
HAL Id: hal-01766884
https://hal.science/hal-01766884

Submitted on 14 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability for Peano arithmetic with winning
conditions in HON games

Valentin Blot

To cite this version:
Valentin Blot. Realizability for Peano arithmetic with winning conditions in HON games. Annals of
Pure and Applied Logic, 2017, 168 (2), pp.254 - 277. �10.1016/j.apal.2016.10.006�. �hal-01766884�

https://hal.science/hal-01766884
https://hal.archives-ouvertes.fr

Annals of Pure and Applied Logic 168 (2017) 254–277
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Realizability for Peano arithmetic with winning conditions in

HON games

Valentin Blot
Department of Computer Science, University of Bath, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 13 October 2016

MSC:
03B70
03F30
68Q55
18D15

Keywords:
Classical realizability
Peano arithmetic
Hyland Ong game semantics

We build a realizability model for Peano arithmetic based on winning conditions for
HON games. Our winning conditions are sets of desequentialized interactions which
we call positions. We define a notion of winning strategies on arenas equipped with
winning conditions. We prove that the interpretation of a classical proof of a formula
is a winning strategy on the arena with winning condition corresponding to the
formula. Finally we apply this to Peano arithmetic with relativized quantifications
and give the example of witness extraction for Π0

2-formulas.
© 2016 The Author. Published by Elsevier B.V. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Realizability is a technique to extract computational content from formal proofs. It has been widely used
to analyze intuitionistic systems (for e.g. higher-order arithmetic or set theory), see [23] for a survey. Follow-
ing Griffin’s computational interpretation of Peirce’s law [8], Krivine developed in [13,14,12] a realizability
for second-order classical arithmetic and Zermelo–Frænkel set theory.

On the other hand, Hyland–Ong game semantics provide precise models of various programming lan-
guages such as PCF [11] (a similar model has simultaneously been obtained in [21]), also augmented with
control operators [15] and higher-order references [1]. In these games, plays are interactions traces between a
program (player P) and an environment (opponent O). A program is interpreted by a strategy for P which
represents the interactions it can have with any environment.

In this paper, we devise a notion of realizability for HON general games based on winning conditions on
desequentialized plays, defined using the thick subtrees of [5]. We show that our model is sound for classical
Peano arithmetic and allows to perform extraction for Π0

2-formulas.

E-mail address: v.blot@bath.ac.uk.
http://dx.doi.org/10.1016/j.apal.2016.10.006
0168-0072/© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apal.2016.10.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
http://creativecommons.org/licenses/by/4.0/
mailto:v.blot@bath.ac.uk
http://dx.doi.org/10.1016/j.apal.2016.10.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2016.10.006&domain=pdf

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 255
HON games with winning conditions on plays have been used in e.g. [6] for intuitionistic propositional
logic with fixpoints. These conditions have then been generalized in [4] to handle full first-order classical
logic, while [6] only deals with totality. In this paper we reformulate the winning conditions of [4] as sets of
positions rather than sets of plays, emphasizing the fact that winning conditions are blind to the sequentiality
information of plays. Classical logic is handled similarly to the unbracketed game model of PCF of [15].

We start from the cartesian closed category of single-threaded strategies which contains the unbracketed
and non-innocent strategies used to model control operators and references. Applying the coproduct com-
pletion of [2] to this category gives a response category [22]. If we choose smartly the object of responses,
the corresponding category of continuations is isomorphic to the first category and makes clear that the
usual flat arena of natural numbers in HON games is indeed in the image of a negative translation. Our
realizability is then obtained by equipping arenas with winning conditions on positions.

The paper is organized as follows. Section 2 introduces the notion of thick subtrees and positions, states
the equivalence with the usual game semantics framework and shows how to interpret λμ-calculus in the
category of games. Section 3 defines the notion of winning strategies. Section 4 contains the definition of our
realizability relation and its adequacy for classical logic. Section 5 introduces the relativization predicate,
applies our realizability model to Peano arithmetic and shows witness extraction for Π0

2-formulas.

2. HON games

Our realizability model is based on the Hyland–Ong–Nickau games [11] with no bracketing or innocence
constraint, so as to model control operators [15] and references [1]. We consider single-threaded strategies
in order to have a cartesian closed category.

2.1. Arenas

Here we define arenas, which are forests of moves. Arenas are the objects of the category of HON games.
A forest is a partial order (E,≤) such that ∀x ∈ E, {y ∈ E | y < x} is well-ordered. The binary relation

<1 on E is then defined as:

∀x, y ∈ E x <1 y ⇐⇒ x < y ∧ ∀z (x < z < y ⇒ z = x ∨ z = y)

x <1 y means that y is a direct child of x. The roots of a forest correspond to the minimal elements for ≤.

Definition 1 (Arena). An arena is a countably branching, finite-depth forest whose nodes are called moves.
Each move is given a polarity O (for Opponent) or P (for Player or Proponent):

• The roots are of polarity O
• If x <1 y then x and y are of opposite polarities

A root of an arena is also called an initial move. We will often identify an arena with its set of moves.
Here is an example of arena, the polarities of the moves being given on the left:

O a f

P b c g h

O d e

(1)

256 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
2.2. Interaction sequences via thick subtrees

In usual game semantics [11], interaction sequences are defined as words of moves with pointers between
them. Here we first define what is a position on an arena, using the thick subtrees of [5], and the interac-
tion sequences are just positions together with a sequentiality information. This choice is justified by the
positional nature of our winning conditions.

2.2.1. Interaction sequences as thick subtrees
We choose to define the positions on arenas using the thick subtrees of [5], extended to handle the case of

forests. This formalism is a nice way to deal with non-affine programs: programs that may use several times
their arguments. A thick subtree of a given tree is a subtree which can be extended in width, meaning that
branches of the initial tree can be duplicated. These duplications correspond to the distinct computations
of arguments during the execution of a non-affine program.

Definition 2 (State). Given an arena A, a state on A is a thick subforest of A, that is a forest s together
with a labeling function l : s → A such that:

∀x ∈ s, {l (y) | y < x} = {z ∈ A | z < l (x)}

This condition ensures that the roots are mapped to roots, and that the relation <1 is preserved. Here is
an example of a state on the arena 1:

a a f

b b b h

d e e

(2)

The nodes are considered distinct, even if they have the same label. By definition of the polarity, the roots
of a justified sequence are labeled with O-moves, and if x <1 y, then the labels of x and y are of opposite
polarities.

We denote the empty state by ε. If A is an arena, X is a subset of A (with the restricted ordering) and
s is a state on A, then s|X is the state on X whose set of nodes is l−1(X) (where l : s → A is the labeling
of the state), with the restricted ordering. It is immediate to check that it is a state on X.

Definition 3 (Position). A position on an arena is a state which is a tree (i.e. it has a unique root). If s is a
state on an arena A, the set of positions of s, Pos (s), is the set of trees composing the state.

For example, the set of positions of the state 2 is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

b b

d

;

a

b

e e

;
f

h

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

A state s is a position if and only if Pos (s) = {s}. Remark that Pos (ε) = ∅, so ε is not a position. Our
notion of position can be seen as an attempt to give a positional account of game semantics, as in [19], but
in a quite different way.

