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Abstract The study of nonlinear dynamics is relatively recent with respect to the
long historical development of early mathematics since the Egyptian and the Greek
civilization, even if one includes in this field of research the pioneer works of Gaston
Julia and Pierre Fatou related to one-dimensional maps with a complex variable,
nearly a century ago. In France, Igor Gumosky and Christian Mira began their math-
ematical researches in 1958; in Japan, the Hayashi’ School (with disciples such as
Yoshisuke Ueda and Hiroshi Kawakami), a few years later, was motivated by appli-
cations to electric and electronic circuits. In Ukraine, Alexander Sharkovsky found
the intriguing Sharkovsky’s order, giving the periods of periodic orbits of such non-
linear maps in 1962, although these results were only published in 1964. In 1983,
Leon O. Chua invented a famous electronic circuit that generates chaos, built with
only two capacitors, one inductor and one nonlinear negative resistance. Since then,
thousands of papers have been published on the general topic of chaos. However,
the pace of mathematics is slow, because any progress is based on strictly rigor-
ous proof. Therefore, numerous problems still remain unsolved. For example, the
long-term dynamics of the Hénon map, the first example of a strange attractor for
mappings, remain unknown close to the classical parameter values from a strictly
mathematical point of view, 40 years after its original publication. In spite of this
lack of rigorous mathematical proofs, nowadays, engineers are actively working on
applications of chaos for several purposes: global optimization, genetic algorithms,
CPRNG (Chaotic Pseudorandom Number Generators), cryptography, and so on.
They use nonlinear maps for practical applications without the need of sophisticated
theorems. In this chapter, after giving some prototypical examples of the industrial
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applications of iterations of nonlinear maps, we focus on the exploration of topolo-
gies of coupled nonlinear maps that have a very rich potential of complex behavior.
Very long computations on modern multicore machines are used: they generate up
to one hundred trillion iterates in order to assess such topologies. We show the emer-
gence of randomness from chaos and discuss the promising future of chaos theory
for cryptographic security.

Keywords Chaos · Cryptography ·Mappings · Chaotic pseudorandom numbers
Attractors

AMS Subject Classification 37N30 · 37D45 · 65C10 · 94A60

4.1 Introduction

The last few decades have seen the tremendous development of new IT technologies
that incessantly increase the need for new and more secure cryptosystems.

For instance, the recently invented Bitcoin cryptocurrency is based on the secure
Blockchain system that involves hash functions [1]. This technology, used for infor-
mation encryption, is pushing forward the demand for more efficient and secure
pseudorandom number generators [2] which, in the scope of chaos-based cryptogra-
phy,were first introduced byMatthews in the 1990s [3]. Contrarily tomost algorithms
that are used nowadays and based on a limited number of arithmetic or algebraic
methods (like elliptic curves), networks of coupled chaotic maps offer quasi-infinite
possibilities to generate parallel streams of pseudorandom numbers (PRN) at a rapid
pace when they are executed on modern multicore processors. Chaotic maps are able
to generate independent and secure pseudorandom sequences (used as information
carriers or directly involved in the process of encryption/decryption [4]). However,
the majority of well-known chaotic maps are not naturally suitable for encryption [5]
and most of them do not exhibit even satisfactory properties for such a purpose.

In this chapter, we explore the novel idea of coupling a symmetric tent map with
a logistic map, following several network topologies. We add a specific injection
mechanism to capture the escaping orbits. In the goal of extending our results to
industrial mathematics, we implement these networks on multicore machines and
we test up to 100 trillion iterates of such mappings, in order to make sure that the
obtained results are firmly grounded and able to be used in industrial contexts such
as e-banking, e-purchasing, or the Internet of Things (IoT).

The chaotic maps, when used in the sterling way, could generate not only chaotic
numbers, but also pseudorandom numbers as shown in [6] and as we show in this
chapter with more sophisticated numerical experiments.

Various choices of PNRGenerators (PRNGs) and crypto-algorithms are currently
necessary to implement continuous, reliable security systems. We use a software
approach because it is easy to change a cryptosystem to support protection, whereas
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replacing hardware used for True Random Number Generators would be costly and
time-consuming. For instance, after the secure software protocol Wi-Fi Protected
Access (WPA) was broken, it was simply updated and no expensive hardware had to
be replaced.

It is a very challenging task to design CPRNGs (Chaotic Pseudo Random Num-
ber Generators) that are applicable to cryptography: numerous numerical tests must
ensure that their properties are satisfactory. We mainly focus on two- to five-
dimensionmaps, although upper dimensions can be very easily exploredwithmodern
multicore machines. Nevertheless, in four and five dimensions, the studied CRPNGs
are efficient enough for cryptography.

In Sect. 4.2, we briefly recall the dawn and the maturity of researches on chaos. In
Sect. 4.3, we explore two-dimensional topologies of networks of coupled chaotic
maps. In Sect. 4.4, we study more thoroughly a mapping in higher dimensions
(up to 5) far beyond the NIST tests which are limited to a few millions of iter-
ates and which seem not robust enough for industrial applications, although they
are routinely used worldwide. In order to check the portability of the computations
on multicore architectures, we have implemented all our numerical experiments on
several different multicore machines. We conclude this chapter in Sect. 4.5.

4.2 The Dawn and the Maturity of Researches on Chaos

The study of nonlinear dynamics is relatively recent with respect to the long historical
development of earlymathematics since theEgyptian and theGreek civilizations (and
even before). The first alleged artifact of mankind’s mathematical thinking goes back
to the Upper Paleolithic era. Dating as far back as 22,000 years ago, the Ishango bone
is a dark brown bone which happens to be the fibula of a baboon, with a sharp piece
of quartz affixed to one end for engraving. It was first thought to be a tally stick, as
it has a series of what has been interpreted as tally marks carved in three columns
running the length of the tool [7].

Twenty thousand years later, the RhindMathematical Papyrus is the best example
of Egyptian mathematics. It dates back to around 1650 BC. Its author is the scribe
Ahmes who indicated that he copied it from an earlier document dating from the 12th
dynasty, around 1800 BC. It is a practical handbook, whose the first part consists
of reference tables and a collection of 20 arithmetic and 20 algebraic problems and
linear equations. Problem32 for instance corresponds (inmodern notation) to solving
x + x

3 + x
4 = 2 for x [8].

Since those early times,mathematics have known great improvements, flourishing
inmanydifferent fields such as geometry, algebra (both linked, thanks to the invention
of Cartesian coordinates by René Descartes [9]), analysis, probability, number and
set theory, and so on.

However, nonlinear problems are very difficult to handle, because, as shown
by Galois’ theory of algebraic equations which provides a connection between
field theory and group theory, it is impossible to solve any polynomial equation
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of degree equal or greater than 5 using only the usual algebraic operations (addition,
subtraction, multiplication, division) and the application of radicals (square roots,
cube roots, etc.) [10].

