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Abstract
We describe a dependent type theory, and a denotational model
for it, that incorporates both intensional and extensional semantic
universes. In the former, terms and types are interpreted as strate-
gies on certain graph games, which are concrete data structures of
a generalized form, and in the latter as stable functions on event
domains.

The concrete data structures themselves form an event domain,
with which we may interpret an (extensional) universe type of (in-
tensional) types. A dependent game corresponds to a stable function
into this domain; we use its trace to define dependent product and
sum constructions as it captures precisely how unfolding moves
combine with the dependency to shape the possible interaction
in the game. Since each strategy computes a stable function on
CDS states, we can lift typing judgements from the intensional
to the extensional setting, giving an expressive type theory with
recursively defined type families and type operators.

We define an operational semantics for intensional terms, giving
a functional programming language based on our type theory, and
prove that our semantics for it is computationally adequate. By
extending it with a simple non-local control operator on intensional
terms, we can precisely characterize behaviour in the intensional
model. We demonstrate this by proving full abstraction and full
completeness results.

1 Introduction
Intuitionistic dependent type theory has been proposed as a founda-
tion for constructive mathematics [25], within which proofs corre-
spond to functional programswith dependent types which precisely
specify their properties [5]. It is the basis for proof assistants and
dependently typed programming languages such as Coq, Agda and
Idris which exploit this correspondence. Its denotational seman-
tics is therefore of interest — both for underpinning these logical
foundations (cf. Martin-Löf’s meaning-explanations for typing judg-
ments [24]) — and in formulating and analysing new type systems
— witness, for example, the role of the groupoid model [17] in the
development of homotopy type theory. Most attention has been on
models which are extensional in character (in particular, validating
the principle of function extensionality) 1.

Game semantics is also a foundational theory, describing the
meaning of proofs and programs intensionally — i.e. how, rather

1Note that here (and throughout), the notions of intensionality and extensionality
refer to models of type theories rather than the theories themselves, where they have
a different (albeit related) meaning.
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than what, they compute — in terms of a dialogue between two play-
ers. With related models such as concrete data structures [10] it has
been used to give interpretations of many programming languages
and logical systems. These models are distinguished by desirable
properties, notably, full abstraction [3, 18] and full completeness [1],
but also connections to resource-sensitive computation and lin-
ear logic, direct representations of effectful computation, and the
possibility of extracting computational content. Extending game
semantics to dependent type theory is therefore a natural objective.
It is also challenging, with little progress in this direction until re-
cently [4]. Arguably, one source of difficulty is that the intensional
representation of terms as strategies, which progressively reveal
themselves by interaction, does not extend to types. This may re-
flect an intuition that types are static specifications and programs
are more dynamic computational objects, but raises the question —
how can one depend on the other? A related problem is: how can
we interpret types themselves as terms of some special type (i.e. a
universe) — a principle from which dependent type theory derives
much of its expressive power — if the meanings of types and terms
are defined in different ways?

We present solutions to these two problems, in the form of a new
type theory, and a denotational semantics and categorical model for
it. They are based on two “semantic universes” — intensional and
extensional — of terms and types (or, more precisely, type and term
formation judgments). Each of these has its own dependent type
theory, and one can lift judgments from the intensional world to
the extensional one — a form of cumulativity sending a program to
the function it computes — while the extensional universe contains
a type of intensional types, so that type-families and type-operators
can be represented as terms at this type.

The main technical challenge consists in the intensional inter-
pretation of dependent types. As we explain in the next section,
unfolding play in a dependent game constrains and enables future
moves both explicitly and implicitly. We can capture this precisely
by representing it as a stable function; the trace of the function gives
an exact characterization of the information contained in the depen-
dency, forming a bridge between the intensional and extensional
worlds.

We show that our model captures key properties of dependently
typed programs by proving that it is computationally adequate
with respect to a simple operational semantics. Adding a non-local
control operator on intensional terms demonstrates that our type
system can accommodate effectful computation, as well as leading
to a full abstraction result for our model, and full completeness for
its finite, total fragment.

2 Overview: Games and Dependent Types
In this section we will give an overview of the paper, and related
work, via some examples. We leave the detail and formal results for
later sections.

1
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Our first task is to develop an interpretation of dependent types
and terms as games and strategies — to be precise, the core Martin-
Löf dependent type theory presented in Section 3. Vákár, Abramsky
and Jagadeesan [4] have recently presented a model of a similar
theory, built on a simply-typed (AJM-style) game semantics by a
realizability-like interpretation. This gives a different solution to
one of our core problems (how to constrain the rules of a game as
it is played): we aim for a more direct construction of dependent
games, and one which accommodates dependent sums directly and
can be readily extended with a universe type. We outline our key
ideas here in the setting of graph games [19], in which positions
are given directly, and moves by a relation between them.

Definition 2.1. A game A is a directed, acyclic, bipartite graph
with a single specified source node ∗A.

In other words, the set of nodes ofAmay be partitioned into sets
P+A (containing ∗A) and P−A of “Opponent” and “Player” positions,
such that the edge relation ⊢A is contained in (P+A ×P−A)∪ (P−A ×P+A)
(and is thus partitioned into Opponent and Player moves). A is
stable if any two paths from ∗A to the same node u ∈ P+A branch
at a Player move. For example, the graph game of the Booleans, B,
consists of the Player position {?}, Opponent positions {∗, tt, ff}
and moves ∗ ⊢B? and ? ⊢B tt and ? ⊢B ff. The game N of “lazy”
natural numbers consists of the Player positions {?n | n ∈ ω}, the
Opponent positions {∗} ∪ {n=,n> | n ∈ ω}, and the moves ∗ ⊢N?0,
?n ⊢N n=, ?n ⊢ n> , and n> ⊢N?n+1 (i.e. once Opponent knows that
a number is at least n he asks whether it is equal to n, and is told
“yes” or “no, it is greater”).

A strategy for Player on a stable game A is given by a set of
positions σ ⊆ PA containing ∗A and satisfying:

If v ∈ σ then there is a path from ∗A to v in σ .
If u ∈ σ− then there exists a unique v ∈ σ such that u ⊢ v .

A strategy is (hereditarily) total if it is finite and for any u ∈ σ+, if
u ⊢ v then v ∈ σ . We write D(A) for the set of strategies on A, and
D∗(A) for the finite strategies.

For example, D(N) consists of the total strategies ⌈n=⌉ ≜ ⌈n≤⌉ ∪
{?n ,n=} for n < ω (corresponding to the natural numbers) together
with non-total approximants ⌈n≤⌉ ≜ {∗} ∪

⋃
i<n {?i , i<} for each

n ≤ ω.
One can give a semantics of intuitionistic simple type theory (a

Cartesian closed category) [19], based on Cartesian product and
function-space constructions on stable games. These yield impor-
tant clues about the dependent sum and product, of which they
must occur as special cases. The Cartesian product of graph games
is their coalesced sum (i.e. the disjoint sum of graphs, with the
∗-nodes identified) with unit {∗}. So for each n ≤ ω we have a
game vecB(n) — the n-ary product of copies of the Boolean game,
in which Player positions are {(?, i) | i < n} (requests for the ith
Boolean value) and Opponent positions are ∗, together with the
responses

⋃
i<n {(tt, i), (ff, i)}.

In A ⇒ B, Player can choose to make his own move in B, or
query Opponent about how her strategy in A responds to a new,
accessible Player position.

Definition 2.2. Say that a (Player) position v is accessible from
x ∈ D∗(A) if u ⊢A v for some u ∈ x but v < x . For games A and B,
positions in A ⇒ B are pairs (x ,v) ∈ P∗(PA) × PB such that:

• (x ,v) ∈ D∗(A) × P−B (Player positions)

• or (x ,v) ∈ D∗(A) × P+B or v ∈ P−B and x = x ′ ∪ {w}, where
w is accessible from x ′ ∈ D∗(A) (Opponent positions).

