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Abstract 

The most important part of the train’s energy is consumed by the traction system. The tractive energy depends 

mainly on the driving behaviour. Improving driving strategies has great potential to enhance the energy efficiency. 

This paper presents a speed profile optimization approach based on a genetic algorithm. The objective of the 

genetic algorithm is to find, for each interstation, the best speed profile which minimizes the energy consumption. 

The optimized profile takes into account both the physical and the operational constraints such as the maximum 

allowed travel time, the speed limitations per section and the maximum allowed acceleration and jerk. The fitness 

function is based on a Random Forest model which is built using on-board measurements. The aim of the model 

is to estimate accurately the energy consumption corresponding to each speed profile. The initial population of 

genetic algorithm is mainly composed of the best realistic speed profiles extracted from the collected data. 
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1. Introduction 

Efficient energy management in the context of smart cities is one of the most crucial challenges for the next years. 

Due to the increasing costs and needs, the energy management must rhyme with efficiency and sustainability. In 

addition to the high cost of energy, its exploitation and production have negative effects on the environment. The 

railway operation considerably contributes to the overall energy consumption. Then, efficient energy management 

is an important and very complex issue in the railway environment. Though very complex due to the many aspects 

it includes, efficiently managed energy on-board a train contributes to significant energy and cost reductions. 

 

The electrical energy consumption of urban trains is divided on two parts: the part used by auxiliary system and 

the part consumed by the traction system. Auxiliary system includes ventilation, air-conditioning and illumination, 

etc. Consumption of auxiliaries is influenced mainly by the weather and climate conditions. Generally, the most 

important part of energy (approximatively 80%) is consumed by the traction system Yang et al. (2016) even if air 

conditioning consumption could sometimes reach a very high level. The tractive energy depends on the driving 

strategy. Therefore, improving driving strategies has great potential to enhance the energy efficiency of urban 

railway systems. Furthermore, it does not require any upgrades in infrastructure. The aim of energy-efficient 

driving strategy is to find the optimal speed profile which minimizes the tractive energy without exceeding a given 

trip time. 

 

The speed profile optimization methods can be either exact, heuristics or meta-heuristics methods Mohand et al. 

(2010). The exact methods are not well adapted when the train model is realistic and unsuitable for real-time 

optimization. Therefore, meta-heuristics methods such as Genetic Algorithm (GA), Simulated Annealing (SA) and 

Tabu Search (TS) are good alternatives. However, these methods do not guarantee the optimality of the solution. 

In fact, in an energy optimization context, we do not target an exact solution; it is sufficient to find a high-quality 

one. Moreover, the advantage of meta-heuristics over exact methods is the capability to take into account new 

constraints without altering the algorithm.  

 

Improving energy efficiency requires building accurate and adaptable models to study energy consumption. Two 

types of models are explored to estimate the energy consumption: physical model and data-driven model. On one 

hand, the physical models are based on the fundamental principle of dynamics such as the motion equations and 

are used to simulate the behaviour of the train. The construction of physical models requires specific expert 

knowledge. We have explored this modelling technique in a similar work, and despite its realistic simulation, it 

was a complex task to build a precise model since it is necessary to estimate a large number of parameters. On the 

second hand, the data-driven models are built using machine learning algorithms. Building data-driven models 

does not require any domain knowledge; their accuracy depends mainly on the quality and quantity of the data. 

 

Thus, in this paper, we propose a system that aims at finding efficient speed profiles based on a Genetic Algorithm. 

The evaluation function of the algorithm estimates energy consumption using a data-driven Random Forest (RF) 

model. The initial population of genetic algorithm is mainly composed of the best speed profiles extracted from 

real data. 

 

This paper is organized as follows. In section 2, we survey similar works in the literature. In Section 3, we present 

an overview of our system for speed profiles optimization. Section 4 details the steps of the automatic process of 

building data-based models of energy consumption. The on-board measurements, the pre-processing steps and the 

learning procedure are then explained. Section 5 describes the optimization process: the problem representation, 

the fitness function and optimization algorithm. Finally, some perspectives of the presented work and a conclusion 

are given in Section 6. 

2. Related works 

Over the years, several optimization approaches have been applied to speed profile optimization. This section 

mainly presents approaches using genetic algorithms. 

 

Hoang et al. (1975) studied the energy-efficient driving topic, under certain simplifying assumptions, using 

heuristic method based on a direct search algorithm. Recently, numerical algorithms are more widely used thanks 
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to the rapid increase in computer performance and the growing success of the distributed and virtualized computing 

architectures.  