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 257
The justified sequences are then states on arenas together with a sequentiality information:

Definition 4 (Justified sequence). Given an arena A, we define a justified sequence on A to be a state (finite
of infinite) s on A equipped with a total order ≺ of type at most ω.1 Moreover, a justified sequence must
verify:

∀x, y ∈ s x < y ⇒ x ≺ y

The partial order < of a justified sequence corresponds to the pointers of usual game semantics settings:
x <1 y corresponds to y pointing to x. The total order ≺ corresponds to the sequentiality of moves. The
coherence condition of justified sequences means that if there is a pointer from a move y to a move x in the
sequence, then x must have been played before y. The fact that x must be the father of y comes from the
definition of a state.

Here is an example of a justified sequence on the arena 1:

(a, 1) (a, 3) (f, 8)

(b, 2) (b, 4) (b, 5) (h, 10)

(d, 7) (e, 6) (e, 9)

(3)

Where the labeling is given by the first components and the injection to natural numbers by the second
components. The empty justified sequence will be denoted ε, like the empty state. In the following we will
allow ourselves to consider justified sequences as words of moves, without explicitly mentioning it. By the
coherence condition of justified sequences, the minimal element for ≺ is always a minimal element for <,
and therefore labeled with a root of the arena. We can map any justified sequence to a state by forgetting
the sequentiality information, so in the following we will freely consider that a justified sequence is a state.
For example the state corresponding to the justified sequence 3 is the state 2.

2.2.2. Correspondence with the usual setting
In usual game semantics settings like [11], the justified sequences are words of moves with pointers

between them. For example, the justified sequence 3 would be represented as:

a b a b b e d f e h

We prove here the correspondence between our notion of justified sequence and the usual one of pointed
sequence.

Definition 5 (Pointed sequence). A (potentially infinite) pointed sequence on an arena A is a word s of A
together with a partial pointing function f : |s| ⇀ |s| such that:

• If f (i) is undefined then si is a root of A
• If f (i) is defined then f (i) < i and sf(i) <1 si (as elements of A)

1 This means that ≺ can be described by an injection to natural numbers.

258 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
From pointed sequences to justified sequences If s is a pointed sequence with pointing function f , we define
the corresponding justified sequence Just (s) as the thick subforest of A whose nodes are (si, i), the order
< of the forest is defined as:

(si, i) < (sj , j) ⇐⇒ ∃n > 0, fn (j) = i

the labeling function is given by the first components and the order ≺ is given by the second components.

Lemma 1. If s is a pointed sequence with pointing function f , then Just (s) is a state.

Proof. Let (sj , j) be a node. We have to prove:

{si | (si, i) < (sj , j)} = {x ∈ A | x < sj}

For the left-to-right inclusion, if (si, i) < (sj , j) then by definition there is some n > 0 such that fn (j) = i,
so by the definition of a pointed sequence, in A we have si = sfn(j) <1 sfn−1(j) <1 . . . <1 sf(j) <1 sj ,
and therefore si < sj . For the right-to-left inclusion, since an arena has finite depth, {x ∈ A | x < sj} is
finite, and it is also a well-order (by definition of a forest), so there are xn <1 . . . <1 x1 ∈ A such that
{x ∈ A | x < sj} = {x1; . . . ;xn}. If x ∈ A is such that x < sj , then x = xk for some 1 ≤ k ≤ n, and then
x = sfk(j). Moreover, by definition

(
sfk(j), f

k (j)
)
< (sj , j) so we conclude. �

Lemma 2. If s is a pointed sequence with pointing function f , then Just (s) is a justified sequence.

Proof. We only have to prove that if (si, i) < (sj , j), then i < j. Indeed, if (si, i) < (sj , j), then by definition
fn (j) = i for some n > 0, but since f (k) < k as soon as f (k) is defined, we get immediately i < j. �
From justified sequences to pointed sequences If s is a justified sequence with labeling l we define here the
corresponding pointed sequence Point (s). We can order the elements of s using the total ordering ≺, which
is of type at most ω, and obtain a (possibly infinite) sequence l (x0) . . . l (xn) . . . such that xi ≺ xj ⇔ i < j,
which is the word of moves of Point (s). We now define the pointing function f of Point (s). If xi ∈ s, there
are two cases. Either {xj ∈ s | xj < xi} = ∅, in which case f (i) is left undefined, either there is a unique
xj ∈ s such that xj <1 xi, in which case we define f (i) = j.

Lemma 3. If s is a justified sequence with labeling l, then Point (s) is a pointed sequence.

Proof. Let f be the pointing function of Point (s). If f (i) is undefined, then {xj ∈ s | xj < xi} = ∅, but
then:

{x ∈ A | x < l (xi)} = {l (xj) | xj < xi} = ∅

so l (xi) is a root of A. If f (i) = j, then xj <1 xi so xj < xi and xj ≺ xi by definition of a justified sequence.
By definition of the ordering that we chose, this means that j < i. Moreover, by definition of a state, since
xj <1 xi we get also l (xj) <1 l (xi). �
Equivalence of the two notions The two transformations above, from pointed sequences to justified se-
quences, and from justified sequences to pointed sequences, can be composed. We can prove that for any
pointed sequence s, Point (Just (s)) = s, and for any justified sequence s, Just (Point (s)) = s. Justified se-
quences are in one-to-one correspondence with usual pointed sequences. In the following we will sometimes
use “sequence” instead of “justified sequence”.

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 259
2.3. Strategies

Definition 6 (Thread). A thread on an arena is a sequence which, as a state, is a position. If s is a sequence
on an arena A, the set of threads of s, Threads (s), is the set of trees composing the sequence.

Warning. Note that a thread is a sequence which may not be alternating (see the definition of play), so
our definition of thread differs from the usual one.

The threads are the analogue of positions but for sequences. A sequence s is a thread if it contains exactly
one thread (i.e. Threads (s) = {s}). Remark that Threads (ε) = ∅ and so ε is not a thread. As for sequences,
we will freely consider that a thread is a position.

Definition 7 (Play). A play s on A is an alternating sequence on A, i.e., the sequence of labels of the nodes
ordered by ≺ has alternating polarities.

A play on an arena is the trace of an interaction between a program and a context, each one performing
an action alternatively. A P -play (resp. O-play) is a finite play whose maximal element for ≺ is labeled with
a P -move (resp. O-move), this means that as a word, it ends with a P -move (resp. O-move). If s and t are
plays, write t � s if t is an initial segment of s for ≺ (with the order < restricted accordingly). This means
that t is a prefix of s as a word, and their pointers coincide. Write t �P s (resp. t �O s) if t is a P -prefix
(resp. O-prefix) of s, i.e. t � s and t is a P -play (resp. O-play). Write t �P s (resp. t �O s) if t �P s (resp.
t �O s) and t �= s.

Definition 8 (Strategy). A strategy σ on A is a P -prefix-closed set of (finite) P -plays on A such that:

• σ is deterministic: if sm and sm′ are in σ, then m = m′

• σ is single-threaded: for any P -play s, s ∈ σ ⇔ Threads (s) ⊆ σ

Our notion of single-threadedness of strategies matches the usual one of thread-independence (see e.g. [1]).
Also, a strategy always contains the empty play ε since Threads (ε) = ∅.

2.4. Cartesian closed structure

The constructions we use will sometimes contain multiple copies of the same arena (for example A → A),
so we distinguish the instances with superscripts (for example A(1) → A(2)).