The move relation is: (x ,u) ⊢A⇒B (y,v) iff x = y and u ⊢B v , or
u = v and y = x ∪ {w} for somew < x . ( ∗A⇒B ≜ ({∗A}, ∗B )).

For example, inN ⇒ vecB(ω), Opponent opens by requesting the
ith Boolean value ({∗}, (?, i)) for some i ∈ ω; Player and Opponent
then exchange moves on the left until reaching a partial or total n
for which Player can return (n, (tt, i)) or (n, (ff, i)).

Supposewewant to define a dependent productΠ(n : N).vecB(n):
a strategy on this game should represent a functional program
which takes a natural number argument n and returns an n-tuple
of Booleans. This is similar to N ⇒ vecB (ω), except that by ask-
ing Proponent for the ith Boolean, Opponent already gives the
information that the argument is greater than i . Thus to derive
Π(n : N).vecB(n) from N ⇒ vecB(ω) we remove the positions:

• {⌈n=⌉, (?, i)) | n ≤ i} (which are not consistent with the
dependency), and

•
⋃
n≤i {(⌈n≤⌉, (?, i)), (⌈n≤⌉ ∪ {?n }, (?, i))}, which are implicit

in the dependency and thus redundant .
and add the Opponent moves ∗ ⊢ (⌈(n + 1)≤⌉, (?,n)) for n ∈ ω.

How do we move from this ad hoc definition to a general con-
struction for the dependent product? First, we need to represent a
game B with a dependency on A as a function taking each strategy
x on A to a graph game B(x) (a parametrization over A). We may
then specify the positions of the game Π(A,B) —

• pairs (x ,v) with x ∈ D∗(A) and v ∈ P−B(x ) (Player positions),
• pairs (x ,v) with x ∈ D∗(A) and v ∈ P+B(x ) or x = x ′ ∪

{u}, where u is accesible from x ′ ∈ D∗(A), and v ∈ P−B(x )
(Opponent positions).

To define the moves of Π(A,B), we need to formalize the idea that
by making a move in B, Opponent can also change the position
in A by implicitly giving information about it. This requires us to
constrain parametrizations so that for any position u ∈ B(x) there
is unique ⊆-least y ⊆ x such that u ∈ B(y). To be more precise,
we require a parametrization over A to be a stable function from
(D(A), ⊆) into the cpo (G, ⊴) of stable graph games, where A ⊴ B
if PA ⊆ PB and ⊢A=⊢B↾ (PA × PA). In fact (D(A), ⊆) and (G, ⊴)
are dI-domains (bounded complete, algebraic, distributive cpos in
which every compact element dominates finitely many elements)
[6]: a function between dI-domains is stable if it is continuous and
preserves bounded meets.

We may thus define the moves of Π(A,B) to be:
(x ,u) ⊢Π(A,B) (y,v) iff u = v and y = x ∪ {w} for some w < x , or
u ⊢ v and y is minimal in {z ⊇ x | v ∈ B(z)}.

What about the dependent sum? In Σ(x : A).B, Opponent typi-
cally requires some information about Player’s strategy onA before
he canmakemoves in B. We construct the dependent sum by adding
this necessary information to positions in B. For example, for any
games C and D consider the dependent sum over the conditional
parametrization which returns C if its argument is tt and D if it
is ff. In Σ(x : B, Ifx thenC elseD), Opponent needs to have re-
quested and received a Boolean value on the left, in order to know
whether to make a move inC or D on the right. The set of positions
of Σ(x ; bool).Ifx thenC elseD) is thus PB + {{∗, ?, tt}} ×C and
{{∗, ?, ff}}×D and the (additional) moves are tt.l ⊢ ({∗, ?, tt},u).r
if ∗C ⊢ u and ff.l ⊢ ({∗, ?, ff},v).r if ∗D ⊢ v . This is the familiar
“lifted sum” of games.
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However, there is a problem in generalizing this definition. Po-
sitions in the right component of the dependent product may de-
pend on a minimal set of positions on the left (and right) — e.g.
Σ(x : B×B).If (fst(x)andsnd(x))thenC elseD. So we are unable
to form a dependent sum of graph games, in general. In [4], the
analogous problem is resolved by using a formal categorical con-
struction which “completes” a model of Π-types with Σ-types. This
can be applied to our model but there is a more direct solution —
we can extend the notion of game to allow each move to depend
on multiple Opponent positions. These are presented in Section 5,
as a generalized form of the concrete data structures introduced by
Kahn and Plotkin and developed by Berry and Curien [10, 20].

2.1 Intensional Types as Extensional Terms
Having defined a gamewith dependency onA to be a stable function
between dI-domains the second problem we address is: how to
construct such functions systematically? Since the category of dI-
domains and stable functions is Cartesian closed [9], we may define
the examples from the previous section (informally) as λ-terms
with basic operations, such as the conditional used in the previous
section to define the lifted sum B ⊕C as Σ(x : B).Ifx thenB elseC .

Our model is total when restricted to finite types (as in [4]).
Including recursion gives an expressive partial type theory: by a
standard result of domain theory, every stable endofunction has a
least fixed point which we may use to give recursive definitions of
dependent and non-dependent games (refining games models of
recursively typed metalanguages such as FPC [26]) — e.g.

• the singleton game (Cartesian unit) as ⊥ ≜ µx .x .
• the lazy natural numbers as µx .⊥ ⊕ x
— i.e. N ≜ µx .Σ(y : bool).Ify then⊥ ⊕ x .

• the dependent game vecB : N → G, as
µ f .λx .Iffst(x)then⊥else (B × f (snd(x)).

We can make these definitions formal by deriving them in a typing
system in which types denote dI-domains and terms denote stable
functions, with a universe type to denote the dI-domain of concrete
data structures. This type system will itself require dependent types
(since type families may have arguments with dependent types —
e.g. λx : nat.λy : vecB(suc(x)).Iffst(x)thenS elseT ). In other
words, we need a semantics of partial dependent type theory in
which terms denote stable functions. We can obtain such a model
by recasting the Scott domain and information system semantics of
partial type theory [27, 28] in the setting of stable domain theory.

In fact, our intensional semantics may be seen as a refinement
of this stable model. We adopt a unified presentation which demon-
strates this by defining both in terms of event structures [32], using
the fact that every dI-domain is isomorphic to the partial order of
states of an event structure (event domain), while concrete data
structures may be themselves be characterised as certain polarised
event structures (related to the confusion-free event structures [31]).

We define a notion of categorical model with which to structure
our semantics based on Dybjer’s interpretation of dependent type
theory in a category with families (CwF) [15], first defining a CwF
of event structures and stable functions in Section 4, and then
showing that it may be refined to a CwF of concrete data structures
in Section 5. In Section 6 we add new typing rules which relate
them, allowing recursively defined type families. We interpret these
via a morphism of CwFs [13] from the intensional to the extensional
models (based on the functor which sends a sequential algorithm to

the stable function it computes), together with further structure on
the extensional CwF picking out the universe of intensional types
in each context.

In the final part of the paper we study the relationship between
syntax and semantics, primarily viewing our type system as a basis
for a prototypical programming language obtained by giving a
simple operational semantics. First, in Section 7, we show that
our denotational interpretation of this language is computationally
adequate by a new adaptation of admssible logical relations [30] to
dependent types. In Section 8, we recast the work of Cartwright,
Curien and Felleisen [11] from the simply-typed to the dependently
typed case by adding a simple, non-local control operator (catch)
on intensional terms. This captures evaluation order, allowing us
to distinguish operationally any programs which have different
denotations (full abstraction), as well as to define all elements in
the finite, total fragment as terms (full completeness).

3 A Martin Löf Partial Type Theory
Wewill first describe models of intuitionistic dependent type theory,
extended with Booleans and fixed points (on terms) — which one
might call “dependent PCF”. We fix a set of universes and annotate
judgements and type constructors with the universe in which they
hold — we shall first consider a setting with a single universe in
which this annotation appears otiose: in Section 6 we add rules
relating the universes of intensional and extensional judgements,
allowing dependent and non-dependent types such as lazy natural
numbers and vectors of length n to be defined.

