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Introduction

We consider the overdetermined linear least squares (LLS) problem

min x∈R n Ax -b 2 , (1) 
with A ∈ R m×n , m ≥ n and b ∈ R m . We assume throughout this paper that A has full column rank and as a result, Equation (1) has a unique solution x = A + b where A + is the Moore-Penrose pseudoinverse of the matrix A, expressed by A + = (A T A) -1 A T . We can find for instance in [START_REF] Björck | Numerical methods for least squares problems[END_REF][START_REF] Golub | Matrix Computations[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] a comprehensive survey of the methods that can be used for solving efficiently and accurately LLS problems. The condition number is a measure of the sensitivity of a mapping to perturbations. It was initially defined in [START_REF] Rice | A theory of condition[END_REF] as the maximum amplification factor between a small perturbation in the data and the resulting change in the problem solution. Namely, if the solution x of a given problem can be expressed as a function g(y) of a data y, then if g is differentiable (which is the case for many linear algebra problems), the absolute condition number of g at y can be defined as (see e.g. [START_REF] Geurts | A contribution to the theory of condition[END_REF])

κ(y) = max z =0 g (y).z z . (2) 
From this definition, κ(y) is a quantity that, for a given perturbation size on the data y, allows us to predict to first order the perturbation size on the solution x. Associated with a backward error [START_REF] Wilkinson | Rounding errors in algebraic processes[END_REF], condition numbers are useful to assess the numerical quality of a computed solution. Indeed numerical algorithms are always subject to errors although their sensitivity to errors may vary. These errors can have various origins like for instance data uncertainty due to instrumental measurements or rounding and truncation errors inherent to finite precision arithmetic.

LLS can be very sensitive to perturbations in data and it is crucial to be able to assess the quality of the solution in practical applications [START_REF] Baboulin | Parallel tools for solving incremental dense least squares problems. Application to space geodesy[END_REF]. It was shown in [START_REF] Golub | Note on the iterative refinement of least squares solution[END_REF] that the 2-norm condition number cond(A) of the matrix A plays a significant role in LLS sensitivity analysis. It was later proved in [START_REF] Wedin | Perturbation theory for pseudo-inverses[END_REF] that the sensitivity of LLS problems is proportional to cond(A) when the residual vector is small and to cond(A) 2 otherwise. Then [START_REF] Geurts | A contribution to the theory of condition[END_REF] provided a closed formula for the condition number of LLS problems, using the Frobenius norm to measure the perturbations of A. Since then many results on normwise LLS condition numbers have been published (see e.g. [START_REF] Arioli | A partial condition number for linear least squares problems[END_REF][START_REF] Björck | Numerical methods for least squares problems[END_REF][START_REF] Eldén | Perturbation theory for the least squares problem with linear equality constraints[END_REF][START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF][START_REF] Grcar | Adjoint formulas for condition numbers applied to linear and indefinite least squares[END_REF]).

It was observed in [START_REF] Higham | A survey of componentwise perturbation theory in numerical linear algebra[END_REF] that normwise condition numbers can lead to a loss of information since they consolidate all sensitivity information into a single number. Indeed in some cases this sensitivity can vary significantly among the different solution components (some examples for LLS are presented in [START_REF] Arioli | A partial condition number for linear least squares problems[END_REF][START_REF] Kenney | Statistical condition estimation for linear least squares[END_REF]). To overcome this issue, it was proposed the notion of "componentwise" condition numbers or condition numbers for the solution components [START_REF] Chandrasekaran | On the sensitivity of solution components in linear systems of equations[END_REF]. Note that this approach must be distinguished from the componentwise metric also applied to LLS for instance in [START_REF] Baboulin | Using dual techniques to derive componentwise and mixed condition numbers for a linear functional of a linear least squares solution[END_REF][START_REF] Cucker | On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems[END_REF]. This approach was generalized by the notion of partial or subspace condition numbers which corresponds to conditioning of L T x with L ∈ R n×k , k ≤ n, proposed for instance in [START_REF] Arioli | A partial condition number for linear least squares problems[END_REF][START_REF] Baboulin | A contribution to the conditioning of the total least squares problem[END_REF] for least squares and total least squares, or [START_REF] Cao | A subspace error estimate for linear systems[END_REF] for linear systems. The motivation for computing the conditioning of L T x can be found for instance in [START_REF] Arioli | A partial condition number for linear least squares problems[END_REF][START_REF] Baboulin | Computing the conditioning of the components of a linear least squares solution[END_REF] for normwise LLS condition numbers.