Let U be the empty arena and V be the arena with only one (opponent) move. If A and B are arenas
consisting of the trees A1 . . .Ap and B1 . . .Bq, then the arenas A → B and A× B can be represented as
follows:

A → B : A× B :

B1

A(1)
1

· · · A(1)
p

Bq

A(q)
1

· · · A(q)
p

A1
· · · Ap B1

· · · Bq

The constructions described here define a cartesian closed category whose objects are arenas and morphisms
are strategies. In the following this category will be denoted as C. Details of the construction can be found
in [9] and we only give a description of application and pairing of strategies:

260 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
Lemma 4 (Application). Let σ be a strategy on arena A → B and τ be a strategy on arena A. The strategy
σ (τ) on B is:

σ (τ) =
{
s|B | s ∈ σ, s|A ∈ τ and s|B play on B

}
Lemma 5 (Pairing). Let σ be a strategy on arena A and τ be a strategy on arena B. The strategy 〈σ, τ〉 on
A× B is:

〈σ, τ〉 =
{
s play on A× B | s|A ∈ σ and s|B ∈ τ

}
These definitions of arenas will be used to associate arenas to the following simple types:

Definition 9 (Simple types). The simple types are defined by the following grammar, where ι is the unique
base type:

T,U ::= ι | void | unit | T × U | T → U

We suppose given an object �ι� of C to interpret the base type, and we associate to each simple type T
an object �T � of C as follows:

�void� = V �unit� = U �T × U� = �T � × �U� �T → U� = �U�
�T �

Since C is cartesian closed, we can use the syntax of λ-calculus to define strategies from other strategies.
In order to distinguish this notation from the λμ-terms of Sect. 2.6 we use a bold lambda λ. The type
constant void is not essential for interpreting simply-typed λ-calculus in cartesian-closed C, however it will
become necessary for typing λμ-calculus in Sect. 2.6, and the interpretation of void as the one-move arena
V is essential for the continuation structure of C presented in Sect. 2.5.

2.5. Category of continuations

We map classical proofs to strategies using the interpretation of call-by-name λμ-calculus in categories
of continuations described in [22]. In order to see the category C defined in Sect. 2.4 as a category of
continuations, we use the Fam construction, a variant of the coproduct completion described in [2], so C is
isomorphic to RFam(C) for some well-chosen object R of Fam (C). The Fam construction is defined as follows:

Definition 10 (Fam (C)). The objects of Fam (C) are families of objects of C indexed by at most countable
sets. A morphism from {Ai | i ∈ I} to {Bj | j ∈ J} is a function f : I → J together with a family of
morphisms of C from Ai to Bf(i), for i ∈ I.

Remark here that we differ from [2] because C doesn’t have weak coproducts nor all small products, and
the families are countable. Thus Fam(C) is not bicartesian closed, but since C is cartesian closed and has
countable products, Fam (C) is still a distributive category with finite products and coproducts, and has
exponentials of all singleton families. The empty product and terminal object is the singleton family {U},
the empty sum and initial object is the empty family {}, and:

{Ai | i ∈ I} × {Bj | j ∈ J} = {Ai ×Bj | (i, j) ∈ I × J}

{Ai | i ∈ I} + {Bj | j ∈ J} = {Ck | k ∈ I � J} where Ck =
{
Ak if k ∈ I

Bk if k ∈ J

{B0}{Ai|i∈I} =
{

Πi∈IB
Ai
0

}

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 261
We fix once and for all:

R = {V} = {�void�}

which is an object of Fam (C) as a singleton family. R has all exponentials as stated above. Fam (C) is a
response category and RFam(C), the full subcategory of Fam (C) consisting of the objects of the form RA, is a
category of continuations (see [22]). The objects of RFam(C) are singleton families, and RFam(C) is isomorphic
to C. We will consider that objects and morphisms of RFam(C) are arenas and strategies and we will use the
vocabulary defined at the end of Sect. 2.4 on RFam(C) also.

2.6. Interpreting the call-by-name λμ-calculus

The types of λμ-calculus are the simple types of Definition 9. Let kT range over a set of typed constants
and xT (resp. αT) range over a countable set of variables (resp. names) for each type T . The grammar of
λμ-terms is the following:

M,N ::= kT | xT | ∗ | 〈M,N〉 | π1M | π2M | λxT .M |M N | μαT .M |
[
αT

]
M

The typing rules can be found in [22], where our unit is their �, our × is their ∧ and our void is their ⊥.
For instance, the Law of Peirce is the type of the following closed term (we omit the type annotation of the
variables).

λx.μα. [α] s (λy.μβ. [α] y) of type ((T → U) → T) → T (4)

This λμ-term will be denoted cc.
We follow [22] to interpret call-by-name λμ-calculus in RFam(C). In particular if M is a λμ-term of

type T with free variables in xT1
1 , . . . , xTn

n and no free name, then its interpretation is a morphism �M�

from �T1� × . . . × �Tn� to �T �. This morphism coincides with the interpretation of the call-by-name CPS
translation of M (defined in [22]) in the cartesian closed category RFam(C). See [22] for details. As stated
in [22], if two terms are equivalent under the call-by-name semantics of λμ-calculus, or equivalently if their
call-by-name CPS translations are βη-equivalent, then their interpretations are the same.

In the following we will drop the double brackets for the interpretation of simple types.

3. Winning conditions on arenas

We will now define our notion of realizability. We equip arenas with winning conditions on positions.
Realizers are then winning strategies, intuitively strategies whose positions are all winning.

It is well-known that preservation of totality by composition of strategies is problematic in game se-
mantics. Luckily we do not need to preserve totality, but only winningness. We thus do not impose any
totality condition on strategies, but when it turns to the definition of winning positions, we have to take
into account all maximal positions, including both infinite and odd-length ones. This leads to the notion of
winning strategy proposed in Definition 15.

In order to define the notion of winning condition on an arena we introduce the notion of P -subposition
and O-subposition:

Definition 11 (P -subposition, O-subposition). If t is a position and u is a downward-closed subset of t
(therefore it is a position), then u is a:

• P -subposition of t if when nP <1 mO in t and nP ∈ u, then mO ∈ u

• O-subposition of t if when nO <1 mP in t and nO ∈ u, then mP ∈ u

262 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
The intuitive meaning is that a P -subposition is a weakening of player (but any answer of opponent to a
player move must be kept), and an O-subposition is a weakening of opponent (but any answer of player to an
opponent move must be kept). A P -subposition (resp. an O-subposition) is obtained from a given position
by cutting some subtrees whose roots are labeled with P -moves (resp. O-moves). Here is an example of a
position together with a P -subposition and an O-subposition:

Polarities Arena Position P -subposition O-subposition
O

P

O

P

a

b c

d e

f

a

b b c

d e e

f f

a

b c

d e

f

a

b b c

e

Now we can define the notion of winning condition on an arena:

Definition 12 (Winning condition). A winning condition on A is a set W of positions on A such that:

• If t is a position on A and if some P -subposition of t is in W, then t ∈ W.
• If t ∈ W then all the O-subpositions of t are in W.

A winning position must be thought as a position that is winning for player. Under this interpretation,
the two requirements read as: if some player-weakening of a position is already winning, then the full
position is also winning, and if a position is winning, then any opponent-weakening of that position is all
the more winning. The definition of the first stability constraint on winning conditions is motivated by our
goal of interpreting classical logic. Indeed, Lemma 10 combined with this condition proves the validity of
the strategy interpreting the call/cc operator with respect to the law of Peirce. The second condition is
dual to the first and is necessary for the stability of winning conditions through the arrow construction,
proved in Lemma 6.

