadda | Real-time 995 moving object recognition and tracking using computation 996 offloading[END_REF] Graphics and image processing [START_REF] Chun | CloneCloud: elastic execution between mobile device and cloud[END_REF][START_REF] Yang | On effective offloading services for resource-constrained mobile devices running heavier mobile internet applications[END_REF][START_REF] Hauswald | A hybrid approach to offloading mobile image classification[END_REF][START_REF] Wang | Rendering adaptation to address communication and computation constraints in cloud mobile gaming[END_REF] The suggested work examines the trade-offs that emerge from executing some of the workload locally and some on remote cloud servers. Extraction and matching are two features that are crucial in image classification. The paper analyzes the possibility of executing the previously mentioned features in a mobile device using different scenarios [START_REF] Hauswald | A hybrid approach to offloading mobile image classification[END_REF] Health and social applications [START_REF] Matthews | Powersense: power aware dengue diagnosis on mobile phones[END_REF]21] The proposed work presents an extensible module that proactively facilitates the management of processes for web service supported by mobile applications. This module measures power consumption and application performance from the smartphone device. Based on the obtained measurements, the module dispatches image processing jobs locally or remotely [START_REF] Matthews | Powersense: power aware dengue diagnosis on mobile phones[END_REF] Games applications [START_REF] Wang | Rendering adaptation to address communication and computation constraints in cloud mobile gaming[END_REF] The objective of the presented work was to satisfy Cloud Mobile Gaming communication and computation constraints by using an adaptation technique that ensures a good mobile gaming experience [START_REF] Wang | Rendering adaptation to address communication and computation constraints in cloud mobile gaming[END_REF] Mathematics [START_REF] Chun | Augmented smartphone applications through clone cloud execution[END_REF][START_REF] Wang | Parametric analysis for adaptive computation offloading[END_REF] The work presents a new architecture that addresses the mobile device limitations by using a partial offloading execution from the smartphone to a remote cloud infrastructure hosting smartphone clones [START_REF] Chun | Augmented smartphone applications through clone cloud execution[END_REF] File system and database [START_REF] Mtibaa | Towards 991 resource sharing in mobile device clouds: power balancing 992 across mobile devices[END_REF][START_REF] Chun | Augmented smartphone applications through clone cloud execution[END_REF] The presented work addresses the maximization of the lifetime of mobile devices by developing computational offloading schemes while considering the network status. The paper presents an experimental environment where different profiles and computational moles are evaluated [START_REF] Mtibaa | Towards 991 resource sharing in mobile device clouds: power balancing 992 across mobile devices[END_REF] The offloading decision is the final step before remote execution is started for offloadable components. Whether an installed remote component is used in the SMD application or not depends typically on the execution context. If the decision is taken at runtime, more precise information is available, for example, the SMD might even not have a wireless connection or the energy consumption for transferring the data for the remote execution might simply be too high. Whenever the situation changes, the offloading can be adapted. Such a runtime decision induces some overhead that typically is not present if the decision is taken at design time.

Framework classes

According to when the decision is taken to offload computation on a remote server, we can distinguish two types of offloading frameworks. The first class is static offloading frameworks.

Here all the presented steps are performed at design time, before the application is started on the mobile device. The other classes are dynamic offloading frameworks. In those frameworks, at least the final decision whether to offload a computation is taken at runtime. The other two steps can be executed at design or runtime. For example, a framework that is based on user annotations of offloadable components and on preinstallation of the components on a remote server will be called a dynamic offloading framework, if it decides at runtime whether it is better to offload computation or not.

Framework mechanisms

Although there are several offloading mechanisms available for offloading computation intensive components of mobile applications to the cloud, we can classify these mechanisms into two broad categories:

1. Frameworks based on virtual machine cloning.

Frameworks based on code offloading.

Frameworks based on code offloading offload intensive application components by invoking a remote procedure call (RPC) using annotations, special compilation or binary modification. Whereas in virtual machine cloning, the mobile device's full image is captured and stored on the cloud server.

During offloading, the mobile's execution is suspended and transferred to the VM clone in the cloud.