The pseudo-expressions (types and terms) are given by the fol-
lowing grammar:

t ,T ::= x ∈ Var | µx .t | ΠU (x : T ).T | λx .t | t t

| ΣU (x : T ).T | ⟨t , t⟩ | fst(t) |snd(t)

| bool | tt | ff | Ift thent elset

where Var is a set of variables. Upper and lower case lettering is
used (informally) to suggest whether an expression denotes a term
or a type. We define an equational theory on pseudo-expressions
as the least congruence containing the following axioms.

µx .t = t [µx .t/x] (λx .s)t = s [t/x] λx . (t x) = t (x < FV (t))
⟨fst (t) , snd (t)⟩ = t fst ⟨t1, t2⟩ = t1 snd ⟨t1, t2⟩ = t2

Ifttthent1 elset2 = t1 Ifffthent1 elset2 = t2

Pseudo-contexts are finite sequence of pairs of variables and pseudo
expressions x1 : e1, . . . ,xn : en such that xi , x j for i , j. Judge-
ments take one of the following forms:

• Γ ⊢U T type where Γ is a pseudo-context, T is a pseudo-
expression, andU is a universe — “T is a type in context Γ,
in universeU ”.

• Γ ⊢U t : T , where Γ is a pseudo-context and t and T are
pseudo-expressions — “t is a term of type T , in context Γ, in
universe U”.

A context Γ is well-formed in U if we may derive Γ ⊢U bool type.
A term derivable without using fixed points is said to be total.

4 An Event-Structure Model
Definition 4.1. An event structure is a triple (|E | ,ConE , ⊢E ), where:

• |E | is a set of events,
• ConE ⊆ Pfin (E) is a set (closed under ⊆) of sets of events,

3
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⊢U bool type
Γ ⊢U S type Γ, Γ′ ⊢U T type

Γ,x : S, Γ′ ⊢U T type
Γ ⊢U S type Γ,x : S ⊢U T type

Γ ⊢U ΠU (x : S) .T type
Γ ⊢U S type Γ,x : S ⊢U T type

Γ ⊢U ΣU (x : S) .T type
Table 1. Derivation Rules for Types

Γ ⊢U T type
x<FV (Γ)

Γ,x : T ⊢U x : T
Γ ⊢U S type Γ, Γ′ ⊢U t : T

x<FV (Γ,Γ′)
Γ,x : S, Γ′ ⊢U t : T

Γ ⊢U t : T1 Γ ⊢U T2 type
T1=T2

Γ ⊢U t : T2
Γ,x : S ⊢U t : T

Γ ⊢U λx : S .t : ΠU (x : S) .T

Γ ⊢U s : S Γ ⊢U t : T [s/x] Γ,x : S ⊢U T type
Γ ⊢U ⟨s, t⟩ : ΣU (x : S) .T

Γ ⊢U t : ΣU (x : S) .T
Γ ⊢U fst (t) : S

Γ ⊢U t : ΣU (x : S) .T
Γ ⊢U snd (t) : T [fst (t) /x]

Γ ⊢U t : ΠU (x : S) .T Γ ⊢U s : S
Γ ⊢U t s : T [s/x]

⊢U tt : bool ⊢U ff : bool
Γ ⊢U s : bool Γ,x : bool ⊢U T type Γ ⊢U t1 : T [tt/x] Γ ⊢U t2 : T [ff/x]

Γ ⊢U Ifs thent1 elset2 : T [s/x]

Γ,x : T ⊢U t : T
Γ ⊢U µx .t : T

Table 2. Derivation Rules for Terms

• ⊢E⊆ ConE × |E | is a relation (enabling) such that if X ⊢E e
then X ∪ {e} ∈ ConE .

A proof of an event e is a sequence e0, . . . , en of events such that
en = e and for each i ≤ n there exists X ⊆ {e0, . . . , ei−1} such that
X ⊢E ei .

For example, the event structure of Booleans has two events:
t and f , the consistent sets are ∅, {t} and { f }, and the enabling
relation is defined by ∅ ⊢ t and ∅ ⊢ f .

Definition 4.2. A state of an event structure E is a set of events
x ⊆ E which satisfies:

• Consistency: If X ⊆fin x then X ∈ ConE .
• Safety : If e ∈ x then there is a proof of e in x .

E is stable if for each state x of E and each event e ∈ x , e has a
unique enabling in x .

A stable event structures is the concrete representations of a
dI-domain in the following sense:

Proposition 4.3 ([6, 32]). If E is a stable event structure then D (E)
ordered with ⊆ is a dI-domain. Moreover, every dI-domain is order-
isomorphic to (D (E) , ⊆) for some event structure E.

Thus we may form a category in which objects are event struc-
tures and morphisms from E to E ′ are stable functions from D (E)
to D (E ′).

4.1 Dependent Event Structures
We may form a dI-domain Ev of all stable event structures2.

Definition 4.4. For stable event structures E,E ′, define E ◁ E ′ if
|E | ⊆ |E ′ | and:

• If e ∈ E and X ⊢E′ e then X ⊆ E and X ⊢E e .
• If X ⊆fin |E | then X ∈ ConE ⇔ X ∈ ConE′ .

It is straightforward to show that this is a directed and bounded
complete partial order in which the compact elements are the finite
stable event structures, and thus:

Proposition 4.5. Ev = (|Ev| ,◁) is a dI-domain, where |Ev| is the
set of all stable event structures.

Definition 4.6 (Ev-parametrization). An Ev-parametrization over
a stable event structure E is a stable function F : D (E) → Ev.
2To avoid Russell’s paradox, we shall assume that the collection of all events forms
a set, which contains various other sets we need and is closed under disjoint union,
product, finite powerset, etc.

In particular, for E,E ′ ∈ Ev there is a constant parametrization
on E mapping every x ∈ D (E) to E ′.

Definition 4.7. Given an Ev-parametrization F over E, define the
dependent product ΠE (E, F ) as follows:

• |ΠE (E, F )| =
{
(x , e) ∈ D (E) ×

⋃
x ∈D(E) F (x)

�� e ∈ F (x)
}

• {(xi , ei )}i ∈I ∈ ConΠE (E,F ) if and only if:
–
⋃
i ∈I xi ∈ ConE implies {ei }i ∈I ∈ ConF (⋃i∈I xi )

– ei = ej and xi , x j implies xi ↑̸ x j ,
• {(xi , ei )}i ∈I ⊢ΠE (E,F ) (x , e) if and only if:
– x min s.t.

⋃
i ∈I xi ⊆ x and e ∈ F (x)

– {ei }i ∈I ⊢F (x ) e .

We give an alternative characterization of states of the dependent
product as stable functions:

Definition 4.8. Given an Ev-parametrization F over E, we define
a dependent stable function on F as a stable function f from D (E) to⋃
x ∈D(E) D (F (x)) such that ∀x ∈ D (E) , f (x) ∈ D (F (x)). These

form a dI-domain with the the usual stable ordering:
f ≤ д iff ∀x ,y ∈ D (E) ,x ⊆ y ⇒ f (x) = f (y) ∩ д (x)

Proposition 4.9. Given an Ev-parametrization F over E, there is
an order-isomorphism between the set of dependent stable functions
on F and D (ΠE (E, F )). This isomorphism is given by:

• for f dependent stable function on F :

tr (f ) = {(x , e) | x min s.t. e ∈ f (x)}

• for σ ∈ D (ΠE (E, F )):

fun (σ ) (x) = {e | ∃y ⊆ x , (y, e) ∈ σ }

In the following, we will use the two characterizations indiffer-
ently and write x : ΠE (E, F ) for a state of D (ΠE (E, F )) as well
as for a dependent stable function on F . In the particular case of
constant parametrization F : x ∈ D (E) 7→ E ′, D (ΠE (E, F )) is thus
isomorphic to the usual domain of stable functions from D (E) to
D (E ′), and we may write E ⇒E E ′ instead of ΠE (E, F ).