 

In Chang and Sim (1997), the authors proposed a coasting control strategy based on a genetic algorithm. Each 

gene is composed of a control command associated to a relative position between two stations. The fitness 

evaluation includes the punctuality, the passenger comfort and the train’s energy consumption parameters. The 

estimation of the energy consumption is based on a physical model. In a similar way, in Han et al. (1999), the 

authors exploit the genetic algorithms to optimize the tractive energy. Indeed, each solution corresponds to a 

control strategy determined by the positions of coasting control. Each gene is composed of a position associated 

to a speed. The number of genes and the speed values depend on the speed limitations per section. The fitness 

function is computed thanks to a simplified physical model. 

 

A multi-objective genetic algorithm is proposed in Chevrier (2010). The aim of the approach is to minimize the 

running time and to reduce the energy consumption. Each gene is composed of a position and a speed. The 

algorithm provides a set of non-dominated solutions. In order to evaluate energy consumption, the fitness function 

uses a physical model based on the fundamental equation of dynamics. 

 

Dominguez et al. (2011) present a computer-aided procedure for optimal speed profiles selection. The procedure 

takes into account running times, passenger comfort and energy consumption. To this end, the equations and 

algorithms that define the train motion and control have been modelled and implemented in a simulator which 

includes an automatic generator of speed profiles and a graphical assistant for the selection of speed commands. 

In a further work, the authors, in Dominguez et al. (2012), consider energy savings due to the energy recovered 

from regenerative braking. A physical model of a train with an on-board energy storage device and a network 

model is used to estimate the energy recovered by the train. The proposed method could be applied in real time 

according to the traffic and electrical situation of the line. 

 

Boschetti and Mariscotti (2014) and Brenna et al. (2016) proposed a genetic algorithm approach to search for an 

optimal control strategy. Each gene is composed of a position associated to a driving command such as 

decelerating, accelerating and breaking. A physical model is utilized in order to estimate energy consumption. The 

energy saving was evaluated through the simulations in Matlab-Simulink environment. 

 

Keskin and Karamancioglu (2017) evaluated three metaheuristic algorithms Genetic Simulated Annealing, Firefly, 

and Big Bang-Big Crunch.  The fitness function is based on a physical model of energy consumption. The results 

are validated using a Matlab simulation. The paper illustrated the efficiency of using metaheuristics to solve the 

optimal train operation problem. 

 

LEADER (Locomotive Engineer Assist/Display & Event Recorder) described in Nickles et al. (2003) is a global 

system for freight train management system designed to optimize the train movement in order to reduce fuel 

consumption. It performs real-time data collection, processing, storage and reporting and provides real-time 

commands (acceleration or braking) to locomotive engineers; based on the current state, the system performs 

calculation using a physical models Mosier (1977). The system improves the effectiveness of best train control 

practices through a more complete understanding of train behavior. To explain the recommended actions, 

LEADER displays several information such as gradient, track curvature, acceleration, fuel consumption, speed 

and the pressure of the brake pipe. 

 

The majority of the cited works mostly rely on a combination of meta-heuristics optimization approaches with a 

physical model which requires specific knowledge and important modelling effort to be built and updated. 

Recently, in Martinez Fernandez et al. (2016), the authors built a data-driven model to estimate the energy 

consumption. Our approach targets a fully automated optimization process by using (1) a genetic algorithm to find 

energy efficient speed profiles and (2) a data-driven model to compute the energy consumption. Considering that 

each gene is composed of a position and a speed, we minimize the electrical tractive energy consumption. We take 

into account the operational and physical constraints such as speed limitations per section, maximum allowed 

acceleration and maximum allowed jerk. The maximum allowed trip time is also considered as a constraint. The 

fitness function is based on a random-forest model. The aim of the model is to estimate accurately the energy 

consumption corresponding to each speed profile. The evaluation process is then faster compared to the use of a 

physical model. In order to enhance the quality of the obtained solution and reduce the convergence time, the 

initial population of genetic algorithm is mainly composed of the best speed profiles extracted from real data. 
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Therefore, the optimization process can be carried out offline as well as online. In comparison with the studied 

approaches, our solution is automatic, faster and continuously updated thanks to the use of data-driven model. 