Even though condition numbers provide interesting information about the quality of the computed solution, they are expected to be calculated in an acceptable time compared to the cost for the solution itself. Computing the exact (subspace or not) condition number requires O(n 3 ) flops when the LLS solution x has been aready computed (e.g., using a QR factorization) and can be reused to compute the conditioning [START_REF] Arioli | A partial condition number for linear least squares problems[END_REF][START_REF] Baboulin | Computing the conditioning of the components of a linear least squares solution[END_REF]. This cost is affordable when compared to the cost for solving the problem (O(2mn 2 ) flops when m n). However statistical estimates can reduce this cost to O(n 2 ) [START_REF] Gudmundsson | Small-sample statistical estimates for matrix norms[END_REF][START_REF] Kenney | Small-sample statistical condition estimates for general matrix functions[END_REF]. The theoretical quality of the statistical estimates can be formally measured by the probability to give an estimate in a certain range around the exact value. In this paper we summarize closed formulas for the condition numbers of the LLS solution and of its components, and we propose practical algorithms to compute statistical estimates of these quantities. In particular we derive a new expression for the statistical estimate of the conditioning of x. We also present numerical experiments to compare LLS conditioning with the corresponding statistical estimates.

Notations The notation • 2 applied to a matrix (resp. a vector) refers to the spectral norm (resp. the Euclidean norm ) and • F denotes the Frobenius norm of a matrix. The matrix I is the identity matrix and e i is the ith canonical vector. The uniform continuous distribution between a and b is abbreviated U(a, b) and the normal distribution of mean µ and variance σ 2 is abbreviated N (µ, σ 2 ). cond(A) denotes the 2-norm condition number of a matrix A, defined as cond(A) = A 2 A + 2 . The notation | • | applied to a matrix or a vector holds componentwise.

Condition estimation for linear least squares

In Section 2.1 we are concerned in calculating the condition number of the LLS solution x and in Section 2.2 we compute or estimate the conditioning of the components of x. We suppose that the LLS problem has already been solved using a QR factorization (the normal equations method is also possible but the condition number is then proportional to cond(A) 2 [7, p. 49]). Then the solution x, the residual r = b -Ax, and the factor R ∈ R n×n of the QR factorization of A are readily available (we recall that the Cholesky factor of the normal equations is, in exact arithmetic, equal to R up to some signs). We also make the assumption that both A and b can be perturbed, these perturbations being measured using the weighted product norm (∆A, ∆b)

F = ∆A 2 F + ∆b 2 2
where ∆A and ∆b are absolute perturbations of A and b. In addition to providing us with simplified formulas, this product norm has the advantage, mentioned in [START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF], to be appropriate for estimating the forward error obtained when the LLS problem is solved via normal equations.

Conditioning of the least squares solution

Exact formula We can obtain from [START_REF] Baboulin | Computing the conditioning of the components of a linear least squares solution[END_REF] a closed formula for the absolute condition number of the LLS solution as

κ LS = R -1 2 R -1 2 2 r 2 2 + x 2 2 + 1 1 2 , (3) 
where x, r and R are exact quantities. This equation requires mainly to compute the minimum singular value of the matrix A (or R), which can be done using iterative procedures like the inverse power iteration on R, or more expensively with the full SVD of R (O(n 3 ) flops). Note that R -T 2 can be approximated by other matrix norms (see [19, p. 293]).