Comparison of offloading frameworks in mobile cloud computing

This section introduces different existing offloading frameworks. For each of the frameworks we identify the approaches used in the three steps introduced in the previous section. At the end of the section, the different frameworks will be compared with respect to their most important properties. a profiler, and a solver. Each time a method is called, the MAUI profiler evaluates it for its energy-saving potential and profiles the device and the network to obtain the status information. Then, the MAUI solver works on the results provided by the profiler and determines the destination where the method will be remotely executed; the proxy is responsible for control and data transfer between the server and the smartphone. On the server side, the profiler and the server proxy perform similar roles as their client-side counterparts. The MAUI controller is responsible for authentication and resource allocation for incoming requests [START_REF] Cuervo | Maui: making smartphones last longer with code offload[END_REF].

The authors presents different experiments in order to compare the energy consumption of running three applications(face recognition, chess, and video) standalone on the smartphone versus using MAUI for remote execution to servers that are located elsewhere. The face recognition application can achieve strong energy savings when using MAUI.

On the one hand, the results of the conducted experiments showed that the energy consumed when offloading code using 3G is 2.5 times higher than offloading code to a close server.

On the other hand, the energy savings for both video and chess game are less strong but they are still important; when offloading to a close server, MAUI saves 45% for chess and 27% energy for the video game.

Cloudlet

Offloading to the cloud is not always a solution, because of the high WAN latencies, mainly for applications with real-time restrictions. Thus the cloud has to be moved closer to the mobile user in the form of cloudlets. Once the deployment is done, the execution of the application is launched.

We can take a scenario where the user must execute a computation intensive application. At runtime, the application discovers a nearby cloudlet and offloads the computation intensive mobile application [START_REF] Ha | Cloud Offload in Hostile Environments[END_REF]. However, because of loss of network connectivity, the mobile application can find a different cloudlet and run the application in a short time.

Jade

Sharing the same concern but from a different perspective, Qian et al. present in [START_REF] Qian | Jade: reducing energy consumption of 1000 android app[END_REF] a system that monitors application and device status and that automatically decides where the code should be executed. The goal of Jade was to maximize the benefits of energy-aware computation offloading for mobile applications while minimizing the burden on developers to build such an application.

Figure 9 Cloudlet architecture (adapted from [START_REF] Lewis | 977 Cloudlet-based cyber-foraging for mobile systems in resource 978 constrained edge environments[END_REF]). The device that executes the offloaded code is called the server.

Mobile applications contain remote tasks which can be offloaded to the server. The Jade runtime engine automatically decides where to execute remote tasks and initiates distributed execution. Cuckoo is a dynamic offloading framework as it takes the offloading decision at runtime and offloads the well-defined components of the application. In case the remote resources are not reachable (i.e. network connection is not available)

then the application can be executed on local resources (the mobile device).

Phone2Cloud

Xia et al. present in [START_REF] Xia | Phone2cloud: exploiting computation offloading for energy saving on smartphones in mobile cloud computing[END_REF] a computation offloading framework called Phone2Cloud. The objective was to improve energy efficiency of smartphones and improve the application's performance. Unlike the previous frameworks, authors focus on conducting a fully quantitative analysis on energy saving of the system by conducting application experiments and scenario experiments.

Phone2Cloud is a semi-automatic offloading framework. In order to run applications on the cloud and receive the results, applications need to be manually modified during preparation step to make it possible to be executed on cloud servers.

The offloading decision is based on a static analysis while considering user's delay-tolerance threshold.

For delay tolerant applications, the framework uses a simple model to expect WiFi connectivity.

The threshold is defined based on predictions to delay transfers in order to offload more data on WiFi while respecting the application's tolerance threshold [START_REF] Balasubramanian | Augmenting mobile 3G using WiFi[END_REF]. The framework will wait for WiFi (only if 4G savings are expected within Local execution manager and remote execution manager:

The local execution manager is designed to execute the application locally on the SMD. It calls the SMD's operating system, like Android OS, to execute the application.