The beginning of the study of nonlinear equation systems goes back to the original
works of Gaston Julia and Pierre Fatou regarding to one-dimensional maps with a
complex variable, nearly a century ago [11, 12]. Compared to thousands of years of
mathematical development, a century is a very short period. In France, 30 years later,
Igor Gumosky and Christian Mira began their mathematical researches with the help
of a computer in 1958 [13]. They developed very elaborate studies of iterations. One
of the best-known formulas they published is

{
xn+1 = f (xn) + byn
yn+1 = f (xn+1) − xn,

with f (x) = ax + 2(1 − a)
x2

1 + x2
(4.1)

which can be considered as a non-autonomous mapping from the planeR2 onto itself
that exhibits esthetic chaos. Surprisingly, slight variations of the parameter value lead
to very different shapes of the attractor (Fig. 4.1).

In Ukraine, Alexander Sharkovsky found the intriguing Sharkovsky’s order, giv-
ing the periods of periodic orbits of such nonlinear maps in 1962, although these
results were only published in 1964 [14]. In Japan the Hayashi’ School (with disci-
ples like Yoshisuke Ueda and Hiroshi Kawakami), a few years later, was motivated
by applications to electric and electronic circuits. Ikeda proposed the Ikeda attractor
[15, 16] which is a chaotic attractor for u ≥ 0.6 (Fig. 4.2).

{
xn+1 = 1 + u(xn cos tn − yn sin tn)
yn+1 = u(xn sin tn + yn cos tn),

with tn = 0.4 − 6

1 + x2n + y2n
(4.2)

In 1983, Leon O. Chua invented a famous electronic circuit that generates chaos
built with only two capacitors, one inductor and one nonlinear negative resis-
tance [17]. Since then, thousands of papers have been published on the general

Fig. 4.1 Gumowski-Mira attractor for parameter values a = 0.92768 and a = 0.93333
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Fig. 4.2 Ikeda attractor for u = 8.6 and u = 8.9

topic of chaos. However the pace of mathematics is slow, because any progress is
based on strictly rigorous proof. Therefore numerous problems still remain unsolved.
For example, the long-term dynamics of the Hénon map [18], the first example of
a strange attractor for mappings, remains unknown close to the classical parameter
values from a strictly mathematical point of view, 40 years after its original publica-
tion.

Nevertheless, in spite of this lack of rigorous mathematical results, nowadays,
engineers are actively working on applications of chaos for several purposes: global
optimization, genetic algorithms, CPRNG, cryptography, and so on. They use non-
linear maps for practical applications without the need of sophisticated theorems.
During the last 20 years, several chaotic image encryption methods have been pro-
posed in the literature.

Dynamical systems which present a mixing behavior and that are highly sensitive
to initial conditions are called chaotic. Small differences in initial conditions (such
as those due to rounding errors in numerical computation) yield widely diverging
outcomes for chaotic systems. This effect, popularly known as the butterfly effect,
renders long-term predictions impossible in general [19]. This happens even though
these systems are deterministic,meaning that their future behavior is fully determined
by their initial conditions, with no random elements involved. In other words, the
deterministic nature of these systems does not make them predictable. Mastering the
global properties of those dynamical systems is a challenging issue nowadays that
we try to fix by exploring several network topologies of coupled maps.

In this chapter, after giving some prototypical examples of industrial applications
of iterations of nonlinear maps, we focus on the exploration of topologies of coupled
nonlinearmaps that have a very rich potential of complex behavior. Very long compu-
tations onmulticoremachines are used, generating up to one hundred trillion iterates,
in order to assess such topologies.We show the emergence of randomness from chaos
and discuss the promising future of chaos theory for cryptographic security.
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4.3 Miscellaneous Network Topologies of Coupled Chaotic
Maps

4.3.1 Tent-Logistic Entangled Map

In this section we consider only two 1-D maps: the logistic map

fµ(x) ≡ Lµ(x) = 1 − µx2 (4.3)

and the symmetric tent map

fµ(x) ≡ Tµ(x) = 1 − µ|x | (4.4)

both associated to the dynamical system

xn+1 = fµ(xn), (4.5)

where µ is a control parameter which impacts the chaotic degree. Both mappings
are sending the one-dimensional interval [−1,1] onto itself.

Since thefirst study byR.May [20, 21] of the logisticmap in the frameof nonlinear
dynamical systems, both the logistic (4.3) and the symmetric tentmap (4.4) have been
fully explored with the aim to easily generate pseudorandom numbers [22].

However, the collapse of iterates of dynamical systems [23] or at least the existence
of very short periodic orbits, their non-constant invariant measure, and the easily-
recognized shape of the function in the phase space, could lead to avoid the use
of such one-dimensional maps (logistic, baker, tent, etc.) or two-dimensional maps
(Hénon, Standard, Belykh, etc.) as PRNGs (see [24] for a survey). Yet, the very
simple implementation as computer programs of chaotic dynamical systems led some
authors to use them as a base for cryptosystems [25, 26]. Even if the logistic and
tent maps are topologically conjugates (i.e., they have similar topological properties:
distribution, chaoticity, etc.), their numerical behavior differs drastically due to the
structure of numbers in computer realization [27].

As said above, both logistic and tent maps are never used in serious cryptography
articles because they have weak security properties (collapsing effect) if applied
alone. Thus, these maps are often used in modified form to construct CPRNGs
[28–30].

Recently, Lozi et al. proposed innovative methods in order to increase random-
ness properties of the tent and logistic maps over their coupling and sub-sampling
[31–33]. Nowadays, hundreds of publications on industrial applications of chaos-
based cryptography are available [34–37].

In this chapter, we explore more thoroughly the original idea of combining fea-
tures of tent (Tµ) and logistic (Lµ) maps to produce a new map with improved prop-
erties, through combination in several network topologies. This idea was recently
introduced [38, 39] in order to improve previous CPRNGs.
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Fig. 4.3 Auto and
ring-coupling of the T Lµ

and Tµ maps (from [38])

Looking at both Eqs. (4.3) and (4.4), it is possible to reverse the shape of the graph
of the tent map T and to entangle it with the graph of the logistic map L . We obtain
the combined map

fµ(x) ≡ T Lµ(x) = µ|x | − µx2 = µ(|x | − x2) (4.6)

When used in more than one dimension, the T Lµ map can be considered as a two-
variable map

T Lµ(x
(i), x ( j)) = µ(|x (i)| − (x ( j))2), i �= j (4.7)

Moreover, we can combine again the T Lµ map with Tµ in various ways. If with
choose, for instance, a network with a ring shape (Fig. 4.3).

It is possible to define a mapping Mµ,p : J p → J p where Jp = [−1, 1]p ⊂ Rp:

Mµ,p

⎛
⎜⎜⎜⎜⎜⎜⎝

x (1)n

x (2)n
.

.

.

x (p)n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x (1)n+1

x (2)n+1
.

.