A state s (and by extension a sequence or a play) on the arena A equipped with the winning condition W
is said to be winning if Pos (s) ⊆ W, which is consistent with the interpretation of “winning” as “winning
for P”. Our notion of winning state can be seen as a generalization of the ones defined in [6] and [10]. In
order to obtain a realizability model of first-order logic, the notion of winning finite state is non-trivial and
there can be odd-length plays which are winning and even-length plays which are losing. Winning conditions
were also defined in [17] using payoffs on positions, but with different purposes, and in the framework of
asynchronous games.

Remark that if t is a position on A → B, then t|B is a position on B, so t|B is winning iff t|B ∈ WB, and
if t is a position on A × B, then t is either a position on A, either a position on B.

Definition 13 (Arrow and product of winning conditions). If WA and WB are sets of positions on the arenas
A and B, then we define:

WA→B =
{
t position on A → B | Pos

(
t|A

)
⊆ WA ⇒ t|B ∈ WB

}
WA×B =

{
t position on A× B | t position on A ⇒ t ∈ WA

t position on B ⇒ t ∈ WB

}

Lemma 6. If WA and WB are winning conditions on A and B, then WA→B is a winning condition on A → B
and WA×B is a winning condition on A × B.

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 263
Proof.

• Let t be a position on A → B and let u be a P -subposition of t such that u ∈ WA→B. Suppose that
Pos

(
t|A

)
⊆ WA. If v ∈ Pos

(
u|A

)
then v is a O-subposition of some w ∈ Pos

(
t|A

)
⊆ WA, so v ∈ WA.

Then since u ∈ WA→B, u|B ∈ WB and since u|B is a P -subposition of t|B we conclude that t|B ∈ WB.
Finally t ∈ WA→B.

• Let t be a position on A → B such that t ∈ WA→B and let u be a O-subposition of t. Let suppose that
Pos

(
u|A

)
⊆ WA. If v ∈ Pos

(
t|A

)
and if m is the root of v, then the father of m is the root of t which

is an O-move, and since u is a O-subthread of t, we get m ∈ u. Now the position of u|A whose root is
m is in WA and it is a P -subposition of v, so v ∈ WA. Therefore Pos

(
t|A

)
⊆ WA, and since t ∈ WA→B

we have t|B ∈ WB. Since u|B is a O-subposition of t|B, we get u|B ∈ WB. Finally u ∈ WA→B.
• Let t be a position on A × B. t is either a position on A, either a position on B, so if u is a winning

P -subposition of t, then either u ∈ WA, either u ∈ WB. Therefore t ∈ WA or t ∈ WB, and so t ∈ WA×B.
• Let t be a position on A ×B such that t ∈ WA×B. Either t ∈ WA, either t ∈ WB, so any O-subposition

of t is in WA or WB, so in WA×B. �
In order to define what a winning strategy is, we use a notion of augmented plays of a strategy inspired

from [18]:

Definition 14 (Augmented play). If σ is a strategy on A and s is a play on A, then s is an augmented play
of σ if one of the following holds:

• s ∈ σ, or
• s is such that ∀t �P s, t ∈ σ and ∀t ∈ σ, s �� t.

In particular, in the second case of the above definition, s is either an O-play for which σ has no answer,
either an infinite play (in which case s � t ⇔ s = t and so the second condition, equivalent to s /∈ σ, is
always true since strategies contain only finite plays). Also, because of the second condition in the second
case, an O-play s such that smP ∈ σ for some P -move mP is not an augmented play of σ. Unlike [18], we
consider not only odd-length extensions (with an O-move), but also infinite ones.

Definition 15 (Winning strategy). If σ is a strategy on A equipped with the winning condition W, then σ is
said to be winning if all its augmented plays are winning.

The following lemma will be useful to prove that a strategy σ is winning on (A,W).

Lemma 7. If σ is a strategy on A and if s is an augmented play of σ, then every t ∈ Threads (s) is an
augmented play of σ

Proof.

• If s ∈ σ, then by single-threadedness of σ, Threads (s) ⊆ σ.
• If s is an O-play, then we write s = s′m with s′ ∈ σ. Let t ∈ Threads (s). If m is not a move in t,

then t ∈ Threads (s′) ⊆ σ. If m is a move in t, then we write t = t′m, so t′ ∈ Threads (s′) ⊆ σ. If
there is some n such that tn = t′mn ∈ σ, then Threads (s′mn) = (Threads (s′) \ {t′}) ∪ {t′mn} ⊆ σ,
so by single-threadedness of σ, sn = s′mn ∈ σ, contradicting the fact that s is an augmented play
of σ.

264 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
• If s is infinite, let t ∈ Threads (s). If t is finite, then there is some s′ �P s such that t ∈ Threads (s′),
but s′ ∈ σ, so by single-threadedness of σ t ∈ σ. If t is infinite, then for all t′ �P t there is some s′ �P s

such that t′ ∈ Threads (s′), but s′ ∈ σ, so by single-threadedness of σ, t′ ∈ σ. �
The above result is the exact analogue of the left-to-right direction of the single-threadedness condition

in Definition 8, but for the set of augmented plays of a strategy. The other direction is also true, but won’t
be used. Using this lemma it is sufficient to prove that every augmented play of σ which is a thread (let
us call it an augmented thread of σ) is in W in order to prove that σ is winning on (A,W). Indeed, if any
augmented thread of σ is in W and if s is an augmented play of σ, then for any t ∈ Threads (s), t is an
extended thread of σ by the lemma, so t ∈ W. Then Threads (s) ⊆ W so s is winning.

We now prove that the winning conditions on the arrow and product are compatible with application
and pairing of strategies.

Lemma 8. If σ is a winning strategy on (A → B,WA→B) and τ is a winning strategy on (A,WA), then σ (τ)
is a winning strategy on (B,WB).

Proof. Let t be an augmented thread of σ (τ). Using the description of application given in Lemma 4, there
is some augmented play u of σ such that u|A is an augmented play of τ and u|B = t. Since t is a thread,
u is also a thread, so since σ is winning on A → B, u ∈ WA→B. u|A is an augmented play of τ which is
winning on A, so Threads

(
u|A

)
⊆ WA, and therefore u|B ∈ WB. Finally, t = u|B ∈ WB. Therefore σ (τ) is

winning. �
Lemma 9. If σ is a winning strategy on (A,WA) and τ is a winning strategy on (B,WB), then 〈σ, τ〉 is a
winning strategy on (A× B,WA×B).

Proof. Let t be an augmented thread of 〈σ, τ〉. Using the description of pairing given in Lemma 5 and the
definition of the arena A× B, and because t is a thread, t is either an augmented thread of σ on A, in which
case t ∈ WA, either an augmented thread of τ on B, in which case t ∈ WB. Therefore we get t ∈ WA×B,
and so 〈σ, τ〉 is winning. �

The following lemma on the interpretation of cc illustrates the use of winning conditions and justifies the
notions of O- and P -subpositions in order to interpret classical logic through the law of Peirce.

Lemma 10. If t is an augmented thread of �cc� on the arena ((T → U) → T) → T (written
((
T (1) → U

)
→

T (2)) → T (3)), then the positions of t|T (1) and t|T (2) are P -subpositions of t|T (3) .

Proof. �cc� being a total strategy, its augmented threads are even or infinite. Since t is a thread and player
never plays in U , t is a position on the subarena:

O ai

P ai Ti

O b1 . . . bn Ti

P ai ai

O Ti Ti

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 265
where Ti is a forest (every instance of Ti in the figure above is the same forest) such that
ai

Ti

is one of

the trees of the arena T , and where b1, . . . , bn are the roots of the arena U (each bi appearing zero or more
times in t). The position t is then of the following form:

ai

ai t1 . . . tm . . . u

bk1 . . . bkm
. . . u

ai . . . ai . . .

t1 . . . tm . . .

where the tj and u are positions on the arena Ti. With these notations we have:

Pos
(
t|T (1)

)
=

⎧⎨
⎩

ai

t1
; . . . ;

ai

tm
; . . .