When the remote execution manger receives the required Figure 12 Mirror server architecture (adapted from [START_REF] Zhao | Mirroring smartphones for good: a feasibility study[END_REF]).

Annotation: Automation of partitioning process (Auto-701 matic or manual). It can be seen from the presented frameworks that they use different approaches to offload intensive tasks to remote cloud servers. However, none of them use or adopt containers technology such as Linux Containers (LXC). LXC is attracting researchers these days as a lightweight alternative to full machine virtualization such as the common known hypervisors such as KVM or Xen. Recently, research suggests that applications running in containers can achieve approximately same speed in memory, processing and also network throughput as if they were running on a physical machine [START_REF] Bernstein | Containers and cloud: from LXC to Docker to Kubernetes[END_REF]. LXC is considered as an OS level virtualization where each container has its own environment called a namespace where specific processes are running and isolated from the rest of the system.

The usage of containers instead of VM will be a good idea since it is lighter than VM. 5. General issues and challenges in computation offloading for

MCC

The selected issues are presented from three perspectives: the resource-intensive structures of the existing frameworks, the security perspective, and the optimal offloading platform.

Platform diversity

One of the challenges in the current computation offloading frameworks is the diversity and heterogeneity of smartphone architectures and operating systems. This diversity is seen in the following example: MAUI [START_REF] Cuervo | Maui: making smartphones last longer with code offload[END_REF] is an offloading framework which is applicable for the .Net framework whereas Mirror Server [START_REF] Zhao | Mirroring smartphones for good: a feasibility study[END_REF] is a framework which is compatible with the Android platform. A consistent access to cloud services is expected wherein SMDs are enabled to access cloud computing services regardless of the installed operating system or the used hardware. A standardized offloading framework for different smartphone platforms is still a challenging issue in the MCC field.

Security and privacy in mobile cloud applications

Security of data transmission is an important concern in cloud based application processing. Security and privacy are two crucial concepts that need to be maintained during the offloading process. These concepts can be addressed from different

 83 not enough to help with computing intensive tasks such as nat-84 ural language processing, image recognition, and decision-85 making. Mobile devices provide less computational power 86 comparing to server computers or regular desktops and 87 computation-intensive tasks put heavy loads on battery power.

Figure 1

 1 Figure 1 Cloud computing layers.

123(1)

 1 enormous computing resources available on demand, (2) 124 payment for use as needed and on a short-term basis (storage 125 by the day and release them as needed), and (3) simplified IT 126 management and maintenance capabilities [1]. CC provides cli-127 ents with different applications as services via the Internet. As 128 examples of public CC we can list Windows Azure and Ama-129 zon Web Services (AWS). Windows Azure is an open and flex-130 ible cloud platform which provides several services to develop, deploy and run web applications and services in cloud data

Figure 2 2 .Fig. 3 Fig. 5

 2235 Figure 2 General view of MCC.

Figure 3

 3 Figure 3 Offloading process overview.

Figure 4

 4 Figure 4 Number of computation offloading and data offloading papers.

Figure 5

 5 Figure 5 Aspects affecting the offloading decision.

4. 1 .Figure 6

 16 Figure6CloneCloud execution model (adapted from[START_REF] Chun | CloneCloud: elastic execution between mobile device and cloud[END_REF]).

373

 Fig.7shows the MAUI architecture. On the smartphone,

 Satyanarayanan et al. suggest in [29] a VM based cloudlet framework. A cloudlet can be defined as a hosting environment for offloaded tasks that is deployed to remote resources, as different as individual servers or parallel systems. Cloudlets are virtual-machine (VM) based on support scalability, mobility, and elasticity. They are located in single-hop nearness to mobile devices. In the preparation step, the framework requires the cloning of the mobile device application processing environment to a remote host. It offloads the entire application using VM as the offloading mechanism and more precisely it uses a technique called dynamic VM synthesis. The VM would encapsulate and separate the guest software from the cloudlet's host software. The mobile device serves as a thin client providing only the user interface, whereas the actual application processing is performed on the cloudlet infrastructure. Device mobility is the main critical issue for mobile users on the move while connected to cloudlets. As Fig. 8 illustrates, cloudlets are widely distributed Internet infrastructure components whose storage resources and computing cycles can be exploited by nearby mobile devices while avoiding the long latency which is available for accessing distant cloud resources. These cloudlets would be situated in common areas, such as coffee shops, so that mobile devices can connect and work as a thin client.