.

x (p)n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Tµ(x (1)n ) + T Lµ(x (1)n , x (2)n )

Tµ(x (2)n ) + T Lµ(x (2)n , x (3)n )

.

.

.

Tµ(x
(p)
n ) + T Lµ(x

(p)
n , x (1)n )

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.8)

However, if used in this form, system (4.8) has unstable dynamics and iterated
points x (1)n , x (2)n , . . . , x (p)n quickly spread out. Therefore, to solve the problemof keep-
ing dynamics in the torus J p = [−1, 1]p ⊂ Rp, the following injection mechanism
has to be used in conjunction with (4.8)

{
if (x (i)n+1 < −1) then add 2

if (x (i)n+1 > 1) then subtract 2
, i = 1, 2, . . . , p. (4.9)
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Fig. 4.4 Return mechanism
from the [−2, 2]p torus to
[−1, 1]p (from [38])

Under this injection mechanism, for 1 ≤ i ≤ p, points come back from [−2, 2]p

to [−1, 1]p (Fig. 4.4).
The T Lµ function is a powerful tool to change dynamics. Used in conjunction

with Tµ, the map T Lµ makes it possible to establish mutual influence between
system components x (i)n in Mµ,p. This multidimensional coupled mapping is inter-
esting because it performs contraction and distance stretching between components,
improving chaotic distribution.

The coupling of components has an excellent effect in achieving chaos, because
they interact with global system dynamics, being a part of them. Component inter-
action has a global effect. In order to study this new mapping, we use a graphical
approach, however other theoretical assessing functions are also involved.

Note that system (4.8) can be made more generic by introducing constants ki

which generalize considered topologies. Let k = (k1, k2, . . . , k p), we define

M
k
µ,p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x (1)n

x (2)n

.

.

.

x (p)n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x (1)n+1

x (2)n+1
.

.

.

x (p)n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Tµ(x
(1)
n ) + k1 × T Lµ(x

(i)
n , x ( j)n ), i, j = (1, 2) or (2, 1)

Tµ(x
(2)
n ) + k2 × T Lµ(x

(i)
n , x ( j)n ) i, j = (2, 3) or (3, 2)

.

.

.

Tµ(x
(p)
n ) + k p × T Lµ(x

(i)
n , x ( j)n ) i, j = (p, 1) or (1, p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.10)

System (4.10) is called alternate if ki = (−1)i or ki = (−1)i+1, 1 ≤ i ≤ p, or
non-alternate if ki = +1, or ki = −1. It can be a mix of alternate and non-alternate
if ki = +1 or −1 randomly.
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4 The Challenging Problem of Industrial Applications … 51

Table 4.1 The sixteen maps defined by Eq. (4.11)

Case k1 k2 i j i’ j’

#1 +1 +1 1 2 1 2

#2 +1 −1 1 2 1 2

#3 −1 +1 1 2 1 2

#4 −1 −1 1 2 1 2

#5 +1 +1 2 1 2 1

#6 +1 −1 2 1 2 1

#7 −1 +1 2 1 2 1

#8 −1 −1 2 1 2 1

#9 +1 +1 1 2 2 1

#10 +1 −1 1 2 2 1

#11 −1 +1 1 2 2 1

#12 −1 −1 1 2 2 1

#13 +1 +1 2 1 1 2

#14 +1 −1 2 1 1 2

#15 −1 +1 2 1 1 2

#16 −1 −1 2 1 1 2

4.3.2 Two-Dimensional Network Topologies

Wefirst consider the simplest coupling case, inwhich only two equations are coupled.
The first condition needed to obtain a multidimensional mapping, in the aim of
building a new CPRNG, is to obtain excellent uniform distribution of the iterated
points. The second condition is that the CPRNG must be assessed positively by the
NIST tests [40]. In [38, 39] this two-dimensional case is studied in detail. Using a
bifurcation diagram and computation of Lyapunov exponents, it is shown that the
best value for the parameter is µ = 2. Therefore, in the rest of this chapter we use
this parameter value and we only briefly recall the results found with this value in
both of those articles. The general form of Mk

2,2 is then

Mk
2,2

(
x (1)n

x (2)n

)
=

(
x (1)n+1

x (2)n+1

)
=

(
T2(x (1)n ) + k1 × T L2(x (i)n , x ( j)n )

T2(x (2)n ) + k2 × T L2(x (i
′)

n , x ( j
′)

n )

)
(4.11)

with i, j, i ′, j ′ = 1 or 2, i �= j , and i ′ �= j ′.
Considering this general form, it is possible to define 16 differentmaps (Table4.1).
Among this set of maps, we study case #3 and case #13. The map of case #3 is

called Single-Coupled alternate due to the shape of the corresponding network and
denoted T T LSC

2 ,
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T T LSC
2 =

⎧⎨
⎩
x(1)n+1 = 1 − 2|x(1)n | − 2(|x(1)n | − (x(2)n )2) = T2(x

(1)
n ) − T L2((x

(1)
n ), (x(2)n ))

x(2)n+1 = 1 − 2|x(2)n | + 2(|x(1)n | − (x(2)n )2) = T2(x
(2)
n ) + T L2((x

(1)
n ), (x(2)n ))

(4.12)
and case #13 is called Ring-Coupled non-alternate and denoted T T LRC

2 ,

T T LRC
2 =

⎧⎨
⎩
x(1)n+1 = 1 − 2|x(1)n | + 2(|x(2)n | − (x(1)n )2) = T2(x

(1)
n ) + T L2((x

(2)
n ), (x(1)n ))

x(2)n+1 = 1 − 2|x(2)n | + 2(|x(1)n | − (x(2)n )2) = T2(x
(2)
n ) + T L2((x

(1)
n ), (x(2)n ))

(4.13)

Both systems were selected because they have balanced contraction and stretching
processes between components. They allow achieving uniform distribution of the
chaotic dynamics. Equations (4.12) and (4.13) are used, of course, in conjunction
with injection mechanism (4.9).

The largest torus where points mapped by (4.12) and (4.13) are sent is [−2, 2]2.
The confinement from torus [−2, 2]2 to torus [−1, 1]2 of the dynamics obtained by
thismechanism is shown in Figs. 4.5 and 4.6: dynamics cross from the negative region
(in blue) to the positive one, and conversely to the negative region, if the points stand
in the positive regions (in red). Through this operation, the system’s dynamics are
trapped inside [−1, 1]2. In addition, after this operation is done, the resulting system
exhibitsmore complex dynamicswith additional nonlinearity, which is advantageous
for chaotic encryption (since it improves security).

A careful distribution analysis of both T T LSC
2 and T T LRC

2 has been performed
using approximated invariant measures.