Definition 4.10. Given a Ev-parametrization F over E, define the
dependent sum ΣE (E, F ) as follows:

• |ΣE (E, F )| = |E | ⊎ {(x , e) | x min s.t. e ∈ F (x)}
• {di }i ∈I ∪

{(
x j , ej

)}
j ∈J ∈ ConΣE (E,F ) if and only if:

{di }i ∈I ∪
⋃
j ∈J

x j ∈ ConE and
{
ej
}
j ∈J ∈ Con

F
(⋃

j∈J x j
)

• {di }i ∈I ⊢ΣE (E,F ) d if and only if {di }i ∈I ⊢E d

4
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• x ∪
{(
x j , ej

)}
j ∈J ⊢ΣE (E,F ) (x , e) if and only if:⋃

j ∈J
x j ⊆ x and

{
ej
}
j ∈J ⊢F (x ) e

Events in the right component have the form (x , e) so we can dis-
tinguish (x , e) from (x ′, e) when x ↑̸ x ′.

We give an alternative characterization of the states of the de-
pendent sum as pairs of states:

Definition 4.11. Given an Ev-parametrization F over E, a depen-
dent pair on F is a pair (x ,x ′) ∈ D (E) ×

⋃
x ∈D(E) D (F (x)) such

that x ′ ∈ D (F (x)).

Proposition 4.12. Given an Ev-parametrization F over E, there is
an order-isomorphism between the set of dependent pairs on F (ordered
pointwise) and D (ΣE (E, F )). This isomorphism is given by:

• If (x ,x ′) is a dependent pair on F then the following is a state
on ΣE (E, F )

x ∪
{(
y, e ′

) �� e ′ ∈ x ′ and y min s.t. y ⊆ x and e ′ ∈ |F (y)|
}

• If {di }i ∈I ∪ {(xi , ei )}j ∈J ∈ D (ΣE (E, F )) then the following
is a dependent pair on F :(

{di }i ∈I ,
{
ej
}
j ∈J

)
In the following, we will use the two characterizations indif-

ferently and write x : ΣE (E, F ) for a state of D (ΣE (E, F )) as well
as for a dependent pair on F . In the particular case of constant
parametrization F : x ∈ D (E) 7→ E ′, D(ΣE (E, F )) is thus isomor-
phic to the usual product of the domains D (E) and D (E ′) with the
pairwise ordering, so we may write E ×E E ′ instead of ΣE (E, F ).

We can precompose parametrizations with stable functions and
stable dependent functions with stable functions:

Proposition 4.13. If F is an Ev-parametrization over E ′ and f :
E ⇒ E ′, then F ◦ f is an Ev-parametrization over E. Moreover, if
f ′ : ΠE (E ′, F ), then f ′ ◦ f : ΠE (E, F ◦ f ).

The following notions provide support for dependent types in
contexts:

Definition 4.14. Let F be an Ev-parametrization over E and G
be an Ev-parametrization over ΣE (E, F ). Then for every x : E,
y 7→ G (x ,y) is a parametrization over F (x) so we can define the
following Ev-parametrizations over E:

• ΣE (F ,G) : x 7→ ΣE (F (x) ,y 7→ G (x ,y))
• ΠE (F ,G) : x 7→ ΠE (F (x) ,y 7→ G (x ,y))

4.2 Category with Families Interpretation
We may give a formal interpretation of dependent PCF based on
the “categories with families” interpretation of Dybjer [15].

Definition 4.15. Let Fam be the category of set-indexed families
of sets. A category with families (CwF) is given by:

• A base category CU

• A functor FU : Cop
U

→ Fam. For Γ an object of CU we write
FU (Γ) = (TmU (Γ ⊢ T ))T ∈TyU (Γ) and for γ ∈ CU (Γ′, Γ),
T ∈ TyU (Γ) and t ∈ TmU (Γ ⊢ T ) we write FU (γ ) (T ) =
T [γ ] and FU (γ ) (t) = t [γ ].

• A terminal object [] of CU and for Γ object of CU and T ∈

TyU (Γ) an object Γ · T of CU together with a morphism
p ∈ CU (Γ ·T , Γ) and an element q ∈ TmU (Γ ·T ⊢ T [p])
satisfying:
∀γ ∈ CU (Γ′, Γ) ,∀T ∈ TyU (Γ) ,∀a ∈ TmU (Γ′ ⊢ T [γ ])

∃!δ ∈ CU (Γ′, Γ ·T ) ,p ◦ δ = γ and q [δ ] = a

For a given universeU, objects of CU represent contexts over
U and morphisms represent substitutions between them. Types in
context Γ in U are represented as elements of the set TyU (Γ) and
terms of type T in context Γ as elements of the set TmU (Γ ⊢ T ).
The terminal object [] of CU represents the empty context and Γ ·T
the extension of context Γ with type T . Substitution p interprets
weakening through projection and term q interprets the axiom rule.

The action of FU on morphisms describes the action of substitu-
tion on types and terms— it sends amorphismγ ∈ CU (Γ′, Γ) in CU
to a pair consisting of a reindexing function sending T ∈ TyU (Γ)
to T [γ ] ∈ TyU (Γ′) and a family of maps sending t ∈ TmU (Γ ⊢ T )
to t [γ ] ∈ TmU (Γ′ ⊢ T [γ ]).

CwF of stable event structures. The base category of the exten-
sional CwF is the category of stable event structures and stable
functions. For each event structure E, FE (E) is given by:

• TyE (E) is the set of Ev-parametrizations over E,
• for each F ∈ TyE (E), TmE (E ⊢ F ) ≜ D (ΠE (E, F )).

For γ : E ′ ⇒ E, FE (γ ) sends
• F ∈ TyE (E) to F [γ ] ≜ F ◦ γ ∈ Ty (E ′)
• f ∈ TmE (E ⊢E F ) to f [γ ] ≜ f ◦ γ ∈ TmE (E ′ ⊢E F [γ ]).

The empty context is the empty event structure, and context exten-
sion sends an event-structure E and parametrization F over E to
the event structure ΣE (E, F ), with projections p : ΣE (E, F ) ⇒ E
and q : ΠE (Σ (E, F ) , F ◦ p) given by the set-theoretic projections,
using the characterizations of Definitions 4.8 and 4.11.

Π and Σ types. To interpret dependent type theory, our categories
with families require Π and Σ types — i.e. for each context Γ (object
in our base category) and types T ∈ TyU (Γ) andU ∈ TyU (Γ ·T ),
we have types ΠU (T ,U ) and ΣU (T ,U ) in Ty (Γ), with operations
taking:

• t ∈ TmU (Γ ·T ⊢ U ) to λ (t) ∈ TmU (Γ ⊢ ΠU (T ,U ))

• t ∈ TmU (Γ ⊢ ΠU (T ,U )) and u ∈ TmU (Γ ⊢ T ))
to App (t ,u) ∈ TmU (Γ ⊢ U [⟨idΓ ,u⟩])

• t ∈ TmU (Γ ⊢ T ) and u ∈ TmU (Γ ⊢ U [⟨idΓ , t⟩])
to Pair (t ,u) ∈ TmU (Γ ⊢ ΣU (T ,U ))

• t ∈ TmU (Γ ⊢ Σ (T ,U )) to Fst (t) ∈ TmU (Γ ⊢ T )
and Snd (t) ∈ TmU (Γ ⊢ U [⟨idΓ , Fst(t)⟩])

satisfying equations specifying β- and η-conversion, as well as the
action of substitutions on these constructs, see e.g. [13]. In the CwF
of stable event structures, ΠE and ΣE are those of Definition 4.14,
λ is currying, App, Pair, Fst and Snd are the corresponding set-
theoretic operations.