Fig. 9

 9 Fig. 9 depicts the cloudlet architecture. Cloudlets are discoverable, and located in single-hop proximity of mobile devices. The main elements of the architecture are Cloudlet Host and Mobile Client. A Discovery Service is a component running in the cloudlet host and publishes cloudlet metadata. The cloudlet metadata (e.g. IP address and port to connect

Figure 7

 7 Figure7High-level view of MAUI's architecture (adapted from[START_REF] Cuervo | Maui: making smartphones last longer with code offload[END_REF]).

Figure 8

 8 Figure 8 Cloudlet illustration adapted from [29].

Fig. 11

 11 Fig. 11 presents the Jade framework architecture. In order to offload a computation, the system handles the following tasks: Profiling: In order to make correct offloading decisions, the framework should have updated information concerning the status of the application and the device. Application profiling is the process of collecting information about programs, such as energy consumption, data size, execution time, and memory usage. Similarly, device profiling collects information about devices status, such as battery level, CPU usage, and wireless connection. Communication: To offload code from the mobile client to the server, the system should be able to (1) connect to the other server; (2) coordinate with the remote server for off-

Figure 10 1 . 2 . 3 .

 10123 Figure 10Jade overview (adapted from[START_REF] Satyanarayanan | The case 1003 for vm-based cloudlets in mobile computing[END_REF]).

Figure 11 (1)(2)

 1112 Figure 11 Jade architecture (adapted from[START_REF] Qian | Jade: reducing energy consumption of 1000 android app[END_REF]).

 of the important attributes in partition-705 ing step. It can be seen as a metadata added to the source code. 706 The current partitioning algorithms used in the offloading 707 frameworks can be categorized as (a) automatic and (b) 708 manual. 709 In automatic annotation, the offloading framework imple-710 ments automatic annotation by using the profiler to collect the necessary information and annotate the relevant component in the application as an indication of availability of partitioning [6,7].Manual annotation is performed by the programmers at the design phase. It requires examining the scope of the components of the application at design time. Programmers annotate the components of the application at different granularity such as classes and methods[START_REF] Cuervo | Maui: making smartphones last longer with code offload[END_REF][START_REF] Smit | Partitioning applications for hybrid and federated clouds[END_REF].We can notice that some frameworks offload the entire application while other frameworks split the application into its components. Concerning the offloading mechanism, some frameworks encapsulate the offloaded components into a VM or create a VM with exactly the same hardware/software specifications. Other frameworks focus on the code mechanism to offload intensive components. For the annotation attribute, some frameworks use manual annotation while others use automatic one except Phone2Cloud framework which follows a semi-automatic way. Decision offloading is the main attribute of the different offloading frameworks. Some frameworks take the offloading decision at runtime based on a program profiling and program analysis while others take the decision during design or compile time using programmers' annotations and some estimations. A static offloading decision could not adapt to fluctuating network conditions efficiently and depends on programmers' decision. A dynamic offloading decision incurs overhead as it is continuously performed to obtain the latest information.

angles: (1)