Statistical estimate Similarly to [START_REF] Cao | A subspace error estimate for linear systems[END_REF] for linear systems, we can estimate the condition number of the LLS solution using the method called small-sample theory [START_REF] Kenney | Small-sample statistical condition estimates for general matrix functions[END_REF] that provides statistical condition estimates for matrix functions. (

) 4 
Following the definition given in Equation ( 2), the condition number of x corresponds to the operator norm of x (A, b), which is a bound to first order on the sensitivity of x at (A, b) and we have

∆x 2 ≤ κ LS (∆A, ∆b) F .
We now use [START_REF] Kenney | Small-sample statistical condition estimates for general matrix functions[END_REF] to estimate ∆x 2 by

ξ(q) = ω q ω n |z T 1 ∆x| 2 + • • • + |z T q ∆x| 2 , (5) 
where z 1 , • • • , z q are random orthogonal vectors selected uniformly and randomly from the unit sphere in n dimensions, and ω q is the Wallis factor defined by

ω 1 = 1, ω q = 1 • 3 • 5 • • • (q -2) 2 • 4 • 6 • • • (q -1) for q odd, ω q = 2 π 2 • 4 • 6 • • • (q -2) 1 • 3 • 5 • • • (q -1)
for q even. ω q can be approximated by 2 π(q-1 2 ) . It comes from [START_REF] Kenney | Small-sample statistical condition estimates for general matrix functions[END_REF] that if for instance we have q = 2, then the probability that ξ(q) lies within a factor α of ∆x 2 is

P r( ∆x 2 α ≤ ξ(q) ≤ α ∆x 2 ) ≈ 1 - π 4α 2 . (6) 
For α = 10, we obtain a probability of 99.2%.

For each i ∈ {1, • • • , q}, using Equation ( 2) we have the first-order bound

|z T i ∆x| ≤ κ i (∆A, ∆b) F , (7) 
where κ i denotes the condition number of the function z T i x(A, b). Then using ( 5) and ( 7) we get

ξ(q) ≤ ω q ω n q i=1 κ 2 i 1 2
(∆A, ∆b) F . ξ(q) being an estimate of ∆x 2 , we will use the quantity κLS defined by

κLS = ω q ω n q i=1 κ i 2 1 2 (8) 
as an estimate for κ LS . We point out that κLS is a scalar quantity that must be distinguished from the estimate given in [START_REF] Kenney | Statistical condition estimation for linear least squares[END_REF] which is a vector. Indeed the small-sample theory is used here to derive an estimate of the condition number of x whereas it is used in [START_REF] Kenney | Statistical condition estimation for linear least squares[END_REF] to derive estimates of the condition numbers of the components of x (see Section 2.2). Now we can derive Algorithm 2.1 that computes κLS as expressed in Equation ( 8) and using the condition numbers of z T i x. The vectors z 1 , • • • , z q are obtained for instance via a QR factorization of a random matrix Z ∈ R n×q . The condition number of z T i x can be computed using the expression given in [START_REF] Baboulin | Computing the conditioning of the components of a linear least squares solution[END_REF]) as

κ i = R -1 R -T z i 2 2 r 2 2 + R -T z i 2 2 ( x 2 2 + 1) 1 2 . ( 9 
)
The accuracy of the estimate can be tweaked by modifying the number q of considered random samples. The computation of κLS requires computing the QR factorization of an n × q matrix for O(nq 2 ) flops. It also involves solving q times two n × n triangular linear systems, each triangular system being solved in O(n 2 ) flops. The resulting computational cost is O(2qn 2 ) flops (if n q).

Algorithm 2.1 Statistical condition estimation for linear least squares solution

Require: q ≥ 1, the number of samples Generate q vectors z1, z2, ..., zq ∈ R n with entries in U(0, 1) Orthonormalize the vectors zi using a QR factorization for j = 1 to q do

Compute κj = R -1 R -T zj 2 2 r 2 2 + R -T zi 2 2 ( x 2 2 + 1) 1 2
end for Compute κLS = ωq ωn q j=1 κ 2 j with ωq = 2 π(q-1 2 )

Componentwise condition estimates

In this section, we focus on calculating the condition number for each component of the LLS solution x. The first one is based on the results from [START_REF] Baboulin | Computing the conditioning of the components of a linear least squares solution[END_REF] and enables us to compute the exact value of the condition numbers for the ith component of x. The other is a statistical estimate from [START_REF] Kenney | Statistical condition estimation for linear least squares[END_REF].