Fig. 4.5 Injection mechanism of the iterates from torus [−2, 2]2 to torus [−1, 1]2. If x (1)n > 1 then
x (1)n ≡ x (1)n − 2; if x (1)n < −1 then x (1)n ≡ x (1)n + 2 (from [38])
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Fig. 4.6 If x (2)n > 1 then x (2)n ≡ x (2)n − 2; if x (2)n < −1 then x (2)n ≡ x (2)n + 2 (from [38])

4.3.3 Approximated Invariant Measures

We recall in this section the definition of approximated invariant measures which are
important tools for assessing the uniform distribution of iterates. We have previously
introduced them for the first studies of the weakly coupled symmetric tent map [22].

We first define an approximation PM,N (x) of the invariant measure, also called
the probability distribution function linked to the one-dimensional map f (Eq. (4.5))
when computed with floating numbers (or numbers in double precision). To this
goal, we consider a regular partition of M small intervals (boxes) ri of J = [−1, 1]
defined by

si = −1 + 2i

M
, i = 0,M, (4.14)

ri = [si , si+1[, i = 0,M − 2, (4.15)

rM−1 = [sM−1, 1], (4.16)

J =
M−1⋃
0

ri . (4.17)

The length of each box ri is equal to

si+1 − si = 2

M
(4.18)

All iterates f (n)(x) belonging to these boxes are collected (after a transient regime
of Q iterations decided a priori, i.e., the first Q iterates are discarded). Once the
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computation of N + Q iterates is completed, the relative number of iterates with
respect to N/M in each box ri represents the value PN (si ). The approximated PN (x)
defined in this article is therefore a step function, with M steps. Since M may vary,
we define

PM,N (si ) = 1

2

M

N
(#ri ) (4.19)

where #ri is the number of iterates belonging to the interval ri and the constant 1/2
allows the normalisation of PM,N (x) on the interval J .

PM,N (x) = PM,N (si ), ∀ x ∈ ri (4.20)

In the case of p-coupled maps, we are more interested by the distribution of each

component x (1), x (2), . . . , x (p) of the vector X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x (1)

x (2)

.

.

.

x (p)

⎞
⎟⎟⎟⎟⎟⎟⎠

rather than by the distri-

bution of the variable X itself in J p. We then consider the approximated probability
distribution function PM,N (x ( j)) associated to one component of X . In this chapter,
we use either Ndisc for M or Niter for N , depending on which is more explicit. The
discrepancies E1 (in norm L1), E2 (in norm L2), and E∞ (in norm L∞) between
PNdisc,Niter (x) and the Lebesgue measure, which is the invariant measure associated
to the symmetric tent map, are defined by

E1,Ndisc,Niter (x) = ‖PNdisc,Niter (x) − 0.5‖L1 (4.21)

E2,Ndisc,Niter (x) = ‖PNdisc,Niter (x) − 0.5‖L2 (4.22)

E∞,Ndisc,Niter (x) = ‖PNdisc,Niter (x) − 0.5‖L∞ (4.23)

In the sameway, an approximation of the correlation distribution functionCM,N (x, y)
is obtained by numerically building a regular partition of M2 small squares (boxes)
of J 2, embedded in the phase subspace (xl , xm)

si = −1 + 2i

M
, t j = −1 + 2 j

M
, i, j = 0,M (4.24)

ri, j = [si , si+1[×[t j , t j+1[, i, j = 0,M − 2 (4.25)

rM−1, j = [sM−1, 1] × [t j , t j+1], j = 0,M − 2 (4.26)

ri,M−1 = [si , si+1[×[tM−1, 1], j = 0,M − 2 (4.27)

rM−1,M−1 = [sM−1, 1] × [tM−1, 1] (4.28)
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The measure of the area of each box is

(si+1 − si ).(ti+1 − ti ) =
(

2

M

)2

(4.29)

Once N + Q iterated points (xln, x
m
n ) belonging to these boxes are collected, the

relative number of iterates with respect to N/M2 in each box ri, j represents the value
CN (si , t j ). The approximated probability distribution functionCN (x, y) defined here
is then a two-dimensional step function, with M2 steps. Since M can take several
values in the next sections, we define

CM,N (si , t j ) = 1

4

M2

N
(#ri, j ) (4.30)

where #ri, j is the number of iterates belonging to the square ri, j and the constant 1/4
allows the normalisation of CM,N (x, y) on the square J 2.

CM,N (x, y) = CM,N (si , t j ) ∀(x, y) ∈ ri, j (4.31)

The discrepancies EC1 (in norm L1), EC2 (in norm L2) and EC∞ (in norm L∞)
between CNdisc,Niter (x, y) and the uniform distribution on the square are defined by

EC1,Ndisc,Niter (x, y) = ‖CNdisc,Niter (x, y) − 0.25‖L1 (4.32)

EC2,Ndisc,Niter (x, y) = ‖CNdisc,Niter (x, y) − 0.25‖L2 (4.33)

EC∞,Ndisc,Niter (x, y) = ‖CNdisc,Niter (x, y) − 0.25‖L∞ (4.34)

Finally, let ACNdisc,Niter be the autocorrelation distribution function which is the
correlation functionCNdisc,Niter of (4.31), defined in the delay space (x

(i)
n , x (i)n+1) instead

of the phase (xl , xm) space. We define in the same manner than (4.32), (4.33), and
(4.34) EC1,Ndisc,Niter (x, y), EC2,Ndisc,Niter (x, y), and EC∞,Ndisc,Niter (x, y).

4.3.4 Study of Randomness of TTLSC
2 and TTLRC

2 ,
and Other Topologies

Using numerical computations, we assess the randomness properties of the
two-dimensional maps T T LSC

2 and T T LRC
2 . If all requirements 1–8 of Fig. 4.7

are verified, the dynamical systems associated to those maps can be considered
as pseudorandom and their application to cryptosystems is possible.
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Fig. 4.7 The main criteria for assessing CPRNG (from [34])

Fig. 4.8 Phase space
behavior of T T LRC

2 non
alternative (4.17), plot of
20, 000 points

Whenever one among the eight criteria is not satisfied for a given map, one cannot
consider that the associated dynamical system is a good CPRNG candidate. As said
above, when µ = 2, the Lyapunov exponents of both considered maps are positive.

In the phase space, we plot the iterates in the system of coordinates x (1)n versus
x (2)n in order to analyze the density of the points’ distribution. Based on such an
analysis, it is possible to assess the complexity of the behavior of dynamics, noticing
any weakness or inferring on the nature of randomness. We also use the approximate
invariant measures to assess more precisely the distribution of iterates.