⎫⎬
⎭ and Pos

(
t|T (2)

)
=

{
ai

u

}

which are all P -subpositions of:

t|T (3) =
ai

t1 . . . tm . . . u
�

It follows easily from this lemma and Lemma 6 that for any winning conditions WT and WU , �cc� is
winning on the arena

(
((T → U) → T) → T,W((T→U)→T)→T

)
Remark (WA→B versus Kleene arrow). Let A, B be arenas equipped with winning conditions WA, WB. We
define here a strategy σ on A → B such that for any winning strategy τ on A, σ (τ) is winning on B, but σ
is not winning on A → B. Hence the arrow on winning conditions differs from the usual Kleene realizability
arrow (see [23]).

We choose A and B to be the same arena Q consisting of one root with three children , � and �, equipped
with the winning condition

WQ =

⎧⎪⎨
⎪⎩

qO

aP1 aP2 . . .

| ∃i, ai ∈ {, �}

⎫⎪⎬
⎪⎭

where the positions may be finite or infinite. We define a strategy σ on Q → Q such that for any τ winning
on (Q,WQ), σ (τ) is winning on (Q,WQ), but σ is not winning on (Q → Q,WQ→Q). σ is the innocent
strategy defined by the views:

Q qO P

↑

Q qP aO qP aO

Q qO �P

↑

Q qP aO qP bO

266 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
where a and b are distinct moves. The interaction with any single threaded strategy produces the left view,
and so the projection qOP is winning, but the right view (which will never happen in an interaction with
a single-threaded strategy) with a = and b = � is losing, so σ is losing.

4. First-order logic

We define a realizability model for first-order classical logic with possibilities of witness extraction. For
that the proposition ⊥ will be mapped to an arena in general different from V. Its associated winning
condition will be a parameter of the model, in the spirit of [14].

Let x range over a countable set of variables, f range over a set of function symbols with fixed finite
arity and P range over a set of predicate symbols with fixed finite arity. First-order terms and formulas are
defined by the following grammar:

a, b ::= x | f (a1, . . . , an)

A,B ::= ⊥ | P (a1, . . . , an) | � |A ∧B |A⇒B | ∀xA

In the following we use syntactic sugar for the negation of formulas: ¬A
Δ= A ⇒⊥ and for the existential:

∃xA
Δ= ¬∀x¬A. Let Ax be a set of closed formulas (the axioms of a theory). We use the following deduction

system based on natural deduction with a rule for the law of Peirce. In these rules, Γ denotes a sequence of
formulas A1, . . . , An.

Γ, A � A
(A∈Ax)

Γ � A Γ � ((A⇒B) ⇒A) ⇒A

Γ � �
Γ � A Γ � B

Γ � A ∧B
Γ � A ∧B

Γ � A
Γ � A ∧B

Γ � B

Γ, A � B

Γ � A⇒B
Γ � A⇒B Γ � A

Γ � B

Γ � A (x/∈FV(Γ))
Γ � ∀xA

Γ � ∀xA
Γ � A [a/x]

Remark that ⊥ has no associated rule, since the ex-falso rule has a particular status, given the interpretation
of ⊥. This will be discussed in Sect. 4.3.

We fix a countable first-order structure interpreting the terms of our logic, that is a countable set E
together with an interpretation fE : En → E for each function symbol f of arity n. The interpretation
is extended to every closed term: if a is a closed term of the logic, then aE denotes its interpretation in
the first-order structure, so aE is an element of E. It will be convenient in the following to consider terms
with parameters in E, which are first-order terms where some variables are substituted with elements of E.
The interpretation extends naturally to such terms. In the same way we will also consider formulas with
parameters: formulas in which first-order terms may have parameters.

4.1. Realizability

We let ⊥⊥ be an arbitrary subset of E. We can map any first-order formula A to a simple type A∗ as
follows:

⊥∗ = ι (P (a1, . . . , an))∗ = ι �∗ = unit (A ∧B)∗ = A∗ ×B∗

(A⇒B)∗ = A∗ → B∗ (∀xA)∗ = A∗

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 267
Remark that the type ⊥∗ is not the type void because the associated arena would be too small to hold
informational content.

Recall that we omit the double bracket notation for the arenas, so a type T also denotes the associated

arena. We fix the arena associated to ι to be R
(
RE

)
, where E = {Ue | e ∈ E} is the countable family of

empty arenas (and R = {V}). Hence ι is the usual flat arena for the set E.
We define for any F ⊆ E the winning condition WF on ι by:

WF =

⎧⎪⎨
⎪⎩

qO

mP
1 mP

2 . . .

| ∃i,mi ∈ F

⎫⎪⎬
⎪⎭

Note that it is a winning condition since the position:

qO

mP
1 mP

2 . . .

that may be finite or infinite has only itself as O-subposition and

qO

mP
i1

mP
i2

. . .

for 1 ≤ i1 < i2 ≤ . . . as P -subpositions, and if ∃k, mik ∈ F then ∃i, mi ∈ F . Therefore WF is a winning
condition on ι. Let e ∈ E. The only extended thread of the usual strategy on ι for e (the one that answers

e to the first opponent move) is
q

e
, so this strategy is winning on WF as soon as e ∈ F .

We suppose given for each predicate P of arity n a set |P | of n-uples of elements of E. We can then define
for each closed first-order formula A with parameters a winning condition WA on the arena A∗. We define
WA∧B = WA×B and WA⇒B = WA→B as in Definition 13, W⊥ is W⊥⊥ (recall that ⊥⊥ ⊆ E), and we let:

W
 = ∅ W∀xA =
⋂
e∈E

WA[e/x]

WP (a1,...,an) =
{
W⊥⊥ if

(
aE1 , . . . , a

E
n

)
/∈ |P |

the set of all positions on ι otherwise

Note that these are indeed winning conditions. For W
, the empty set is a winning condition on U which is
the empty arena with no position. For W∀xA, it is easy to see that an intersection of winning conditions is a
winning condition, and for WP (a1,...,an) and W⊥ this is because WF is a winning condition for any F ⊆ E,
and the set of all positions on ι is trivially a winning condition on ι.

Taking W
 = ∅ may seem surprising at first, but remember that �∗ = unit is the empty arena with no
threads (ε is not a thread since Threads (ε) = ∅), so W
 = ∅ is the only possibility. Nevertheless the only
strategy on U , which is {ε}, is trivially winning since Threads (ε) = ∅.

We can now define our notion of realizability:

Definition 16 (Realizability relation). If A is a closed first-order formula with parameters and if σ is a strategy
on A∗, then σ realizes A (denoted σ � A) if σ is a winning strategy on (A∗,WA).

268 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
The following lemma shows that the identity formulas are realized by the corresponding identity strate-
gies.

Lemma 11. If A is a closed formula with parameters, then �λx.x� on A∗ → A∗ is a realizer for the formula
A ⇒A.

Proof. Let A∗(1) → A∗(2) denote the arena A∗ → A∗. Let t be an augmented thread of �λx.x� such that
Threads

(
t|A∗(1)

)
⊆ WA Since t is a thread, t|A∗(2) is a thread and t|A∗(1) = t|A∗(2) is also a thread. Then

t|A∗(1) ∈ WA, so t|A∗(2) = t|A∗(1) ∈ WA. �
The following result is a consequence of the remark following Lemma 10.