3. Global view of the optimization system 

The objective of our system is to find efficient energy speed profiles using on-board collected data. Several 

transformations are performed in order to clean and restructure the raw data. The pre-treated data is then stored in 

a database in order to extract realistic speed profiles and to build models for estimating energy consumption. In 

order to find the best speed profile for each interstation which is defined as the portion of the line between two 

passenger stations, we use an optimization process based on genetic algorithm. The overall optimization system is 

described in Fig. 1. 

 

Fig. 1 Optimization system overview 

During the optimization process, the fitness function is frequently used to evaluate speed profiles. Then, the quality 

and execution time of the fitness function have a substantial impact on the convergence time and efficiency of the 

genetic algorithm. The use of an initial population composed of good quality individuals not only speeds up the 

convergence process, but also gives the possibility to stop the optimization process at any time with the assurance 

of having a good solution. Therefore, our optimization algorithm has two important features: the evaluation of 

speed profiles is based on the data-driven model and the initial population is mainly composed of the best realistic 

speed profiles. Using a learned model makes our approach potentially automated after a first phase of setting up. 

4. Building data-driven models for energy consumption 

4.1. Measured data 

The train measured dataset is composed of various parameters collected from sensing devices installed on-board 

an urban tram. Measurements include voltage, current, speed and GPS position. In the used dataset, the sampling 

frequency is equal to one second. In the deployment of practical systems such as electrical railway system, 

information has to be collected from heterogeneous sensors. Electrical railway environment is characterized by 

the presence of high voltage and current with abrupt variation and train movements following urban topography 

(tunnels, bridges, hills, etc.).  These factors disturb the data measurement and transmission. Therefore, the collected 

data contains errors and inconsistencies. 

4.2. Pre-processing 

The aim of the pre-processing steps is to reduce errors, filter, clean and transform data. Several pre-processing 

steps were performed: 

 Management of missing values: the time steps where there are missing values are removed. 

 Removing invalid points: the trains in depot and maintenance trips are not considered. 

 Train route extraction: the route is an ordered list of waypoints where each waypoint represents a turn or 

significant step of the track. 

 Map matching: association of each measured GPS position to a kilometric point in the train route. 

 Extract train trips: identification of each distinct trip and its direction. 

 Elevation extraction: the elevation of each point in the route is extracted using Google Elevation API.  
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 Computation of additional parameters: the gradient, the acceleration, the jerk and the electric power. 

4.3. Supervised learning (regression and classification) 

Based on the preprocessed data, our objective is to obtain the most accurate energy consumption model of the 

train. We then test several supervised learning algorithms which establish a relationship between a speed profile 

and its energy consumption. To evaluate energy consumption, in the context of energy management, we use both 

classification and regression algorithms. Regression is used when the target attribute takes continuous values while 

classification is used when the target attribute has discrete values. Started from known values of input attributes, 

the regression model estimates the class value while the classification model tries to assign a label (discrete value) 

to the class. In order to estimate power consumed for traction, we evaluated three machine learning algorithms 

which are Probabilistic Neural Networks (PNN), Decision Tree (DT) and Random Forest (RF). These algorithms 

can be used to solve both classification and regression tasks. 

 

Neural networks are computational models based on the underlying structure of biological neural systems. A neural 

network is composed of neurons which work in parallel to provide an output value based on the values of the input 

attributes. The learning algorithm modifies iteratively the parameters which regulate the connections between the 

neurons in order to minimize the error on the training set. The neural networks were used in Martinez Fernandez 

et al. (2016) in order to compute the energy consumption of electric trains. In this work, we use the Probabilistic 

Neural Network (PNN) which is trained based on the Dynamic Decay Adjustment method using Constructive 

Training Berthold and Diamond (1998) as the underlying algorithm.  

 

Decision trees algorithm is a very effective method in supervised learning. It has been introduced by Quinlan 

(1993). The algorithm takes as input a collection of tagged data, and outputs a tree. Each internal node represents 

an input attribute where each value corresponds to an edge to children. Each leaf represents a value of the target 

variable. In order to determine the best splitting attribute, it is possible to use several methods. In this paper, we 

use gain ratio impurity method to evaluate attributes Quinlan (1993). 

 

The Random Forest model is introduced by Breiman (2001). It is an efficient machine learning model which was 

used widely for many real world applications. It is an ensemble learning algorithm based on the average prediction 

of different decision trees. Each tree is fitted on a part of the data, made by two sampling methods: random 

sampling with replacement of observations which is also known as bootstrap aggregating or bagging method, and 

random selection of features called feature bagging. The bagging methods and the operation of averaging the 

results obtained by the different trees allow the Random Forest having better accuracy than a simple decision tree. 