The graphs of the attractor in phase space for the T T LRC
2 non-alternate (Fig. 4.8)

and T T LSC
2 alternate (Fig. 4.9) maps are different. The T T LSC

2 map has well-
scattered points in the whole pattern, but there are somemore “concentrated” regions
forming curves on the graph. Instead, the map T T LRC

2 has good repartition.
Some other numerical results we do not report in this chapter show that even if

those maps have good random properties, it is possible to improve mapping random-
ness by modifying slightly network topologies.
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Fig. 4.9 Phase space
behavior of T T LSC

2
alternative (4.18), plot of
20, 000 points

Equation (4.12) can be rewritten as

T T LSC
2 (x (1)n , x (2)n ) =

{
x (1)n+1 = 1 + 2(x (2)n )2 − 4|x (1)n |
x (2)n+1 = 1 − 2(x (2)n )2 + 2(|x (1)n | − |x (2)n |) (4.35)

In [38], it is shown that if the impact of component x (1)n is reduced, randomness
is improved. Hence, the following MTT LSC

2 map is introduced

MTT LSC
2 (x (1)n , x (2)n ) =

{
x (1)n+1 = 1 + 2(x (2)n )2 − 2|x (1)n |
x (2)n+1 = 1 − 2(x (2)n )2 + 2(|x (1)n | − |x (2)n |) (4.36)

and the injection mechanism (4.9) is used as well, but it is restricted to three phases:

⎧⎪⎨
⎪⎩
if (x (1)n+1 > 1) then subtract 2

if (x (2)n+1 < −1) then add 2

if (x (2)n+1 > 1) then subtract 2

(4.37)

This injection mechanism allows the regions containing iterates to match excel-
lently (Fig. 4.10).

The change of topology leading to MTT LSC
2 greatly improves the density of iter-

ates in the phase space (Fig. 4.11) where 109 points are plotted. The point distribution
of iterates in phase delay for the variable x (2) is quite good as well (Fig. 4.12). On
both pictures, a grid of 200 × 200 boxes is generated to use the box counting method
defined in Sect. 4.3.3. Moreover, the largest Lyapunov exponent is equal to 0.5905,
indicating a strong chaotic behavior.
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Fig. 4.10 Injection
mechanism (4.21) of the
MTT LSC

2 alternative map
(From [38])

Fig. 4.11 Approximate
density function of the
MTT LSC

2 alternative map,
on the (x (1), x (2)) plane
(from [38])

However, regarding the phase delay for the variable x (1), results are not satisfac-
tory. We have plotted in Fig. 4.13 109 iterates of MTT LSC

2 in the delay plane, and
in Fig. 4.14 the same iterates using the counting box method.

When such a great number of iterates is computed, one has to be cautious with raw
graphical methods because irregularities of the density repartition are masked due to
the huge number of plotted points. Therefore, these figures highlight the necessity
of using the tools we have defined in Sect. 4.3.3.

Nevertheless, NIST tests were used to check randomness properties of MTT LSC
2 .

Since they only require binary sequences, we generated 4 × 106 iterates whose
5 × 105 first ones were cut off. The rest of the sequence was converted to binary
form according to the IEEE-754 standard (32-bit single-precision floating point).
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Fig. 4.12 Approximate
density function of the
MTT LSC

2 alternative map,

on the (x (1)n , x (1)n+1) plane
(from [38])

Fig. 4.13 Plot of one billion
iterates of MTT LSC

2 in the
delay plane

Both variables of the generator successfully passed NIST tests, demonstrating strong
randomness and robustness against numerous statistical attacks with respect to these
tests (Figs. 4.15 and 4.16).

As said in the introduction, networks of coupled chaotic maps offer quasi-infinite
possibilities to generate parallel streams of pseudorandom numbers. For example,
in [39], the following modification of MTT LSC

2 is also studied and shows good
randomness properties

NTT LSC
2 (x (1)n , x (2)n ) =

⎧⎪⎨
⎪⎩
x (1)n+1 = 1 − 2|x (2)n | = T2(x (2)n )

x (2)n+1 = 1 − (2x (2)n )2 − 2(|x (2)n | − |x (1)n |)
= L2(x (2)n ) + T2(x (2)n ) − T2(x (1)n )

(4.38)
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Fig. 4.14 Plot of one billion iterates of MTT LSC
2 using the counting box method

Fig. 4.15 Successful results of N I ST tests for the MTT LSC
2 alternate map for the variable x (1)

(from [38])

4.4 Numerical Study of a Particular Realisation of the
Mk

µ, p Map in Higher Dimension

4.4.1 Mapping in Higher Dimension

Higher dimensional systems make it possible to achieve better randomness and
uniform point distribution, because more perturbations and nonlinear mixing are
involved. In this section, we focus on a particular realization of the Mk

µ,p map (4.10)
from dimension two to dimension five.
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Fig. 4.16 N I ST tests for the variable x (2) (from [38])

Usually, three or four dimensions are complex enough to create robust random
sequences as we show here. Thus, it is advantageous if the system can increase its
dimension. Since the MTT LSC

2 alternative map cannot be nested in higher dimen-
sions, we describe how to improve randomness and to obtain the best distribution
of points, and how to produce more complex dynamics than the T T LSC

2 (x (2), x (1))
alternative map in dimension greater than 2. Let

T T LRC,pD
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x (1)n+1 = 1 − 2|x (1)n | + 2(|x (2)n | − (x (1)n )2)

x (2)n+1 = 1 − 2|x (2)n | + 2(|x (3)n | − (x (2)n )2)
...

x (p)n+1 = 1 − 2|x (p)n | + 2(|x (1)n | − (x (p)n )2)

(4.39)

be this realization.
We show in Figs. 4.17 and 4.18 successful NIST tests for T T LRC,pD

2 in 3-D and
4-D, for the variable x (1).

Fig. 4.17 N I ST test for T T LRC,3D
2 for x (1) (from [38])
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Fig. 4.18 N I ST test for T T LRC,4D
2 for x (1) (from [38])

4.4.2 Numerical Experiments

All NIST tests for dimensions three to five for every variable are successful, showing
that these realizations in 3-D up to 5-D are good CPRNGs. In addition to those
tests, we study the mapping more thoroughly, far beyond the NIST tests which are
limited to a few million iterates and which seem not robust enough for industrial
mathematics, although they are routinely used worldwide.

In order to check the portability of the computations on multicore architectures,
we have implemented all our numerical experiments on several different multicore
machines.

4.4.2.1 Checking the Uniform Repartition of Iterated Points

We first compute the discrepancies E1 (in norm L1), E2 (in norm L2)n and E∞ (in
norm E∞) between PNdisc,Niter (x) and the Lebesgue measure which is the uniform
measure on the interval J = [−1, 1]. We set M = Niter = 200, and vary the number
Niter of iterated points in the range 104 to 1014. From our knowledge, this article is
the first one that checks such a huge number of iterates (in conjunction with [39]).
We compare E1,200,Niter (x

(1)) for T T LRC,pD
2 with p = 2 to 5 (Table4.2, Fig. 4.19).

As shown in Fig. 4.19, E1,200,Niter (x (1)) decreases steadily when Niter increases.
However, the decreasing process is promptly (with respect to Niter ) bounded below
for p = 2. This is also the case for other values of p, however, the boundary decreases
with p, therefore showing better randomness properties for higher dimensional map-
pings.