Semantics of Dependent PCF A CwF has fixed points if there is
an operation taking t ∈ TmU (Γ · A ⊢ A [p]) (where A ∈ TyU (Γ))
to Rec (t) ∈ TmU (Γ ⊢ A) such that:

Rec (t) = t [⟨idΓ ,Rec (t)⟩] Rec (t) [γ ] = Rec (t [⟨γ ◦ p,q⟩])

The extensional CwF has fixed points: if f : ΠE (ΣE (E, F ) , F ◦ π1),
Rec (f ) : ΠE (E, F ) maps x to

∨
n∈N f nx (∅) where fx : F (x) ⇒

F (x) is y 7→ f (x ,y).
5
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To interpret dependent PCF in a CwF we also require interpreta-
tions of the Booleans as a type B ∈ TyU ([]) with elements tt, ff ∈

TmU (⊢ B) and the conditional, as an operation taking a type T ∈

TyU (Γ · BΓ) and terms t1 ∈ TmU (Γ ⊢ T [⟨idΓ , ttΓ⟩]) and t2 ∈

TmU (Γ ⊢ T [⟨idΓ , ffΓ⟩]) to If (t1, t2) ∈ TmU (Γ · BΓ ⊢ T ), which
satisfies:

If (t1, t2) [⟨idΓ , ttΓ⟩] = t1 If (t1, t2) [⟨idΓ , ffΓ⟩] = t2

If (t1, t2) [γ ] = If (t1 [p ◦ γ ] , t2 [p ◦ γ ]) [⟨idΓ ,q [γ ]⟩]

where BΓ ≜ B [1Γ], ttΓ ≜ tt [1Γ] and ffΓ ≜ ff [1Γ] if 1Γ : Γ → [].
In our CwF of stable event structures, B is the constant param-

etrization which returns the event structure of Booleans, and tt
and ff the corresponding states. For f1 : ΠE (E,x 7→ F (x , {t}))
and f2 : ΠE (E,x 7→ F (x , { f })), If (f1, f2)maps (x , ∅) to ∅, (x , {t})
to f1 (x) and (x , { f }) to f2 (x).

Given a CwF (CU ,FU ) with Π and Σ types, Booleans, condi-
tionals and fixpoints, we interpret (by induction on derivation):

• Each well-formed context Γ as a (unique) object [[Γ]]U of
CU (in our extensional universe, an event structure).

• Each type in context Γ ⊢U T type as a (unique) element
[[T ]]Γ

U
of TyU

(
[[Γ]]U

)
(an Ev-parametrization over [[Γ]]E ).

• Each term in context Γ ⊢U t : T as an element [[t : T ]]Γ
U

of

TmU

(
[[Γ]]U ⊢ [[T ]]Γ

U

)
(a state in D

(
ΠE

(
[[Γ]]E , [[T ]]

Γ
E

))
).

5 Concrete Data Structures
Our extensional model of dependent type theory refines the do-
main theoretic semantics [29] in the sense that it excludes elements
such as parallel-or. However, it is not sequential, retaining parallel
elements such as “Gustave’s function” [8]. Nor is there a direct char-
acterization of the total elements of the model. We now formally
describe the intensional model sketched in Section 2, which does
have these properties. Types and terms will denote concrete data
structures and sequential algorithms, which generalize graph games
and strategies. By presenting them within the framework of event
structures, we relate them to the extensional model.

Definition 5.1. A concrete data structure (CDS) A is an event
structure (|A| ,ConA, ⊢A), together with a polarization |A| = |A|−⊎
|A|+ of its events such that:

• if X ⊢A e ∈ |A|− then X ⊆ |A|+,
• if X ⊢A e ∈ |A|+ then X− is a singleton,
• X ∈ ConA if and only if for all e1, e2 ∈ X+ and X1,X2 ⊆ X ,
if X1 ⊢A e1, X2 ⊢A e2 and X−

1 = X−
2 then e1 = e2 (so

the consistency relation is implicit in the polarization and
enabling relation).

We may subsume the graph games defined in Section 2 into this
definition by observing that the former correspond precisely to the
filliform CDSs, in which enabling sets consist of at most one event
(i.e. edges are enablings, and we remove the opening position ∗).

In the original terminology of CDSs [21], negative events are
called cells and positive events are called decisions and correspond
to the filling of a cell with a value3, and states consist only of filled
cells. We recast the latter as positive states of our event structure
CDSs, while those with exactly one unfilled cell are deemed negative
— i.e. a state x of a stable CDS is:
3Note that our definition is more general in that it allows the filling relation to depend
on other events, which is necessary for the modelling of dependent sums.

• positive if for any e ∈ x− there exists X ⊆ x and e ′ ∈ x+

such that X , e ⊢ e ′.
• negative if there exists a unique e ∈ x− such that there is no
X ⊆ x and e ′ ∈ x+ satisfying X , e ⊢ e ′.

• total if for any X ⊆fin x , X ⊢ e ∈ |A|− implies e ∈ x .
We writeD (A)+ (resp.D (A)−) for the set of positive (resp. negative)
states ofA. The positive states of a filiform CDS correspond exactly
to the strategies on the corresponding graph game.

The CDS for Booleans is as defined in Section 2, its only negative
state is {?} and its positive states are ∅, {?, t} and {?, f }.

5.1 Dependent Concrete Data Structures
We now define CDS-parametrizations similarly to parametrizations
over event structures. Since CDSs’ events are polarized, we refine
the order on stable event structures into an order on stable CDSs:
A ◀ B if A◁ B, |A|+ = |B |+ ∩ |A| and |A|− = |B |− ∩ |A|. Once again
we can form the large dI-domain of all stable CDSs:

Proposition 5.2. CDS = (|CDS| , ◀) is a dI-domain, where |CDS|
is the set of all stable CDSs.

Moreover, the set of positive states of a stable CDS is a dI-domain,
so we may define a CDS-parametrization over a stable CDS A to
be a stable map from D (A)+ to CDS. If P is a CDS-parametrization
over A then dependent products and sums are defined as follows:

Definition 5.3. The dependent product ΠI (A, P) is defined by:

• |ΠI (A, P)|+ =

{
(x , e) ∈ D (A) ×

⋃
x ∈D(A)+

���� x,e positiveor x,e negative

}
• |ΠI (A, P)|− =

{
(x , e) ∈ D (A) ×

⋃
x ∈D(A)+

���� x positiveand e negative

}
• If:
– {(xi , ei )}i ∈I ∈ |ΠI (A, P)| with xi positive
– x ∈ D (A)+ min s.t.

⋃
i ∈I xi ⊆ x and e ∈ P (x)

– {ei }i ∈I ⊢P (x ) e
then {(xi , ei )}i ∈I ⊢ΠI (A,P ) (x , e)

• if (x , e) , (x ∪ { f } , e) ∈ |ΠI (A, P)|
then {(x , e)} ⊢ΠI (A,P ) (x ∪ { f } , e)

A sequential algorithm on P is a positive state of ΠI (A, P), that is,
an element of D (ΠI (A, P))+.

We write a : ΠI (A, P) when a is a sequential algorithm on P . If
P is constant with value B we write A ⇒I B instead of ΠI (A, P).
In the terminology of [14], a state of ΠI (A, P) is an observable
sequential algorithm. It can be shown that if a : A ⇒I B then
fun (a) (see Proposition 4.9) is a stable function from D (A) to D (B).
Moreover, the restriction fun+ (a) of fun (a) to D (A)+ takes values
in D (B)+, it is therefore a stable function from D (A)+ to D (B)+.