4.4. Input attributes 

In the used data set, the measurement frequency is one second. Each speed profile between two stations is then 

represented by the speed as a function of time. To compute the whole energy consumption of a speed profile, a 

model is built to estimate the traction power in each second. To train and evaluate the different models (PNN, DT 

and RF) the following input attributes are used: speed, train energy efficiency, acceleration, jerk (the rate of change 

of acceleration) and gradient (slope of the track). In order to estimate accurately the electrical power for each 

second, in addition to the information about the current second, we use the information about the previous and the 

next four seconds. The used attributes to estimate the power consumption in a second i of a speed profile, are 

presented in Table 1: 

     Table 1. The set of attributes used to estimate traction power in a second i. 

Attributes /Seconds i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4 

Speed X X X X X X X X X 

Acceleration X X X X X X X X X 

Jerk     X X X X X 

Energy efficiency     X X X X X 

Gradient     X     
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4.5. Model evaluation 

To evaluate the quality of traction power estimation (in watt), train consumption models are tested in both 

classification and regression modes. In order to use classification, the target attribute (traction power) is discretized 

into k intervals of equal size using the equal width discretization method. The data-driven models are trained using 

a selected set of consumption data measured on-board. In order to measure the differences between the model-

estimated values and the measured values, the Root Mean Square Error (RMSE) is used for regression and the 

accuracy for classification. In our example, the used dataset comprises 179342 lines. To train the model, 70% of 

the dataset is randomly selected. The evaluation of the model then use the remaining 30% of the dataset. The 

traction power is a numerical attribute. To test classification models, the attribute is discretized into 15 intervals. 

4.6. Case study and results 

To determine the most suitable learning algorithm for the estimation of traction power in watts, the three algorithms 

defined in section 4.3, namely the decision tree (DT), the Probabilistic Neural Network (PNN) and the Random 

Forest (RF) model are compared using the Knime Analytics platform, a tool able to build the machine learning 

(ML) workflow. The comparison results are presented in the Table 2. 

     Table 2. Machine learning algorithms evaluation. 

ML algorithms PNN DT RF 

Classification (Accuracy) 0.79 0.80 0.85 

Regression (RMSE) 54000 48308 33157 

 

The results show that the RF model is the best for our use case. Indeed, the RF model outperforms the other 

algorithms in both classification and regression. Fig. 2 compares the measured traction power in watt and the 

estimated traction power using the RF model, for 330 seconds time-frame. 

 

Fig. 2 Measured traction power versus estimated traction power in watt 

In order to evaluate the relevance of using the input attributes related to the previous and following seconds, we 

evaluated the Random Forest algorithm for regression task with several sets of attributes. The Table 3 summarizes 

the performed tests.  

     Table 3. The evaluation of the impact of attribute selection on the estimation of traction power in watts. 

Input attributes  RF Root Mean Square Error (RMSE) 

Using only current second attributes 58070 

Using current second and the four previous seconds attributes 53217 

Using current second, four previous seconds and the four 
next seconds attributes 

33157 

 

The tests show clearly that using attributes related to the next seconds improves significantly the quality of traction 

power estimation. However, there is still an important room for model improvement. Actually, the used data does 

not contain any information about passengers mass. Moreover, speed information and GPS information are not 

very accurate. Increasing the amount of data used to learn also improves the quality of the model. Based on the 

previous results, we will use the random forest model to optimize speed profiles in the remainder of this paper. 
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5. Speed profiles optimization 

5.1. Genetic algorithm in speed profile optimization 

The genetic algorithms is a metaheuristic approach inspired by the process of natural selection. It follows an 

iterative stochastic process in order to find exact or high-quality solutions by relying on bio-inspired operators 

such as mutation, crossover and selection. In genetic algorithms, each solution is encoded into strings of digital 

numbers and is associated to a score with regard to fitness function. The optimization process starts with an initial 

population. In each generation, the genetic algorithm performs operations like selection, crossover and mutation 

on individuals with a probability based on their corresponding fitness value. After several generations (iterations), 

solutions which have better scores are selected as optimal or suboptimal solutions. 

 

The aim of the genetic algorithm is to find, for each interstation and context, the best speed profile which minimizes 

the energy consumption and takes into account operational constraints. The genetic algorithm starts with an initial 

population of speed profiles. At each iteration, a new set of speed profiles is generated by performing crossover 

and mutation operations on a selected existing speed profiles. Iteration after iteration, the quality of the solution is 

improved. Algorithm ends when the current iteration does not provide significant improvement over previous 

iterations. It is also possible to stop the algorithm when the maximum optimization time specified is reached. 