Exact formula By considering in Equation ( 9) the special case where z i = e i , we can express in Equation ( 10) the condition number of the component x i = e T i x and then calculate a vector κ CW ∈ R n with components κ i being the exact condition number for the ith component expressed by

κ i = R -1 R -T e i 2 2 r 2 2 + R -T e i 2 2 ( x 2 2 + 1) 1 2 . ( 10 
)
The computation of one κ i requires two triangular solves (R T y = e i and Rz = y) corresponding to 2n 2 flops. When we want to compute all κ i , it is more efficient to solve RY = I and then compute Y Y T , which requires about 2n 3 /3 flops.

Statistical condition estimate

We can find in [START_REF] Kenney | Statistical condition estimation for linear least squares[END_REF] three different algorithms to compute statistical componentwise condition estimation for LLS problems. Algorithm 2.2 corresponds to the algorithm that uses unstructured perturbations and it can be compared with the exact value given in Equation [START_REF] Cucker | On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems[END_REF]. Algorithm 2.2 computes a vector κCW = (κ 1 , • • • , κn ) T containing the statistical estimate of each κ i . Depending on the needed accuracy for the statistical estimation, the number of random perturbations q ≥ 1 applied to the input data in Algorithm 2.2 can be adjusted. This algorithm involves two n × n triangular solves with q right-hand sides, which requires about qn 2 flops.

Algorithm 2.2 Componentwise statistical condition estimate for linear least squares

Require: q ≥ 1, the number of perturbations of input data for j = 1 to q do Generate Sj ∈ R n×n , gj ∈ R n and hj ∈ R n with entries in N (0, 1)

Compute uj = R -1 (gj -Sjx + Ax -b 2R -T hj) end for Let p = m(n + 1) and compute vector κCW = q i=1 |u j | qωp √ p with ωq = 2 π(q-1 2 )
3 Numerical experiments

In the following experiments, random LLS problems are generated using the method given in [START_REF] Paige | LSQR: An algorithm for sparse linear equations and sparse least squares[END_REF] for generating LLS test problems with known solution x and residual norm. Random problems are obtained using the quantities m, n, ρ, l such that A ∈ R m×n , r 2 = ρ and cond(A) = n l . The matrix A is generated using

A = Y D 0 Z T , Y = I -2yy T , Z = I -2zz T
where y ∈ R m and z ∈ R n are random unit vectors and D = n -l diag(n l , (n -1) l , (n -2) l , • • • , 1). We have x = (1, 2 2 , ..., n 2 ) T , the residual vector is given by

r = Y 0 v
where v ∈ R m-n is a random vector of norm ρ and the right-hand side is given by b = Y DZx v . In Section 3.1, we will consider LLS problems of size m × n with m = 9984 and n = 2496. All the experiments were performed using the library LAPACK 3.2 [START_REF] Anderson | LAPACK Users' Guide[END_REF] from Netlib.

Accuracy of statistical estimates

Conditioning of LLS solution In this section we compare the statistical estimate κ LS obtained via Algorithm 2.1 with the exact condition number κ LS computed using Equation (3). In our experiments, the statistical estimate is computed using two samples (q = 2). For seven different values for cond(A) = n l (l ranging from 0 to 3, n = 2496) and several values of r 2 , we report in Table 1 the ratio κLS /κ LS , which is the average of the ratios obtained for 100 random problems.