Table4.3 compares x (1), x (2), …,x (p) for T T LRC,5D
2 , for different values of Niter .

It is obvious that the same quality of randomness is obtained for each one of them,
contrarily to the results obtained for MTT LSC

2 .
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Table 4.2 E1,200,Niter (x
(1)) for T T LRC,pD

2 with p = 2 to 5

Niter p = 2 p = 3 p = 4 p = 5

104 1.5631 1.5553 1.5587 1.5574

105 0.55475 0.5166 0.51315 0.5154

106 0.269016 0.159306 0.158548 0.158436

107 0.224189 0.050509 0.0501934 0.0505558

108 0.219427 0.0164173 0.0159175 0.0160018

109 0.218957 0.00640196 0.00505021 0.00509754

1010 0.218912 0.00420266 0.00160505 0.00160396

1011 0.218913 0.00392507 0.000513833 0.000505591

1012 0.218913 0.00389001 0.000189371 0.000160547

1013 0.218914 0.00388778 0.000112764 5.04473e-05

1014 0.218914 0.003887 0.000101139 1.59929e-05

Fig. 4.19 Graph of E1,200,Niter (x
(1)) for T T LRC,pD

2 with p = 2 to 5, with respect to Niter (hori-
zontal axis, logarithmic value)

Table 4.3 E1,200,Niter (x
(i)) for T T LRC,5D

2 for i = 1 to 5

Niter x (1) x (2) x (3) x (4) x (5)

104 1.5574 1.55725 1.556 1.5585 1.55925

105 0.5154 0.51061 0.5098 0.51494 0.51293

106 0.158436 0.159162 0.159564 0.159864 0.159926

107 0.0505558 0.0504866 0.0503746 0.0505688 0.0505268

108 0.0160018 0.0158328 0.0158498 0.0160336 0.01591

109 0.00509754 0.0050514 0.00505756 0.00501442 0.00503467

1010 0.00160396 0.00159738 0.00160099 0.00159454 0.00159916

1011 0.000505591 0.000506327 0.000507006 0.000504258 0.000507526

1012 0.000160547 0.000159192 0.000160014 0.000159213 0.000159159

1013 5.04473e-05 5.03574e-05 5.05868e-05 5.04694e-05 5.01681e-05

1014 1.59929e-05 1.60291e-05 1.59282e-05 1.59832e-05 1.60775e-05
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Table 4.4 Comparison between E1,200,Niter (x
(1)), E2,200,Niter (x

(1)), and E∞,200,Niter (x
(1)) for

T T LRC,5D
2

Niter Norm L1 Norm L2 Norm L∞
104 1.5574 2.0038 19

105 0.5154 0.635522 3.4

106 0.158436 0.199731 0.96

107 0.0505558 0.0633486 0.256

108 0.0160018 0.02007 0.0896

109 0.00509754 0.00638219 0.02688

1010 0.00160396 0.00200966 0.008672

1011 0.000505591 0.000631963 0.0027444

1012 0.000160547 0.000201102 0.0008602

1013 5.04473e-05 6.32233e-05 0.00026894

1014 1.59929e-05 2.00533e-05 9.89792e-05

Fig. 4.20 Comparison between E1,200,Niter (x
(1)), E2,200,Niter (x

(1)), and E∞,200,Niter (x
(1)) (verti-

cal axis) for T T LRC,5D
2 with respect to Niter (horizontal axis, logarithmic value)

The comparisons between E1,200,Niter (x
(1)), E2,200,Niter (x

(1)), and E∞,Niter (x
(1)) for

T T LRC,5D
2 in Table4.4 and Fig. 4.20 show that

E1,200,Niter (x
(1)) < E2,200,Niter (x

(1)) < E∞,Niter (x
(1)) (4.40)

for every value of Niter .

4.4.2.2 Autocorrelation Study in the Delay Space

In this section, we assess autocorrelation errors EAC1,Ndisc,Niter (x, y),
EAC2,Ndisc,Niter (x, y), and EAC∞,disc,Niter (x, y), defined by Equations (4.32), (4.33),
and (4.34), in the delay space. As in Sect. 4.4.2.1, we have performed the experi-
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Table 4.5 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,2D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.55955 1.57265 1.5515

105 0.55199 0.699355 0.547539

106 0.269654 0.519675 0.250936

107 0.224104 0.49941 0.198634

108 0.21938 0.497011 0.193007

109 0.218949 0.496766 0.192309

1010 0.218914 0.496808 0.192253

1011 0.218915 0.496793 0.192247

1012 0.218913 0.496797 0.192245

1013 0.218914

1014 0.218914

Table 4.6 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,3D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.55575 1.5528 1.5489

105 0.51516 0.512514 0.514889

106 0.160148 0.158843 0.159728

107 0.0505148 0.0515855 0.0550998

108 0.0164343 0.0190644 0.0269715

109 0.00640451 0.0113919 0.0221408

1010 0.00420824 0.0103092 0.0216388

1011 0.003926197 0.0102078 0.0215621

1012 0.00388937 0.0101965 0.0215576

1013 0.00388768

1014 0.003887

ments for M = 20 to 20, 000, however, in this chapter, we only present the results for
M = 200. We first compare EAC1,200,Niter (x

(1)
n , x (1)n+1) with EAC1,200,Niter (x

(1)
n , x (1)n+2)

and EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,pD

2 when the dimension of the system is
within the range p = 2 to 5 (Tables4.5, 4.6, 4.7 and 4.8). It is possible to see that
better randomness properties are obtained for higher dimensional mappings.

The comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC2,200,Niter (x

(1)
n , x (1)n+1), and

EAC∞,200,Niter (x
(1)
n , x (1)n+1) for T T LRC,5D

2 in Table4.9 shows that numerically
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Table 4.7 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,4D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.5571 1.5518 1.54985

105 0.51115 0.510784 0.511188

106 0.158472 0.159263 0.159292

107 0.0503522 0.0506053 0.0506126

108 0.0159245 0.0159484 0.015918

109 0.00502109 0.00502642 0.00502197

1010 0.00159193 0.00161135 0.00162232

1011 0.00051438 0.000532052 0.0005489

1012 0.000189418 0.000217634 0.000276982

1013 0.000112771

1014 0.000101139

Table 4.8 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,5D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.5577 1.5531 1.54975

105 0.51372 0.511144 0.513918

106 0.15872 0.158775 0.158022

107 0.0503658 0.0504011 0.0501632

108 0.0159765 0.0159229 0.0159837

109 0.00509015 0.00502869 0.00503495

1010 0.00159581 0.00159398 0.00158143

1011 0.000505068 0.000506309 0.000502137

1012 0.000160547 0.000159144 0.000159246

1013 5.0394e-05

1014 1.59929e-05

EAC1,200,Niter (x
(1)
n , x (1)n+1) < EAC2,200,Niter (x

(1)
n , x (1)n+1) < EAC∞,200,Niter (x

(1)
n , x (1)n+1)

(4.41)

Equation (4.41) is not only valid for M = 200, but also for other values of M and
every component of X .