Definition 5.4. The dependent sum ΣI (A, P) is defined by:
• |ΣI (A, P)| = |A| ⊎

{
(x , e)

�� x ∈ D (A)+ min s.t. e ∈ P (x)
}

• polarities in |A| are inherited, polarity of (x , e) is that of e
• {di }i ∈I ⊢ΣI (E,F ) d if and only if {di }i ∈I ⊢E d

• x ∪
{(
x j , ej

)}
j ∈J ⊢ΣI (E,F ) (x , e) if and only if:⋃

j ∈J
x j ⊆ x and

{
ej
}
j ∈J ⊢F (x ) e

We handle precomposition of parametrizations and sequential
algorithms using the fact that if a : A ⇒I A′ then fun+ (a) is a
stable function from D (A)+ to D (A′)+:

6
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Γ ⊢I T type
Γ ⊢E T type

Γ ⊢I t : T
Γ ⊢E t : T

⊢E I type ⊢E bool : I
Γ ⊢I bool type Γ ⊢E T : I

Γ ⊢I T type

Γ ⊢E S : I Γ,x : S ⊢E T : I
Γ ⊢E ΠI (x : S) .T : I

Γ ⊢E S : I Γ,x : S ⊢E T : I
Γ ⊢E ΣI (x : S) .T : I

Table 3. Rules for the Semantic Universe of Intensional Types

Proposition 5.5. If P is a CDS-parametrization over A′ and a :
A ⇒I A′, then P ◦ fun+ (a) is a CDS-parametrization over A. More-
over, if a′ : ΠI (A′, P), then tr (fun (a′) ◦ fun (a)) : ΠI (E, F ◦ f ).

The Intensional Category with Families. The intensional cate-
gory with families is given by the pair (CI ,I), where CI is the
category of stable CDS and sequential algorithms, and FI : Cop

I
→

Fam is defined on objects by:
• TyI (A) is the set of CDS-parameterizations over A.
• for each P ∈ TyI (A), TmI (A ⊢ P) ≜ D (ΠI (A, P))+

For γ : A′ ⇒I A, FI (γ ) sends
• P ∈ TyI (A) to P[γ ] ≜ P ◦ fun+ (γ ),
• a ∈ TmI (A ⊢I P)

to a[γ ] ≜ tr (fun (a) ◦ fun (γ )) ∈ TmI (A′ ⊢I P [γ ])

The empty context is the empty CDS and context extension sends
a stable CDS A and parametrization P over A to the stable CDS
ΣI (A, P). With an equivalent of Definition 4.11 we can build set-
theoretic projections. Since their traces are sequential algorithms
on the appropriate CDSs, we use them for building the intensional
CwF. Booleans are interpreted with the CDS given above and the
operations for Booleans and fixed points are obtained from the
set-theoretic ones, the traces of which are sequential algorithms.
The intensional CwF is therefore a model of dependent PCF.

6 A Universal Type of Intensional Types
Having described interpretations of dependent PCF in two different
semantic universes we now add typing rules for relating these inter-
pretations, allowing a rich variety of recursive type families to be
expressed in our system — which might therefore be called “depen-
dent FPC”. In particular, we may type each of the examples which
were given in Section 2 — the lifted sum, lazy natural numbers and
dependent type of vectors of length n.

Letting the set of universes be {E,I}, we extend dependent PCF
with the rules of Table 3, giving two universes (à la Russell), of
intensional and extensional types and terms. The first pair of rules
“lift” type and term judgements from the intensional to the exten-
sional universe (a form of cumulativity). The next three rules state
that there is a type of intensional types in the extensional universe,
of which bool is an element, and that any term of this type in an in-
tensional context is an intensional type. Finally, we add extensional
term formation rules for the intensional type operators.4

We may compare our type-theory with Barendregt’s λ-cube by
taking I to be the sort of terms and E to be the sort of types [7]. It
lacks polymorphism (terms depending on types) but can express
both the type-families of λP or LF (types depending on terms), and
4Observe that adding the rules fromTable 3 renders all of the intensional type formation
rules from Table 1 admissible.

the type-operators of λω or Haskell (types depending on types).
However, it does not combine these in the same way as the λ-cube
due to the distinction between intensional and extensional typing
judgments.

6.1 Interpretation of Dependent FPC
Having described extensional and intensional interpretations of
dependent PCF in the CwFs (CE ,FE ) and (CI ,FI ) we now relate
them, leading to interpretations of the rules of Table 3. To lift
judgments from the intensional to the extensional universe, we
require a map between CwFs.

Definition 6.1 ([13]). A (weak) morphism between CwFs (C1,F1)
and (C2,F2) is given by a functor between the base categories G :
C1 → C2, together with a natural transformationϕ : F1 → F2◦Gop

which preserves empty context and context formation — i.e. for
any object C of C1 and type T ∈ Ty1 (C),G (C ·T ) � G (C) · ΦC (T ).
(Where ΦC : Ty1 (C) → Ty2 (G (C)) is the reindexing component
of ϕC : F1 (C) → F2 ◦G (C).)

We define a functor G : CI → CE which acts on objects by
sending a CDS A to the event structure A+ over its set of positive
events, with X ,X ′ ⊢ e if X ⊢ f and X ′, f ⊢ e for some (negative) f
and X ∈ ConA+ if for any Y ⊆ |A|, Y+ = X implies Y ∈ ConA.

If x ∈ D(A)+ then x+ ∈ D
(
A+

)
and this defines an order-

isomorphism ψA : D(A+) � D(A)+ in the category of dI-domains.
Thus we define the action ofG on sequential algorithm a : A ⇒I B
as G (a) : D

(
A+

)
→ D

(
B+

)
≜ ψ−1

B ◦ fun+ (a) ◦ψA.5

The natural transformationϕ : FI → FE ◦G
op is induced by the

stable function S : CDS → Ev mapping A to A+ (the restriction of
G to the posetal categories CDS and Ev), — for each object A ∈ CI ,
the morphism ϕA : FI (A) → FE

(
A+

)
consists of:

• A reindexing function ΦA : TyI (A) → TyE
(
A+

)
, which

sends a CDS-parametrization P : D (A)+ → CDS over A to
the Ev-parametrization S ◦ P ◦ψA : D

(
A+

)
→ Ev,

• A morphism sA,P : TmI (A ⊢ P) → TmE

(
A+ ⊢E ΦA (P)

)
for each CDS A and CDS-parametrization P ∈ TyI (A) that
sends a dependent sequential algorithm a : ΠI (A, P) to the
dependent stable function:

x 7→ ψ−1
P◦ψA(x )

◦ fun+ (a) ◦ψA (x) : ΠE

(
A+, S ◦ P

)
For coherence we require that our morphism of CwFs preserves
the interpretations of the Booleans. G evidently does so.

Intensional Types as Extensional Terms. Wemust also interpret
the rules which allow extensional terms of the distinguished type
I to be used as intensional types. By Proposition 4.3, there is an
event structure EI for which D (EI ) is order-isomorphic to the
dI-domain CDS of concrete data structures, so that stable functions
into D (EI ) correspond to CDS parametrizations. (Concretely, the
events of EI are CDSs which are down-closures of a single event
(positive or negative), with the causal order [32] being ◀ and a set
of events consistent if they are bounded above in ◀.)

More generally, if V : Fam → Set is the projection of Fam onto
indexing sets and reindexing functions, we require that the functor
V ◦ FI : CI → Set (which projects the intensional category with
families onto just its typing information) is representable by EI , in
a sense which we now explain.
5Note that the event structures in the image of this functor are confusion free [31], al-
though we can’t recover every dependent CDS from its confusion-free event structure.
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Let Fam∗ be the category of pointed-set-indexed families — i.e.
each indexing set J contains a distinguished object ∗J and rein-
dexing functions satisfy f

(
∗J
)
= ∗K . This comes with functors

U : Fam∗ → Fam (which forgets the pointed structure) and
W : Fam∗ → Set which sends each family

{
Aj

�� j ∈ J
}
to A∗J .

Definition 6.2. A category with pointed families is given by a
base category C with a functor F∗ : Cop → Fam∗, corresponding
to a category with families over C together with a type ∗Γ in Ty∗ (Γ)
for each context Γ such that for each γ : ∆ → Γ, F∗ (γ ) (∗Γ) = ∗∆.

We extend (CE ,FE ) to a category with pointed families by set-
ting each ∗E to be the constant parametrization over E which re-
turns EI . To interpret dependent FPC, we require that forgetting
the pointed structure returns the extensional category with families
(i.e.U ◦FE∗ = FE , which is evident) and that the following diagram
commutes up to natural isomorphism.