 1 Mobile device, (2) cloud data centers, and (3) during data transmission over the network. Besides all the technologies, there is a great increase in the variety of sophisticated attacks on mobile phones which are the main targets for attackers. Regarding the security in the cloud data centers, threats are basically related to the transmission of data between the different nodes over the network. Thus, high levels of security are expected by both the mobile clients and the cloud providers. In the current frameworks[START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF][START_REF] Dou | Misco: a mapreduce framework for mobile systems[END_REF], binary transfer of the application code at runtime is continually subjected to security threats. Despite the available solutions, strong measures and a secure environment are required for the three entities of MCC model.In[START_REF] Wang | Secure and practical outsourcing of linear programming in cloud computing[END_REF], the authors focus on optimizing tasks and computations, and they explore secure offloading of applicable linear programming (LP) computations. In this paper, authors build their work based on the decomposition of the LP computation offloading into public LP solvers running on the cloud and private LP parameters owned by the customer. To achieve an efficient and validate results, the authors focus on the fundamental duality theorem of LP computation and come up with the essential conditions that must satisfied by correct results.Bugiel et al. present in [40] an architecture for secure outsourcing of data and arbitrary computations to an untrusted commodity cloud. The architecture proposed in their approach consists of two clouds (twins): a trusted cloud and a commodity cloud.The computations are divided in such a way that the trusted cloud is mainly used for critical operations, whereas requests to the offloaded data are processed in parallel by the fast commodity cloud on encrypted data.

834 5 . 4 .

 54 Automatic mechanism835The available computation offloading frameworks still need to 836 be automated. This will help the offloading process to be per-837 formed in a seamless fashion while discovering the surrounded 838 environment[START_REF] Chuang | Eventwave: programming model and runtime support for tightly-coupled elastic cloud applications[END_REF][START_REF] Cui | A survey of energy efficient wireless transmission and modeling in mobile cloud computing[END_REF][START_REF] Gordon | Comet: Code offload by migrating execution transparently[END_REF]. The achievement of such automation is 839 not an easy task as it needs the implementation of a protocol 840 dedicated to finding and discovering services depending on 841 the current context and its constraints.

842 5 . 5 . 6 .(2)

 5562 Offloading economy/cost 843 Using cloud infrastructure resources imposes financial charges 844 on the end-users, who are required to pay according to the Ser-845 vice Level Agreement (SLA) agreed on with the cloud vendor 846 serving them. Generally, the operations of content offloading 847 and data transfer between cloud providers incur additional 848 costs on end-users. Therefore, economic factors should Partition offloading and external data input 852 At runtime, it is challenging to decide which application com-853 ponents need to be offloaded and to find the suitable server for 854 that. Algorithms answering this problem need resource-855 intensive effort, which can affect the execution time of the off-856 loaded partitions of the application [13]. 857 Although existing application partitioning algorithms allow 858 an adaptive execution of the application between the mobile 859 devices and the cloud servers, they still do not provide any 860 solution on how to utilize and benefit from the elastic resources 861 in the clouds. This is specifically needed in order to make the applications scalable when a large number of mobile users 863 need to be served and when the application requires input data 864 that are stored in other remote servers. 865 Table 3 recapitulates the main challenges to current 866 offloading frameworks and open research issues in MCC. 867 The challenges indicate the issues in the computation offload-868 ing frameworks in MCC that still require more elaboration 869 and thorough study, while the open issues specify unresolved 870 problems in current offloading frameworks. 871 6. Conclusion 872 This paper discusses three main concepts: (1) cloud computing, 873 mobile cloud computing, and (3) computation offloading. 874 More specifically, it presents existing frameworks for computa-875 tion offloading along with the various techniques used to 876 enhance the capabilities of smartphone devices based on the 877 available cloud resources. The paper investigates the different 878 issues in current offloading frameworks and highlights chal-879 lenges that still obstruct these frameworks in MCC. Moreover, 880 the paper shows the different approaches that are used by the 881 frameworks to achieve offloading. Some of these approaches 882 use static offloading while others employ dynamic offloading. 883 Even though there exist a variety of approaches, all of them 884 target the same objective which is the improvement of the 885 smartphone device capabilities by saving energy, reducing 886 response time, or minimizing the execution cost. 887 We notice that current offloading frameworks are still fac-888 ing some challenges and difficulties. For instance, lack of stan-889 dard architectures. This shortage leads to more complications 890 while developing and managing a proposed framework. 891 Finally, it is important to come up with a lightweight paradigm 892 or model that will help to overcome the difficulties and mini-893 mizing efforts while developing, deploying, and managing an 894 offloading framework. 895 We believe that exploring other alternatives, such as intro-896 ducing a middleware based architecture using an optimizing 897 offloading algorithm, could help better the available frame-898 works and provide more efficient and more flexible solutions 899 to the MCC users.