 

Speed profiles shall meet train’s physical limitations, operational objectives as well as insure the safety and comfort 

of passengers. Thus, each proposed speed profile must satisfy a set of constraints which are speed limitations per 

section, the maximum trip time, the maximum acceleration and the maximum jerk. 

5.2. Problem coding and initial population 

The interstation speed profile is represented by the speed in function of the distance. Each individual is composed 

of l genes. Each gene is composed of a fixed position and a numerical value corresponding to the speed in this 

position. The fixed positions are obtained by discretizing the interstation distance into (l-1) intervals of equal size. 

The l positions correspond to the limits of the intervals.  

 

The initial population of speed profiles used by the genetic algorithm contains: a set of the best realistic extracted 

profiles for the interstation and a set of generated speed profiles. In order to respect all the constraints, we apply 

the following method: for each interstation, a static speed envelope is pre-calculated taking into account the 

following constraints: maximum acceleration, maximum jerk, speed limitations, start and end speeds. Then, for 

each gene i, 0 < i < (l-1), we randomly select a corresponding value from the interval of acceptable values given 

the selected previous speeds. 

5.3. Genetic operators 

In order to guide the algorithm towards the best speed profile which satisfies operational constraints, we adapt the 

following genetic operators: mutation and crossover. 

 

The crossover is a process of taking more than one parent individual and producing a child from them. In our 

implementation, a crossover operation generates a new profile by combining two existing profiles selected using 

the tournament method. The first part of the generated new profile is extracted from one profile and the second 

part is extracted from the other profile. The junction position p between the two parts is selected randomly from 

the interstation. If the speed value at the position p does not respect the constraints, another value is randomly 

selected from the list of acceptable values. 

 

The mutation operator alters one or more speed values of an individual. In our algorithm, the mutation can be 

applied to modify a speed value in a selected random position or for all the positions starting from a position 

selected randomly. Several types of mutation are applied: 

 Modify randomly a speed value. 

 Replace a speed value by the maximum or the minimum speed value. For individuals whose travel time 

exceeds the maximum allowed running time, the probability of selecting the maximum speed value is 

increased.  

 Replace a speed value by the same speed value of the previous position. 
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The search space of the genetic algorithm is limited by the constraints of the system. Indeed, for all operations 

performed, the new speed value is always selected from the range of values that satisfies all constraints. Moreover, 

to ensure that the profile generated by the genetic operators satisfies all the constraints, its integrity is 

systematically verified. 

5.4. Fitness Function 

In order to evaluate the energy consumption of each generated profile, the fitness function of each new profile is 

computed. The fitness function takes a speed profile as input and produces as output how “good” the profile is 

with respect to the energy consumption and all constraints. The fitness function is evaluated repeatedly in genetic 

algorithm, therefore it should be fast to compute. In the current work, the fitness function is based on the 

computation of the traction power of the train. To compute the traction power from a speed profile, the above 

mentioned random forest regression model is used. Using a data-driven model, the fitness function is then accurate 

and fast to compute. As described in Section 4, the model computes the traction power for each second. The total 

energy consumption of the profile is estimated by summing all traction powers corresponding to every second. 

Profiles that do not respect the constraints have bad scores even if they are energetically efficient. The fitness 

function (f) of speed profile sp with running time T (in seconds) is defined as follows: 

0

( ) ( ( )) ( )
T

t

f sp TracPower t ConstSatisfaction sp


  ,          

where TracPower(t) is the traction power estimation at second t using the Random Forest model and  

ConstSatisfaction(sp) is a function that returns 0 if the speed profile sp respects the constraints (see Section 5.1), 

otherwise it returns a high enough positive value to penalize the profile. The objective of the genetic algorithm is 

to minimize this fitness function. 

5.5. Validation upon a realistic case study 

Many speed profiles are possible for a given mission between two passenger stations. Fig. 3 illustrates various 

profiles extracted from measurements on a tram line. 