C
op
I

Gop

��

FI // Fam
V

++ Set

C
op
E

FE∗ // Fam∗

W
33

This holds sinceW ◦ FE∗ : Cop
E

→ Set is the Yoneda embedding of
EI .

Finally, for any CDS A, the functions from A+ ⇒E EI into EI
sending a CDS-parametrization P to ΠI (A, P) and ΣI (A, P) are
stable and therefore correspond to maps from TmE (C · A ⊢ EI ) to
TmE (C ⊢ EI ), giving interpretations of the dependent product and
sum as term-formation rules in CE which are consistent with their
interpretations in CI as type-formers.

Proposition 6.3 (Soundness). For terms Γ ⊢U s : T and Γ ⊢U t : T ,
if s = t then [[s : T ]]Γ

U
= [[t : T ]]Γ

U
.

7 Dependently Typed Programs
We now define a programming language based on our typing sys-
tem, by giving an operational semantics for evaluating intensional
terms, based on head-reduction in the λ-calculus with pairing and
conditionals. (We omit fixed points on terms, as µx .s is macro-
expressible as (λy.s [(yy) /x]) λy.s [(yy) /x] in the presence of re-
cursive types.) Formally, we give a (small-step) reduction relation
on (pseudo)terms, consisting of pairs of the form E [s] −→ E [t]
where E [_] is an evaluation context, given by the grammar:
E [_] ::= [_] | E [_] t | IfE [_] thent elset | fst (E [_]) | snd (E [_])
and s −→ t is a reduction rule, given by the schema:

(λx .s) t −→ s [t/x] fst ⟨s, t⟩ −→ s snd ⟨s, t⟩ −→ t
Ifttthent1 elset2 −→ t1 Ifffthent1 elset2 −→ t2

Thus we define observational approximation for terms Γ ⊢I s, t : T
— s ≲ΓT t if and only if for any compatible, closing context C [_] :
bool, C [s] ⇓ tt implies C [t] ⇓ tt.

It follows from soundness of the equational theory (Proposi-
tion 6.3) that for Γ ⊢I s, t : T , if s →∗ t then [[s : T ]]Γ

I
= [[t : T ]]Γ

I
.

7.1 Adequacy
To show that our semantics is adequate — that is, for every program
Γ ⊢I t : bool, t ⇓ if and only if [[t]]Γ

I
, ∅ — we adapt Pitts’ theory

of admissible relations [30] to dependent type theory, defining a

system of dependent admissible logical relations. This takes advan-
tage of our two semantic universes by incorporating the relational
structure within our interpretation of extensional types and terms
as event structures and stable functions. Specifically, we define a
new interpretation of the extensional type I of intensional types
in which states are dependent pairings of a CDS (representing an
intensional type) with a relation between pseudo expressions and
states of the CDS.

Definition 7.1. Let R be the dI-domain consisting of pairs (B,RB )

of a CDS B and a relation RB between the set of pseudo-expressions
and the set of finite, positive states of B, with (B,RB ) ≤ (C,RC ) if
B ◀ C and RB ⊆ RC .

An R-parametrization over a CDS A (a stable function F from
D (A)+ to R) therefore corresponds to a pair consisting of a CDS-
parametrization P over A and a family of relations R (x) between
pseudo-expressions and finite states of P (x) for each x ∈ D (A)+.
We now give operations on R-parametrizations corresponding to
the dependent sum and product. Given S = (A,RA) ∈ R:

• ΠR (S, F ) =
(
ΠI (A, P) ,RΠI (A,P )

)
, where (s,a) ∈ RΠI (A,P )

iff (t ,x) ∈ RA implies
(
s t , fun+ (a) (x)

)
∈ R (x)

• ΣR (S, F ) =
(
ΣI (A, P) ,RΣI (A,P )

)
, where (t ,x) ∈ RΣI (A,P )

iff (fst (t) ,π1 (x)) ∈ RA and (snd (t) ,π2 (x)) ∈ R (π1 (x)).
Note that in each case, the first component is given by the corre-
sponding construction on CDS parametrizations.

By Proposition 4.3, R is order-isomorphic to the domain of states
of an event-structure ER , which we can use in place of the former
EI — i.e. we obtain a pointed category with families modelling the
extensional universe in which the extensional type I denotes ER ,
with the above operations.

The interpretation of an extensional term T of type I in an
intensional context Γ then corresponds to an R-parametrization
over [[Γ]]I consisting of the CDS-parametrization [[T ]]Γ

I
over [[Γ]]I

(i.e. an intensional type) together with the relation RT (x) between
pseudo-expressions and positive finite states of [[T ]]I (x), param-
etrized by x ∈ D

(
[[Γ]]I

)+ (a logical relation on [[T ]]Γ
I
).

Finally, we fix the denotation of [[bool : I ]] to be the constant
R-parametrization with value (B,RB) ∈ R, where B is the CDS of
Booleans and (t ,x) ∈ RB iff x , ∅ implies t ⇓. We may now use our
logical relations to give a proof of adequacy along standard lines.

Lemma 7.2. For all types Γ ⊢I T type and x ∈ D
(
[[Γ]]I

)+:
• (t , ∅) ∈ RT (x) for all pseudo expressions t ,
• If s −→ t and (t ,y) ∈ RT , then (s,y) ∈ RT .

For each intensional context Γ = x1 : T1, . . . ,xn : Tn , we define
a relation RΓ between n-tuples of pseudo-expressions (which act
as substitutions on terms over Γ) and finite positive states of [[Γ]]I ,
as follows:

• R[] = (⟨⟩ , ∅)

• (⟨®r , s⟩ ,x) ∈ RΓ,y :T if (®r ,π1 (x)) ∈ RΓ

(s,π2 (x)) ∈ RT (π1 (x)).

Proposition 7.3. For any term Γ ⊢I t : T , if (®r ,x) ∈ RΓ , and
y ⊆fin [[t : T ]]Γ

I
(x) positive state of [[T ]]Γ

I
then (t [®r ] ,y) ∈ RT (x).

Proof. We prove by structural induction:
• If t ∈ {tt, ff}, then this is evident.
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• If t ≡ Ifs thent1 elset2. If y = ∅ then (t [®r ] ,y) ∈ RT (x)

by Lemma 7.2; otherwise [[s : bool]]Γ
I
(x) , ∅ and so s [®r ] ⇓

by inductive hypothesis. Suppose w.l.o.g. that s [®r ] ⇓ tt,
then t [®r ] −→∗ t1 [®r ], and so by the inductive hypothesis
on t1, Lemma 7.2 and soundness of the reduction relation,
(t [®r ] ,y) ∈ RT (x).

• If t ≡ λz.t ′ : ΠI (z : S) .T then t [®r ] ≡ λz.t ′ [®r ] and so
for any (s,w) ∈ RS (x), t [®r ] s reduces to t ′ [®r ] [s/z] and
so by induction hypothesis applied to t ′, and Lemma 7.2,
(t [®r ] ,y) ∈ RT (x).

• If t ≡ t ′s , so that Γ ⊢ t ′ : ΠI (x : S) .T ′ and Γ ⊢ s : S for
some S and some T ′ such that T ′ [s/x] = T , then there ex-
ist positive states y′ ⊆fin [[t ′]] (x) and z ⊆fin [[s]] (x) such
that fun+ (y′) (z) = y. By inductive hypothesis, (t ′ [®r ] ,y′) ∈
RΠI (x :S ).T ′ (x) and (s, z) ∈ RS (x), and hence (t ,y) ∈ RT (x).

• The cases for pairing or projection are similar. □

For any closed term t : bool,
(
t , [[t : bool]]I

)
∈ RB and hence:

Theorem 7.4 (Adequacy). For any program ⊢I t : bool:
t ⇓ tt if and only if [[t : bool]]I = [[tt : bool]]I .