Table 2

 2 A comparative review of some offloading framework.

	Framework	Partitioning	Preparation	Decision	Offloading mechanism	Contribution	Granularity	Automation Year
							level		
	VM Cloudlet	The entire migrating image	It requires the cloning of	Not available	VM: the mobile device	Cloudlet-based	Entire App	Not	2009
	[29]	of the running application is	the mobile device		transmits all the states of	resource-rich mobile		available	
		offloaded to the designated	application processing		the application to the	computing			
		remote server while the	environment to a remote		cloudlet, which applies it				
		mobile device provides a	host		to the base VM to launch				
		user interface and serves as a			and execute the VM				
		thin client							
	Phone2Cloud	The application can be	Applications need to be	Static: the offloading	Code: the remote	Enhancement of the	Part/Entire	Semi-	2009
	[36]	partitioned or entirely	manually modified in order	decision is based on user's	execution manger gets	application's	App	automatic	
		offloaded	to be executed on cloud	delay-tolerance threshold	required input data, it	performance and			
			servers	and static analysis	executes offloading	improvement of			
					computation on the cloud	energy efficiency of			
					server, and sends back	smartphones			
					results to the offloading				
					proxy				
	MAUI [8]	Annotate each individual	It creates two versions of a	Dynamic: decision is based	Code: MAUI does not	Energy-aware code	Method	Manual	2010
		method as local or remote	mobile application (for	upon the input of the MAUI	support executing only	offload			
			mobile device and cloud).	profiler and MAUI solver	portions of a method				
			It uses programming		remotely				
			reflection to identify which						
			methods are marked						
			offloadable or not						
	Mirror Server	The framework does not	It creates a mirror for a	Not available	VM: During the copying	Reduce the	Entire App	Not	2010
	[38]	require a partitioning so the	smartphone		process, no operation	workload and		available	
		entire application is			from user is authorized	increase the			
		offloaded				resources of			
						smartphones in a			
						virtual manner			
	Cuckoo [19]	Partitioning is made based	Destination running a Java	Dynamic: method	Code: the framework	Simplifying the	Method	Manual	2010
		on the existing activity	VM	invocations to services are	receives method calls and	development of			
		model in Android. The		received and Cuckoo	evaluates whether to	smartphone			
		graphical components		framework will then decide	offload the method using	applications while			
		remain on the mobile device		whether to offload it or not	heuristics information	benefiting from			
		while the services can be		while checking the		computation			
		offloaded		availability of the remote		offloading			
				resources					
	CloneCloud	The partitioning is made	A duplicate of mobile	Dynamic: threads are	VM: offloaded	Elastic execution	Thread	Automatic	2011
	[6]	based on static program	device's software stored on	migrated from the mobile	components of an	between mobile			
		analysis and program	the cloud server	device to the clone in the	application are running	devices and clouds			
		profiling		cloud	inside a virtual machine	while adapting the			
						application			
						partitioning			
	Jade [28]	An application is	It checks the application	Dynamic: have updated	Code: an offloaded object	An energy-aware	Class	Automatic	2015
		partitioned at the class level	and device status by	information concerning the	can be executed on the	computation			
		in Jade. A class must	monitoring the	status of the application and	remote server	offloading system			
		implement one of two	communication costs,	the device					
		interfaces to be offloadable	work load variation, and						
			energy status						

Table 3

 3 Some challenges and open issues in offloading frameworks for MCC.

		Open Issues in	Challenges to
		offloading	available
		frameworks	offloading
			frameworks
	Access a distributed	p	p
	platform transparently Continuous connectivity to	-	p
	cloud servers Diversity of operating	p	p
	systems in mobile devices		
	along with the variety of		
	their architectures Provide an effective	p	p
	execution of a process		
	remotely and returns result		
	to mobile device		

The number of published works is retrieved from Google Scholar.

Acknowledgments

This work has been funded by the Schlumberger Foundation Faculty for the Future and Technical University of Munich.