 

 

Fig. 3 Interstation speed profiles 

To evaluate the energy gain, we applied the genetic algorithm to an interstation. Before starting the optimization 

process, all system constraints must be determined. The maximum values of speed, travel time, acceleration and 

jerk are fixed in order to strictly respect the material and operational constraints and to guarantee a good passenger 

comfort. In order to produce realistic profiles, the maximum speed at each point of the line is also limited by the 

maximum speed recorded in the measurements. As described in section 4, the model is capable of estimating the 

power required for traction and power generated during braking. In fact, in a multi-train context, the power 

generated is potentially reusable by other trains. However, when evaluating the proposed optimization algorithm, 

we only consider the mono-train use case. Therefore, the objective of the algorithm is to minimize the energy 

required for traction of a single train. 
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For the experimental validation, an interstation of 530 meters long is considered. To encode each speed profile for 

the genetic algorithm, the interstation distance is discretized into 69 intervals (l=69) of equal size. The other 

parameters are set as follows: the value of jerk is lower than 0.3 m/s3, the maximum value of acceleration is equal 

to 1 m/s2, and the maximum value of travel time is equal to 106 seconds. Experimental results show that the genetic 

algorithm produces energy-efficient speed profiles. Fig. 4 shows a speed profile obtained through the optimization 

process and the maximum speeds envelope extracted from the measurements. 

 

Fig. 4 The optimized speed profile 

The Table 4 presents a comparison between the optimized profile and a set of speed profiles extracted from real 

measurements, the traction energy in watt-hours (Wh) and the time in seconds (s). 

     Table 4. Speed profiles comparison. 

Profile Traction energy (Wh) Time (s) Constraints satisfaction 

Optimized profile 679 105 Yes 

Real profile 1 793 105 Yes 

Real profile 2 813 105 Yes 

Real profile 3 733 111 No 

Real profile 4 745 119 No 

 

For the test case, the use of an optimized profile allows, in addition to respecting the constraints, to reduce energy 

consumption by 14% compared to the use of the best profile extracted from measured data. Thanks to the use of a 

data-driven model, the fitness function is fast to compute. As a result, the genetic algorithm can explore a larger  

space in a limited searching time. 

 

The proposed approach is generic and adaptable. Indeed, the genetic algorithm allows to easily add new constraints 

on the speed profiles. In addition, the number of discretization points of the speed profiles is variable (Section 5.2). 

The approach can therefore be applied to manual operation or in the framework of Automatic Train Operation. 

6. Conclusion and perspectives 

In this paper, we present an innovative solution for energy trains optimization. Our approach exploits the Data 

Analytics techniques to find energy efficient speed profiles. The prerequisite is to collect data coming from sensors 

measuring the speed, the acceleration, the electric current, the voltage, the passengers’ mass and the GPS positions. 

In fact, we are able to model the train’s behavior and its related energy consumption based on on-board 

measurements. The performed experimentations show that the Random Forest algorithm is adapted to power 

estimation and that using attributes related to the next seconds improves significantly the quality of the model. 

 

Optimal train driving strategies are developed using a genetic algorithm based on a Random Forest model to 

estimate the energy consumption. In our approach, the genetic algorithm is initialized by a population composed 

mainly by the best real speed profiles. The optimization process can then be stopped at any time with the assurance 

of having a good solution. For a realistic case study, the experimental validation showed that the profile proposed 
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by our approach significantly reduces energy consumption compared to a set of interstation profiles extracted from 

the measurements. 

 

In the literature, similar works are based on physical model which requires specific knowledge and important 

modelling effort to be built and updated. In this paper, we propose to use a data-driven model and to completely 

automatize the optimization process. A generic and automatic solution is then obtained. The data-driven model 

can be updated automatically on a regular basis, as the on-board data is uploaded. As a result, the quality of the 

model is improved progressively with a growing learning set. In addition, the model automatically adapts to the 

evolution of the rolling stock and the infrastructure. Indeed, the consumption of each train evolves when aging and 

after maintenance updates; the proposed speed profile will be adapted consequently to each train. Based on this 

approach, we can build models even for unknown train types, which is particularly useful for operators when 

managing different trains on the same line. Furthermore, our approach is easily adaptable to any type of railway 

systems such as metros, suburban and high-speed lines. 

 

This first study and achievements widely open the door to further improvements at several layers. First, an 

important room for model improvement is still possible. Several solutions are conceivable, such as increasing the 

size of the dataset, implementing better accuracy sensors, improving the pre-processing steps, using models based 

on deep learning and including domain knowledge into the learning process. Second, the proposed profiles can be 

improved and adapted by taking into account other constraints. The use of a physical simulation and field-test 

campaign will allow us to better calibrate the constraints according to the operational context. 
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