Lemma 12. If A and B are closed formulas with parameters, then:

�cc� � ((A⇒B) ⇒A) ⇒A

4.2. Adequacy for minimal classical logic

We now show that realizability is compatible with deduction in minimal classical logic. Full classical logic
is discussed in Sect. 4.3.

4.2.1. Translation of proofs to strategies
We use λμ-calculus and its interpretation in RFam(C) ∼= C to map a first-order proof to a typed λμ-term

which is then interpreted in C as a strategy.
Assume given a constant kA of type A∗ for each A ∈ Ax. We map a derivation ν of A1, . . . , An � A to a

typed λμ-term ν∗ of type A∗ with free variables in xA1
∗
, . . . , xAn

∗ as follows:

Γ, A � A � xA∗ (A∈Ax)
Γ � A � kA

Γ � ((A⇒B) ⇒A) ⇒A � cc (see (4))

Γ � � � ∗
ν

Γ � A
ν′

Γ � B
Γ � A ∧B

�
〈
ν∗, ν′

∗〉

ν
Γ � A ∧B

Γ � A
� π1ν

∗
ν

Γ � A ∧B
Γ � B

� π2ν
∗

ν
Γ, A � B

Γ � A⇒B
� λxA∗

.ν∗
ν

Γ � A⇒B
ν′

Γ � A
Γ � B

� ν∗ ν′
∗

ν
Γ � A (x/∈FV(Γ))

Γ � ∀xA
� ν∗

ν
Γ � ∀xA

Γ � A [a/x]
� ν∗

4.2.2. Adequacy
We now prove that the strategies interpreting the proofs are realizers of the proved formula. If A is

a formula and θ an assignment of elements of E to variables, then A [θ] is the formula with parameters
obtained by replacing each first-order variable of A with its image by θ.

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 269
Lemma 13. Let ⊥⊥ ⊆ E. Suppose that we have a realizer �kA� for each formula A ∈ Ax. If ν is a derivation
of the sequent Γ � A and if θ is an assignment of elements of E to free variables of Γ, A, then �ν∗� is a
winning strategy on Γ∗ → A∗ equipped with WΓ[θ]⇒A[θ].

Proof. We prove the property by induction on the proof tree. For the axiom rules, we use in one case
Lemma 11, and in the other case this is an assumption of the lemma. The adequacy for the law of Peirce
comes from Lemma 10 and that of the introduction rule of � is immediate since Threads (�∗�) = ∅. The
introduction of ∧ follows from Lemma 9, the elimination of ⇒ from Lemma 8 and for its introduction the
induction property doesn’t change. The remaining rules are the elimination of ∧ and the introduction and
elimination of ∀:

• For the first elimination rule of ∧, let ν be a proof of Γ � A ∧ B. An augmented thread of �π1ν
∗�

is an augmented thread of �ν∗� which is a thread on Γ∗ → A∗, so by Definition 13 it is winning on
Γ [θ] ⇒A [θ] ∧B [θ]

• The case of the second elimination rule of ∧ is similar
• For the introduction of ∀, let ν be a proof of Γ � A with x /∈ FV (Γ). If t is an augmented thread of �ν∗�

such that:

Threads
(
t|Γ∗

)
⊆ WΓ[θ]

Let e ∈ E and let θ′ = θ ∪ {x �→ e}. Since x /∈ FV (Γ), Γ [θ′] = Γ [θ] so:

Threads
(
t|Γ∗

)
⊆ WΓ[θ′]

And by induction hypothesis t|A∗ ∈ WA[θ′]. Since A [θ′] = A [e/x] [θ], we get that for all e ∈ E,
t|A∗ ∈ WA[e/x][θ], and so t|A∗ ∈ W(∀xA)[θ]

• For the elimination of ∀, let ν be a proof of Γ � ∀xA and let a be a first-order term. If t is an augmented
thread of �ν∗� such that:

Threads
(
t|Γ∗

)
⊆ WΓ[θ]

Then by induction hypothesis, since (a [θ])E ∈ E we get:

t|A∗ ∈ WA
[
(a[θ])E/x

]
[θ]

which terminates the proof since A
[
(a [θ])E /x

]
[θ] = (A [a/x]) [θ]. �

4.3. Full classical logic

In order to get full classical logic we need to add an ex-falso rule. However since the arena ⊥∗ is not the
empty arena U (see Sect. 4.1), we have to ensure that (ι,W⊥) is included in (A∗,WA) for any formula A. This
means that ι is a subarena of A∗, so a position on ι is in particular a position on A∗, and that W⊥ ⊆ WA.
This result is obtained for formulas not of the form A ⇒� ∧ . . .∧� by an easy induction on formulas, since
the winning conditions associated to atomic formulas different from � are either W⊥⊥, either every position
on ι. Formulas of the form A ⇒� ∧ . . . ∧ � being trivially derivable, we can add to our deduction system
the following rule:

Γ � ⊥
Γ � A

270 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
where A is any first-order formula (defined in Sect. 4). This rule is erased by the mapping from derivations to
λμ-terms (or replaced with a trivial derivation for formulas of the form A ⇒� ∧ . . .∧�). The corresponding
adequacy lemma is immediate from Lemma 13.

4.4. First-order logic with equality

We now show how to handle equality. We suppose that our first-order language contains an inequality
predicate �= of arity 2 for which we use infix notation. As stated in Sect. 4.1, this predicate is interpreted
with the base type ι. The set of pairs associated to �= is:

|�=| =
{
(e, f) ∈ E2 | e �= f

}
In the following we use the notation (a = b) Δ= ¬ (a �= b). The following lemma states that the equations
which are satisfied in the model are trivially realized:

Lemma 14. Let a, b be first-order terms with free variables x1, . . . , xn. If:

∀e1, . . . , en ∈ E, (a [e1/x1, . . . en/xn])E = (b [e1/x1, . . . en/xn])E

then:

�λx.x� � ∀x1 . . .∀xn a = b

Proof. We write �x for x1 . . . xn and �e for e1 . . . en. �λx.x� is a strategy on the arena:

ι(1) → ι(2)

Let t be an extended thread of that strategy, let �e ∈ E and let suppose that t|ι(1) is winning on a [�e/�x] �=
b [�e/�x]. Since t is a thread, t|ι(2) is a thread, and t|ι(1) = t|ι(2) is also a thread. Therefore we have t|ι(1) ∈
Wa[�e/�x] �=b[�e/�x]. Since by hypothesis (a [�e/�x])E = (b [�e/�x])E , we have Wa[�e/�x] �=b[�e/�x] = W⊥⊥, so t|ι(2) = t|ι(1) ∈
W⊥⊥. �

The axioms for equality are:

(refl) ∀x (x = x) (Leib) ∀x ∀y (¬A [x] ⇒A [y] ⇒ x �= y)

Recall that ∀x (x = x) is only syntactic sugar for ∀x (x �= x⇒⊥), and that ∀x∀y (¬A [x] ⇒A [y] ⇒ x �= y)
is also syntactic sugar for:

∀x∀y ((A [x] ⇒⊥) ⇒A [y] ⇒ x �= y)

Lemma 15. Let ⊥⊥ ⊆ E.

1. The strategy �λx.x� on ι → ι is a realizer of (refl)
2. The strategy �λx.x� on (A∗ → ι) → A∗ → ι is a realizer of (Leib)

Proof.