Table 1: Ratio between statistical and exact condition numbers (q = 2) The results in Table 1 show the relevance of the statistical estimate presented in Section 2.1. For l ≥ 1 2 the averaged estimated values never differ from the exact value by more than one order of magnitude. We observe that when l tends to 0 (i.e., cond(A) gets close to 1) the estimate becomes less accurate. This can be explained by the fact that the statistical estimate κ LS is based on evaluating the Frobenius norm of the Jacobian matrix [START_REF] Gudmundsson | Small-sample statistical estimates for matrix norms[END_REF]. Actually some additional experiments showed that κ LS /κ LS evolves exactly like R -1 2 F / R -1 2 2 . In this particular LLS problem we have

cond(A) n 0 n 1 2 n 1 n 3 2 n 2 n 5 2 n 3 r 2 = 10
R -1 2 F / R -1 2 2 = 1 + (n/(n -1)) 2l + (n/(n -2)) 2l + • • • + n 2l /n 2l = n k=1 1 k 2l .
Then when l tends towards 0, R -1

F / R -1 2 ∼
√ n, whereas this ratio gets closer to 1 when l increases. This is consistent with the well-known inequality

1 ≤ R -1 F / R -1 2 ≤ √ n.
Note that the accuracy of the statistical estimate does not vary with the residual norm.

Componentwise condition estimation Figure 1 depicts the conditioning for all LLS solution components, computed as κ i /|x i | where κ i is obtained using Equation [START_REF] Cucker | On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems[END_REF]. Figures 1(a) and 1(b) correspond to random LLS problems with respectively cond(A) = 2.5 • 10 3 and cond(A) = 2.5 • 10 9 . These figures show the interest of the componentwise approach since the sensitivity to perturbations of each solution component varies significantly (from 10 2 to 10 8 for cond(A) = 2.5 • 10 3 , and from 10 7 to 10 16 for cond(A) = 2.5 • 10 9 ). The normalized condition number of the solution computed using Equation ( 3) is κ LS / x 2 = 2.5 • 10 3 for cond(A) = 2.5 • 10 3 and κ LS / x 2 = 4.5 • 10 10 for cond(A) = 2.5 • 10 9 , which in both cases greatly overestimates or underestimates the conditioning of some components. Note that the LLS sensitivity is here well measured by cond(A) since r 2 is small compared to A 2 and x 2 , as expected from [START_REF] Wedin | Perturbation theory for pseudo-inverses[END_REF] (otherwise it would be measured by cond(A) 2 ). In Figure 2 we represent for each solution component, the ratio between the statistical condition estimate computed via Algorithm 2.2, considering two samples (q = 2), and the exact value computed using Equation [START_REF] Cucker | On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems[END_REF]. The ratio is computed as an average on 100 random problems. We observe that this ratio is lower than 1.2 for the case cond(A) = 2.5 • 10 3 (Figure 2 (a)) and close to 1 for the case cond(A) = 2.5 • 10 9 (Figure 2 (b)), which also confirms that, similarly to κ LS in Section 3.1, the statistical condition estimate is more accurate for larger values of cond(A).

Conclusion

We illustrated how condition numbers of a full column rank LLS problem can be easily computed using exact formulas or statistical estimates at an affordable flop count. Numerical experiments on random LLS problems showed that the statistical estimates provide good accuracy by using only 2 random orthogonal vectors. Subsequently to this work, new routines will be proposed in the public domain libraries LAPACK and MAGMA [START_REF] Tomov | Towards dense linear algebra for hybrid GPU accelerated manycore systems[END_REF] to compute exact values and statistical estimates for LLS conditioning. 
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 2 Let us denote by x(A, b) the expression of x as a function of the data A and b. Since A has full rank n, x(A, b) is continuously F-differentiable in a neighborhood of (A, b). If x (A, b) is the derivative of this function, then x (A, b).(∆A, ∆b) denotes the image of (∆A, ∆b) by the linear function x (A, b). By Taylor's theorem, the forward error ∆x on the solution x(A, b) can be expressed as ∆x = x (A, b).(∆A, ∆b) + O( (∆A, ∆b) ).
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 1 Fig. 1: Componentwise condition numbers of LLS (problem size 9984 × 2496)
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 2 Fig. 2: Comparison between componentwise exact and statistical condition numbers