8 Observable Sequentiality
Since observational equivalence for our programming language is
conservative over its simply-typed sublanguage (finitary PCF) it can
have no effectively presentable and fully abstract semantics [23].
Our model contains the sequential algorithms model of finitary PCF
and thus has distinct denotations for observationally equivalent
terms such as left-strict-or and right-strict-or [11]. By adding a
simple non-local control operator (catch) to PCF to capture this
kind of intensional information in the sequential algorithms model,
Cartwright, Curien and Felleisen established full abstraction for
the resulting “observably sequential PCF” (SPCF). We will extend
these results to our partial and total models of dependent FPC.

We extend the intensional terms by adding a Boolean version of
catch — a strictness test with the following typing rule:

Γ,k : bool ⊢I t : bool
Γ ⊢I catch (k) .t : bool

Some caution is required when extending dependent type theory
with control operators — adding full call/cc in the presence of
dependent sum types leads to an inconsistent theory [16]. However,
the extension of the total fragment of our type theory with (simply-
typed) catch is consistent, as we show by giving an interpretation
of terms as total states. Note also that we are using the distinction
between intensional and extensional typing judgments to allow
side-effecting terms without side-effecting types.

Operationally, catch is characterized by the reduction rules:

catch (k) .E [k] −→ tt catch (k) .v −→ ff (v ∈ {tt, ff})

with which we extend the operational semantics of Section 7. We
also add catch (k) .E [_] to the grammar of evaluation contexts.

Denotationally, catch (k) .t is interpreted as the composition of
[[λk .t]]Γ

I
with the sequential algorithm from (B ⇒ B) to B with

maximal events ({(∅, ?) , ({?}, ?)}, tt) and ({(∅, ?) , (∅,v)} , ff) for
v ∈ {tt, ff}.

This is sound with respect to the operational rules [11], and our
proof of adequacy (Theorem 7.4) extends to include catch:

Proposition 8.1. t ⇓ tt if and only if [[t : bool]]I = [[tt : bool]]I .

Equationally, we extend the raw theory of intensional terms with
the above reduction rules as axioms. To give a complete characteri-
zation of equivalence at finite types we add:

t = Ifcatch(k).t then (Ifk thent[tt/k]elset[ff/k])
elset[tt/k]

together with the typed rule:
Γ ⊢I t : Ifs thenT elseT

Γ ⊢I Ifs thent elset = t : Ifs thenT elseT

In general Ifs thent elset = t does not hold in our model (e.g.
[[If⊥thenttelsett : bool]]I , [[tt : bool]]I ). Yet, the typed
version above is sound since the parametrization over bool denoted
by Ifx thenT elseT returns the empty CDS unless its argument
is a Boolean value.

8.1 Definability, Completeness and Full Abstraction
We establish a series of results, showing that our total semantics is
fully complete and equationally complete, and our partial semantics
is fully abstract. First, we prove a lemma on which each of our
results depends — that every finite type (i.e. one in which the only
instances of fixed points are the empty type⊥ ≜ µx .x ) is a definable
retract of booln (i.e. vecB(n))) for some n, in the following sense:

Definition 8.2. For Γ ⊢I S,T : type, Γ ⊢I S ⊴ T is a definable
retraction if there are terms Γ ⊢I in : S → T and Γ ⊢I out : T → S
such that Γ,x : S ⊢I out (inx) = x : S .

The axioms introduced above in the equational theory play a
key role in the proof of following lemma:

Lemma 8.3. There are definable retractions:
1. ⊢I bool →I bool ⊴ bool3

2. ⊢I boolm →I booln ⊴ booln .3
m

3. If Γ ⊢I s : bool,T type then Γ ⊢I Ifs thenT elseT ⊴ T .

Proof. (1) with in ≜ λf . ⟨catch (k) . f k, ⟨f tt, f ff⟩⟩ and out ≜
λx .λy.Iffst (x) then (Ify thenfst (snd (x)) elsesnd (snd (x)))

elsefst (snd (x))
.

(2) by induction on lexicographically ordered (m,n) using (1).
(3) with in ≜ out ≜ λx .Ifs thenx elsex . □

We may thus prove by structural induction:

Proposition 8.4. For any finite Γ ⊢I T type there exists n such that
Γ ⊢I T ⊴ booln . We write inT and outT for the associated terms.

Theorem 8.5 (Full Completeness). For finite Γ ⊢ T type, and (to-
tal) x ∈ [[T ]]Γ

I
there exists a (total) term Γ ⊢I tx : T such that

[[tx : T ]]Γ
I
= x .

Proof. [[inT ]]ΓI (x) ∈ [[booln ]]Γ
I
is a finite tuple of Boolean states

and therefore definable as a term s : booln . Define tx ≜ outT s , so
[[tx ]]

Γ
I
= [[outT s]]

Γ
I
= [[outT ]]

Γ
I

(
[[inT ]]

Γ
I
(x)

)
= x . □

Theorem 8.6 (Equational Completeness). For any total terms Γ ⊢I

t , t ′ : T , if [[t : T ]]Γ
I
= [[t ′ : T ]]Γ

I
then Γ ⊢I t = t ′ : T .

Proof. It is sufficient to prove this for closed terms. Suppose that
[[t : T ]]I = [[t ′ : T ]]I . By Proposition 8.4,T ⊴ booln for some n. For
each i ≤ n, πi

(
[[inT t : booln ]]I

)
= πi

(
[[inT t

′ : booln ]]I
)
, so by

adequacy πi (inT (t)) ⇓ v iff πi (inT (t)) ⇓ v and inT (t) = inT (t ′),
so t = outT (inT (t)) = outT (inT (t ′)) = t ′. □
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Lemma 8.7. Every type Γ ⊢I T type denotes the least upper bound
of a ◀-chain of CDSs interpreting finite types (Ti )i ∈ω in which each
embedding-projection pair from ◀ are definable as terms.

Proof. Let ⊑ be the least precongruence on extensional terms such
that ⊥ ⊑ t for all t , so that s ⊑ t implies [[s]]Γ

E
⊆ [[t]]Γ

E
. We show by

induction on β-normal forms that if Γ ⊢I S,T type and S ⊑ T then
the embedding-projection pair from S to T is definable.

For any type T , we obtain a type T ′
i such that T = T ′

i by (re-
cursively) expanding each of its fixed points i times, and thus an
approximating chain of types Ti such that Ti ⊑ T ′

i = T for each i
by replacing every fixed point in T ′

i by ⊥. □

As in [26], this combines with definability at finite types to prove:

Theorem 8.8 (Finite Definability). For any finite x ∈ [[T ]]Γ
I
there

exists a term Γ ⊢I tx : T such that [[tx : T ]]Γ
I
= x .

By standard arguments from adequacy and finite definability:

Theorem 8.9 (Full Abstraction). For any terms Γ ⊢I t1, t2 : T :
t1 ≲ΓT t2 ⇐⇒ [[t1 : T ]]ΓI ⊆ [[t2 : T ]]ΓI

9 Conclusions and Further Directions
We have described an intensional semantics of dependent types,
and an expressive type system for defining them. There are some
notable omissions, partly due to lack of space. Our full completeness
result shows that, in principle, we may identify the total elements of
the intensional model by an intrinsic property (unlike the domain-
theoretic semantics) but going beyond the restriction to finite types
requires consideration of “winning conditions” for infinitary posi-
tions; a next step is to give total interpretations of inductive families
of types based on the game semantics of inductive types [12].

We have not included identity types, which may receive different
interpretations in our model based on identifying functional pro-
grams up to intensional or extensional equivalence. By giving an
internal encoding of a strategy as a tuple of Booleans, definable re-
tractions give a way to express “extensional equality” of sequential
algorithms without requiring function extensionality.

A final requirement, if we are to give a semantics of an expressive
logical system such as the calculus of constructions, is a treatment
of higher rank polymorphism. It is not yet clear how the existing
games models for System F style polymorphism [2, 22] may be
adapted to the positional style of games described here.

Our model includes some side effects (partiality, local control)
and thus gives some indications of how a more general approach
might combine computational effects with dependent types. A re-
lated facet of the model is its relationship to linear logic and type
theory — graph games and concrete data structures enjoy a decom-
position into a model of linear logic; extending this to dependent
types may be illuminating on both fronts.
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