In order to illustrate the numerical results displayed in these tables, we plot in
Fig. 4.21 the repartition of iterates of T T LRC,5D

2 in the delay plane (x (1)n , x (1)n+1),
using the box counting method. On a grid of 200 × 200 boxes (Niter = M = 200),
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Table 4.9 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC2,200,Niter (x

(1)
n , x (1)n+1), and

EAC∞,200,Niter (x
(1)
n , x (1)n+1) for T T LRC,5D

2

Niter Norm L1 Norm L2 Norm L∞
104 1.5577 2.0012 19

105 0.51372 0.633959 3.8

106 0.15872 0.199793 0.88

107 0.0503658 0.0631425 0.26

108 0.0159765 0.0200503 0.084

109 0.00509015 0.00636626 0.02528

1010 0.00159581 0.00199936 0.008604

1011 0.000505068 0.000633088 0.0025432

1012 0.000160547 0.000201102 0.0008602

1013 5.0394e-05 6.31756e-05 0.000280168

1014 1.59929e-05 2.00533e-05 9.89792e-05

Fig. 4.21 Repartition of iterates in the delay plane (x (1)n , x (1)n+1) of T T LRC,5D
2 with the box counting

method; 106 points are generated on a grid of 200 × 200 boxes, the horizontal axis is x (1)n , and the
vertical axis is x (1)n+1

we have generated 106 points. The horizontal axis is x (1)n , and the vertical axis is
x (1)n+1. In order to check very carefully the repartition of the iterates of T T LRC,5D

2 ,

we have also plotted the repartition in the delay planes (x (1)n , x (1)n+2), (x
(1)
n , x (1)n+3), and

(x (1)n , x (1)n+4) (Figs. 4.22, 4.23, and 4.24). This repartition is uniform everywhere as
shown also in Table4.8.

We find the same regularity for every component x (2), x (3), x (4), and x (5), as shown
in Figs. 4.25, 4.26, 4.27, 4.28, and in Table4.10.
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Fig. 4.22 Repartition of
iterates in the delay plane
(x (1)n , x (1)n+2) of T T LRC,5D

2 ,
as in Fig. 4.21

Fig. 4.23 Repartition of
iterates in the delay plane
(x (1)n , x (1)n+3) of T T LRC,5D

2 ,
as in Fig. 4.21

4.4.2.3 Autocorrelation Study in the Phase Space

Finally, in this section, we assess the autocorrelation errors EC1,Ndisc,Niter (x, y),
EC2,Ndisc,Niter (x, y), and EC∞,Ndisc,Niter (x, y), defined byEqs. (4.32), (4.33), and (4.34),
in the phase space. We checked all combinations of the components. Due to
space limitations, we only provide part of the numerical computations we have
performed to carefully check the randomness of T T LRC,pD

2 for p = 2, 5 and
i = 1, p. Like in the previous section, we only provide the results for M = 200. We
first compare EC1,200,Niter (x

(1)
n , x (2)n ), EC2,200,Niter (x

(1)
n , x (2)n ), and EC∞,200,Niter (x

(1)
n ,

x (2)n ) (Table4.11), and our other results verified that
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Fig. 4.24 Repartition of
iterates in the delay plane
(x (1)n , x (1)n+4) of T T LRC,5D

2 ,
as in Fig. 4.21

Fig. 4.25 Repartition of
iterates in the delay plane
(x (2)n , x (2)n+1) of T T LRC,5D

2 ;
box counting method, 106

points are generated on a
grid of 200 × 200 boxes, the
horizontal axis is x (2)n , and
the vertical axis is x (2)n+1

EC1,Ndisc,Niter (x
(1)
n , x (2)n ) < EC2,Ndisc,Niter (x

(1)
n , x (2)n ) < EC∞,Ndisc,Niter (x

(1)
n , x (2)n )

(4.42)

We have also assessed the autocorrelation errors EC1,Ndisc,Niter (x
(i)
n , x ( j)n ) for i, j =

1, 5, i �= j , and various values of the number of iterates for T T LRC,5D
2 (Table4.12).

We have performed the same experiments for EC1,Ndisc,Niter (x
(1)
n , x (2)n ) for p = 1, 5

(Table4.13).
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Fig. 4.26 Repartition of
iterates in the delay plane
(x (3)n , x (3)n+1) of T T LRC,5D

2 ,
as in Fig. 4.25

Fig. 4.27 Repartition of
iterates in the delay plane
(x (4)n , x (4)n+1) of T T LRC,5D

2 ,
as in Fig. 4.25

Our numerical experiments all show a similar trend: T T LRC,pD
2 is a good candi-

date for a CPRNG, and the randomness performance of such mappings increases in
higher dimensions.

4.4.2.4 Checking the Influence of Discretization in Computation
of Approximated Invariant Measures

In order to verify that the computations we have performed using the discretization
M = Ndisc = 200 of the phase space and the delay space in the numerical experi-
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Fig. 4.28 Repartition of
iterates in the delay plane
(x (5)n , x (5)n+1) of T T LRC,5D

2 ,
as in Fig. 4.25

Table 4.10 Comparison between EAC1,200,Niter (x
(i)
n , x (i)n+1), EAC1,200,Niter (x

(i)
n , x (i)n+2), and

EAC1,200,Niter (x
(i)
n , x (i)n+3) for T T LRC,5D

2 for i = 1 to 5

Niter i (x (i)n , x (i)n+1) (x (i)n , x (i)n+2) (x (i)n , x (i)n+3)

104 1 1.5577 1.5531 1.54975

2 1.5577 1.5526 1.5508

3 1.5577 1.5542 1.54445

4 1.5577 1.5533 1.5468

5 1.5577 1.5541 1.5504

108 1 0.0159765 0.0159229 0.0159837

2 0.0159765 0.0159999 0.0158293

3 0.0159765 0.0159047 0.0159605

4 0.0159765 0.0159269 0.0159282

5 0.0159765 0.0160591 0.0159274

1012 1 0.000160547 0.000159144 0.000159246

2 0.000159192 0.000159635 0.000159064

3 0.000160014 0.00015892 0.000160555

4 0.000159213 0.000159696 0.000159215

5 0.000159159 0.000158831 0.000160007

ments do not introduce artifacts, we have performed the same computations varying
also the value of M = Ndisc = 20, 200, 2000, 20000, for T T LRC,4D

2 (Table4.14 and
Fig. 4.29). The results show a normal regularity following the increasing value of
Ndisc.
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Table 4.11 Comparison between EAC1,200,Niter (x
(1)
n , x (2)n ), EAC2,200,Niter (x

