The Corona Property in Nevanlinna quotient algebras and Interpolating sequences - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2019

The Corona Property in Nevanlinna quotient algebras and Interpolating sequences

Résumé

Let $I$ be an inner function in the unit disk $\mathbb D$ and let $\mathcal N$ denote the Nevanlinna class. We prove that under natural assumptions, Bezout equations in the quotient algebra $\mathcal N/I\mathcal N$ can be solved if and only if the zeros of $I$ form a finite union of Nevanlinna interpolating sequences. This is in contrast with the situation in the algebra of bounded analytic functions, where being a finite union of interpolating sequences is a sufficient but not necessary condition. An analogous result in the Smirnov class is proved as well as several equivalent descriptions of Blaschke products whose zeros form a finite union of interpolating sequences in the Nevanlinna class.
Fichier principal
Vignette du fichier
1804.03536v1.pdf (234.25 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01766910 , version 1 (15-05-2024)

Identifiants

Citer

Xavier Massaneda, Artur Nicolau, Pascal J. Thomas. The Corona Property in Nevanlinna quotient algebras and Interpolating sequences. Journal of Functional Analysis, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩. ⟨hal-01766910⟩
108 Consultations
11 Téléchargements

Altmetric

Partager

More