(1)
n , x (2)n ), and

EAC∞,200,Niter (x
(1)
n , x (2)n ) for T T LRC,5D

2

Niter Norm L1 Norm L2 Norm L∞
104 1.55915 2.00818 15

105 0.514 0.633448 3.4

106 0.158058 0.198943 0.96

107 0.0505508 0.0634574 0.308

108 0.0160114 0.0200538 0.0852

109 0. 00507915 0.0063595 0.02716

1010 0.0015927 0.00199644 0.008128

1011 0.000506086 0.000633916 0.0025712

1012 0.000158795 0.000199203 0.00089288

1013 5.03666e-05 6.30356e-05 0.000270156

1014 1.60489e-05 2.00692e-05 8.53124e-05

Table 4.12 Comparison between EC1,200,Niter (x
(i)
n , x ( j)n ), for i, j = 1 to 5, i �= j , and for various

values of number of iterates for T T LRC,5D
2

Niter 106 108 1010 1012 1014

x(1), x(2) 0.158058 0.0160114 0.0015927 0.000158795 1.60489e-05

x(1), x(3) 0.158956 0.0159261 0.00159456 0.000159326 1.73852e-05

x(1), x(4) 0.15943 0.0160321 0.00160091 0.000160038 1.74599e-05

x(1), x(5) 0.159074 0.0158962 0.00160204 0.000159048 1.59133e-05

x(2), x(3) 0.15825 0.0159754 0.00159442 0.000160659 1.60419e-05

x(2), x(4) 0.159248 0.0159668 0.00159961 0.000160313 1.73507e-05

x(2), x(5) 0.15889 0.0160116 0.0015934 0.000160462 1.73496e-05

x(3), x(4) 0.159136 0.0158826 0.00158123 0.000158758 1.59451e-05

x(3), x(5) 0.159216 0.0159341 0.00161268 0.000159079 1.75013e-05

x(4), x(5) 0.158918 0.0160516 0.0016008 0.000159907 1.59445e-05

4.4.2.5 Computation Time of PRNs

The numerical experiments performed in this section have involved several multicore
machines. We show in Table4.15 different computation times (in seconds) for the
generation of Niter PRNs for T T LRC,pD

2 with p = 2 to 5, and various values of the
number of iterates (Niter ). The machine used is a laptop computer with a Core i7
4980HQ processor with eight logical cores.

Table4.16 shows the computation time of only one PRN in the same experiment.
Time is expressed in 10−10 s.

p. 30



Table 4.13 Comparison between EC1,200,Niter (x
(i)
n , x ( j)n ), for T T LRC,pD

2 for p = 2, . . . , 5, and
various values of the number of iterates

Niter p = 2 p = 3 p = 4 p = 5

104 1.5624 1.5568 1.55725 1.55915

105 0.57955 0.5163 0.51083 0.514

106 0.330084 0.160282 0.158256 0.158058

107 0.294918 0.0509584 0.0504002 0.0505508

108 0.291428 0.0176344 0.0157924 0.0160114

109 0.291012 0.00911485 0.00506758 0.00507915

1010 0.291025 0.00783204 0.00159046 0.0015927

1011 0.291033 0.00771201 0.000521561 0.000506086

1012 0.291036 0.00769998 0.000209109 0.000158795

1013 0.00769867 0.000150031 5.03666e-05

1014 0.00769874 0.000144162 1.60489e-05

Table 4.14 Comparison between EC1,Ndisc,Niter (x
(1)
n , x (2)n ),for T T LRC,4D

2 M = Ndisc =
20, 200, 2000, 20000, and various values of the number of iterates

Niter Ndisc = 20 Ndisc = 200 Ndisc = 2000 Ndisc = 20000

104 0.1508 1.55725 1.99501 1.99995

105 0.04894 0.51083 1.95066 1.9995

106 0.015544 0.158256 1.55759 1.99501

107 0.005487 0.0504002 0.512542 1.95062

108 0.00159524 0.0157924 0.158971 1.55763

109 0.000517392 0.00506758 0.0504555 0.513028

1010 0.000205706 0.00159046 0.0159528 0.159054

1011 0.000147202 0.000521561 0.0050481 0.0504422

1012 0.000209109

1013 0.000150031

1014 0.000144162

Fig. 4.29 Comparison
between EC1,Ndisc,Niter

(x (1)n , y(2)n ), for T T LRC,4D
2 ,

M = Ndisc = 20, 200, 2000,
20, 000, and various values
of the number of iterates
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Table 4.15 Comparison of computation times (in second) for the generation of Niter PRNs for
T T LRC,pD

2 with p = 2 to 5, and various values of Niter iterates

Niter p = 2 p = 3 p = 4 p = 5

104 0.000146 0.000216 0.000161 0.000142

105 0.000216 0.000277 0.000262 0.000339

106 0.001176 0.002403 0.001681 0.002467

107 0.011006 0.016195 0.018968 0.022351

108 0.113093 0.161776 0.166701 0.227638

109 1.09998 1.58949 1.60441 2.29003

1010 11.4901 18.0142 18.537 26.1946

1011 123.765 183.563 185.449 257.244

Table 4.16 Comparison of computation times (in 10−10 s) for the generation of only one PRN for
T T LRC,pD

2 with p = 2 to 5, and various values of the number of iterates

Niter p = 2 p = 3 p = 4 p = 5

104 73.0 72.0 40.25 28.4

105 10.8 9.233 6.55 6.78

106 5.88 8.01 4.2025 4.934

107 5.503 5.39833 4.742 4.702

108 5.65465 4.0444 4.16753 4.55276

109 5.4999 5.2983 4.01103 4.58006

1010 5.74505 4.50335 4.63425 5.23892

1011 6.18825 6.11877 4.63622 5.14488

These results show that the pace of computation is very high. When T T LRC,5D
2

is the mapping tested, and the machine used is a laptop computer with a Core i7
4980HQ processor with 8 logical cores, computing 1011 iterates with five parallel
streams of PRNs leads to around 2 billion PRNs being produced per second. Since
these PRNs are computed in the standard double precision format, it is possible to
extract from each 50 random bits (the size of the mantissa being 52 bits for a double
precision floating-point number in standard IEEE-754). Therefore, T T LRC,5D

2 can
produce 100 billion random bits per second, an incredible pace!With a machine with
4 Intel Xeon E7–4870 processors having a total of 80 logical cores, the computation
is twice as fast, producing 2 × 1011 random bits per second.
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4.5 Conclusion

In this chapter, we thoroughly explored the novel idea of combining features of
a tent map (Tµ) and a logistic map (Lµ) to produce a new map with improved
properties, through combination in several network topologies. This ideawas recently
introduced [38, 39] in order to improve previous CPRNGs.We have summarized the
previously explored topologies in dimension two. We have presented new results of
numerical experiments in higher dimensions (up to five) for the mapping T T LRC,pD

2

on multicore machines and shown that T T LRC,5D
2 is a very good CPRNGwhich is fit

for industrial applications. The pace of generation of random bits can be incredibly
high (up to 200 billion random bits per second).
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