1. This is a consequence of Lemma 14.

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 271
2. If t is an augmented thread of �λx.x� on the arena
(
A∗(1) → ι(1)

)
→ A∗(2) → ι(2)

then t is even or infinite (since �λx.x� is total) and verifies t|A∗(1)→ι(1) = t|A∗(2)→ι(2) . Let e, f ∈ E.
Suppose t|A∗(1)→ι(1) is winning on ¬A [e] and t|A∗(2) is winning on A [f]. Since t is a thread, t|A∗(2)→ι(2)

is a thread so t|A∗(1)→ι(1) = t|A∗(2)→ι(2) is also a thread. This means that

t|A∗(1)→ι(1) ∈ WA[e]→⊥

We have to show then that t|ι(2) ∈ We �=f . We distinguish two cases:
• e �= f : any position is in We �=f so in particular t|ι(2) ∈ We �=f

• e = f : Since e = f , WA[e] = WA[f], and since t|A∗(1)→ι(1) = t|A∗(2)→ι(2) ,

Threads
(
t|A∗(1)

)
= Threads

(
t|A∗(2)

)

so t|A∗(1) is winning on A [e]. Since t|A∗(1)→ι(1) ∈ WA[e]→⊥, we get t|ι(1) ∈ W⊥ = W⊥⊥. Since e = f ,
We �=f = W⊥⊥, therefore

t|ι(2) = t|ι(1) ∈ We �=f �
5. Peano arithmetic

We now proceed to the realizability interpretation of full Peano arithmetic.

5.1. Definitions

Our first-order language is built from the function symbols 0 of arity 0, S of arity 1, and + and × of
arity 2. The only predicate symbol is �= of arity 2. This choice of function symbols is only for simplicity,
and we could choose to have all the symbols of primitive recursive functions.

We also fix the structure interpreting the terms of the logic to be the set of natural numbers N. The
symbols 0, S, + and × are interpreted the standard way. As stated in Sect. 4.1, �= and ⊥ are both interpreted

as ι, and the associated arena in RFam(C) is �ι� = R

(
RN

)
where N = {Un | n ∈ N}. Hence the type of natural

numbers is interpreted as the negative translation of N. Note that this is the usual flat arena of natural
numbers:

q

0 · · · n · · ·

This differs from Laird’s interpretation of PCF with control [16], where the base type of natural numbers
is interpreted by the arena (ι → ι) → ι.

5.2. The relativization predicate

In the setting presented before, a realizer of ∀xA had to be uniform, meaning that it had to be a realizer
of A [n/x] for any n ∈ N. This choice suffices to realize the rules of first-order logic and Leibniz equality, but
when it comes to Peano arithmetic, and more particularly to the axiom scheme of induction, we need to have
a different notion of a realizer of ∀xA. Indeed, we realize the axiom scheme of induction using the recursor

272 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
of Gödel’s system T, which needs to know on which particular natural number to recurse. Therefore, we
want a realizer of ∀xA to be a strategy that, given an element n ∈ N, provides a realizer of A [n/x]. Instead
of changing the realizability semantics of quantifiers, we add a syntactic construction for relativization. We
follow [20] and extend the syntax of formulas by:

A,B ::= . . . | {a} �⇒A

We use syntactic sugar: ∀rxA
Δ= ∀x ({x} �⇒A) and ∃rxA

Δ= ¬∀rx¬A. We extend our notion of context so
Γ may now contain some first-order variables, along with formulas. These variables appearing in Γ are the
relativized ones. To introduce and eliminate our new construct, we add the rules:

Γ, x � A

Γ � {x} �⇒A

Γ � {a} �⇒A
(FV(a)⊆Γ)

Γ � A

The translations of the new formulas are ({a} �⇒A)∗ = ι → A∗, and the associated winning conditions
are W{a}�⇒A = W{aN}→A, which are defined since

{
aN

}
⊆ N (see Sect. 4.1). The ex-falso rule is still valid,

thanks to the restriction of {a} being on the left of an arrow.
In order to define the translation of the new rules into λμ-calculus, we associate to each first-order term

a with free variables x1, . . . , xn a λμ term a∗ with free variables xι
1, . . . , x

ι
n and no free name. For that we

assume a given constant kf of type ι → . . . → ι → ι (n + 1 times) for each function symbol f of arity n. a∗
is then defined by induction: x∗ = xι and (f (a1, . . . , an))∗ = kf a1

∗ . . . an
∗.

Since the context Γ may now contain first-order variables, we define a new mapping from first-order
proofs to λμ-terms: if ν is a derivation of:

x1, . . . , xm, A1, . . . , An � A

then ν∗ is a typed λμ-term of type A∗ with free variables in xι
1, . . ., xι

m, xA1
∗
, . . ., xAn

∗ . The translation for
the rules of the base system doesn’t change, and the new rules are translated to:

ν
Γ, x � A

Γ � {x} �⇒A
� λx.ν∗

ν
Γ � {a} �⇒A

(FV(a)⊆Γ)
Γ � A

� ν∗a∗

We now define the interpretations of the constants kf of λμ-calculus as strategies. In fact, we first define
strategies for any function from Nn to N and then we use the interpretation fN to define �kf �.

In Fam (C) a morphism from Nn = {Un1 × . . .× Unn
| (n1, . . . , nn) ∈ N

n} to N = {Un | n ∈ N} is given
by a function from Nn to N together with a strategy from U × . . . × U = U to U . Since there is only one
such strategy, such a morphism is just given by a function from Nn to N. We will denote these morphisms
τg for g : Nn → N. From τg : Nn → N we define σg : ι → . . . → ι → ι (n + 1 times) by:

σg = λxι
1 . . . x

ι
ny

RN

.x1
(
λzN

1 .x2
(
λzN

2xn

(
λzE

n .y (τgz1 . . . zn)
)
. . .

))
In particular, if n ∈ N then σn is the strategy on ι which answers n to the initial move. The following lemma
states that the strategies σg indeed compute the correct values:

Lemma 16. Let g : Nn → N and n1, . . . , nn ∈ N. σg is winning on:
(
ι → . . . → ι → ι,W{n1}→...→{nn}→{g(n1,...,nn)}

)
Proof. We prove the lemma for n = 2 for clarity. In that case, σg is a strategy on ι(1) → ι(2) → ι(3). Let t be
an extended thread of σg, let n, n′ ∈ E and let suppose that t|ι(1) is winning on W{n} and t|ι(2) is winning
on W{n′}. The position corresponding to t has the following shape:

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 273
q

q q q c11 . . . c1p1 . . . cm1 . . . cmpm

a1 . . . an b11 . . . b1p1 bm1 . . . bmpm

where cij = g (ai, bij). t|ι(1) is the following position:

q

a1 . . . am

Since t|ι(1) ∈ W{n}, there is some i such that ai is labeled with n. Since t|ι(2) is winning on W{n′}, the
following thread of t|ι(2) :

q

bi1 . . . bipi

is in particular in W{n′}, so there must be some j such that bij is labeled with n′. But then since cij =
g (n, n′), we get that t|ι(3) ∈ W{g(n,n′)}. �

The constants kf of λμ-calculus are then interpreted by �kf � = σfN . The formulation of the adequacy
lemma in our new system reads as follows:

Lemma 17. Let ⊥⊥ ⊆ N. Suppose that we have a realizer �kA� for each formula A ∈ Ax. If ν is a derivation
of the sequent:

x1, . . . , xm, A1, . . . , An � A

and if θ is an assignment of elements of N to free variables of A1, . . . , An, A, then �ν∗� is a winning strategy
on the arena:

ι(1) → . . . → ι(m) → A1
∗ → . . . → An

∗ → A∗

equipped with winning condition:

W{θ(x1)}→...→{θ(xm)}→A1[θ]⇒...⇒An[θ]⇒A[θ]

Proof. The case of the rules of the base system are unchanged. Therefore we prove the adequacy for the two
new rules. For the introduction of relativization, the induction property is unchanged. For the elimination of
relativization, let ν be a proof of x1, . . . , xm, A1, . . . An � {a} �⇒A with FV (a) ⊆ {x1, . . . , xm}. By induction
on a, using Lemma 16, �a∗� is winning on:

{θ (x1)} → · · · → {θ (xm)} →
{

(a [θ])N
}

and we can conclude using Lemma 8. �

274 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
5.3. The realizability interpretation

The winning conditions for ⊥ and e �= f are as in Sects. 4.1 and 4.4. The axioms are the ones for equality
(defined in Sect. 4.4) and:

(Snz) ∀x (S (x) �= 0) (Sinj) ∀x∀y (x �= y ⇒ S (x) �= S (y))
(+0) ∀x (x + 0 = x) (×0) ∀x (x× 0 = 0)
(+S) ∀x∀y (x + S (y) = S (x + y)) (×S) ∀x∀y (x× S (y) = x + (x× y))

(ind) ∀�z (A[0/x] ⇒∀rx (A⇒A [S (x) /x]) ⇒∀rxA)

where A is a formula with free variables among x, �z. We will now define the realizers for these axioms. We
first define ρT , the recursor on type T , which is the usual recursor of Gödel’s system T. For that we define
for each n ∈ N and simple type T a strategy ρTn by:

ρT0 = �λxy.x� : T → (ι → T → T) → T

ξT = �λnrxy.y n (r x y)� : ι → (T → (ι → T → T) → T) → T → (ι → T → T) → T

ρTn+1 = ξT (σn)
(
ρTn

)
: T → (ι → T → T) → T

and we finally define the strategy ρT as the innocent strategy whose views are:

T → (ι → T → T) → ι → T

qO

qP

nO

s

where qO s is a view of ρTn on the subarena T → (ι → T → T) → T .
We use the following lemma in order to prove the validity of (ind):

Lemma 18. Let A be a formula with parameters and one free variable.

1. ρA
∗

0 is a realizer of A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [0]
2. ξA

∗ is a realizer of:

∀ry
(
(A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [y]) ⇒A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [S y]

)
Proof. This is an immediate consequence of Lemma 13, since the strategies ρA∗

0 and ξA
∗ are the interpre-

tations of proofs of the formulas. �

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 275
5.4. Validity of axioms

We prove that all the axioms are realized:

Lemma 19. Let ⊥⊥ ⊆ N.

1. The empty strategy on ι is a realizer of (Snz)

2. The strategy �λx.x� on ι → ι is a realizer of (Sinj)

3. The strategy �λx.x� on ι → ι is a realizer of (+0), (×0), (+S) and (×S)

4. ρA
∗ is a realizer of (ind)

Proof.

1. The only extended thread t of the empty strategy on ι is the one-move thread. We have to show that
for any n ∈ N, t ∈ WS(n)�=0. Let n ∈ N. Then we have (S (n))N = n + 1 �= 0 = 0N and WS(n)�=0 is the set
of all positions on ι. In particular t, which is the one-move position, is in WSN(n)�=0.

2. If t is an extended thread of �λx.x� on ι(1) → ι(2), then t is even or infinite (since the strategy is total),
so t|ι(1) = t|ι(2) . t being a thread, t|ι(2) is a thread, and t|ι(1) = t|ι(2) is also a thread. Let m, n ∈ N. We

have to show that if t|ι(1) ∈ Wm�=n, then t|ι(2) ∈ WS(n)�=S(m). We have m = n ⇔ (S (n))N = (S (m))N so
Wm�=n = WS(n)�=S(m) so we can conclude.

3. This is a consequence of Lemma 14.
4. We first prove by induction on n ∈ N that ρA∗

n is a realizer of the formula

A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [n]

where A is a formula with parameters and one free variable.
• The case for 0 is the first part of Lemma 18
• By induction hypothesis we have:

ρA
∗

n � A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [n]

and by Lemma 18 we have:

ξT � ∀ry
(
(A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [y]) ⇒A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [S (y)]

)
so since ρTn+1 = ξT (σn)

(
ρTn

)
, we get by Lemmas 16 and 8:

ρA
∗

n+1 � A [0] ⇒∀rx (A [x] ⇒A [S (x)]) ⇒A [S (n)]

which terminates the induction case since n + 1 = (S (n))N.
Let now t be an augmented thread of ρA∗ on the arena

A∗(1) →
(
ι(1) → A∗(2) → A∗(3)

)
→ ι(2) → A∗(4)

Let suppose that t|A∗(1) is winning on A [0] and t|ι(1)→A∗(2)→A∗(3) is winning on ∀rx (A [x] ⇒A [S (x)]).
We want to prove that t|ι(2)→A∗(4) is winning on ∀rxA [x], so let n ∈ N and let suppose that t|ι(2) is
winning on

(
ι,W{n}

)
. Then there must be some nO in t|ι(2) . Let u be the subsequence of t consisting of

the initial qO, the following qP , this nO and all the moves of t such that the view obtained immediately
after having been played contains nO. Then u is a play of ρA∗

n . Since a P -move does not change the

276 V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277
current view, the positions of u|A∗(1) are O-subpositions of t|A∗(1) (the projection induces an inversion
of polarities), so they are winning on A [0], and the positions of u|ι(1)→A∗(2)→A∗(3) are O-subpositions of
t|ι(1)→A∗(2)→A∗(3) , so they are winning on ∀rx (A [x] ⇒A [S (x)]). Then by the property on ρA

∗
n , u|A∗(4)

is winning on A [n]. But u|A∗(4) is a P -subposition of t|A∗(4) (no inversion here), so t|A∗(4) is winning on
A [n]. �

We define for a formula A of Peano Arithmetic its relativization Ar which is obtained by replacing every
∀ by a ∀r. The following result is easy to obtain, by replacing every rule about ∀ by two rules: one about ∀
and one about the relativization construct. It is also easy to derive Ar from A for each A ∈ Ax, except the
induction scheme, which is already relativized. Therefore we have the following result:

Theorem 1. If A is provable in Peano arithmetic then Ar is provable in our system, so there is a computable
strategy σ such that σ � Ar.

5.5. Extraction

We now show that from any Π0
2-formula provable in Peano arithmetic we can extract a computable

witnessing function.
Suppose that we have a proof of � ∀rx∃ry (a = b). We obtain by double-negation elimination a proof of

� ∀rx (¬∀ry (a �= b)), and we map it to a strategy σ such that:

σ � ∀rx (¬∀ry (a �= b)) ≡ ∀rx (∀ry (a �= b) ⇒⊥)

Then if n ∈ N, by Lemmas 16 and 8, σ (σn) � ∀ry (a [n/x] �= b [n/x]) ⇒ ⊥. Let now fix ⊥⊥ ={
m ∈ N | (a [n/x,m/y])N = (b [n/x,m/y])N

}
. By a simple disjunction of cases we get

�λx.x� � ∀ry (a [n/x] �= b [n/x])

therefore by Lemma 8, σ (σn) (�λx.x�) � ⊥. Then σ (σn) (�λx.x�) is some σm such that m ∈ ⊥⊥. Indeed, if
σ (σn) (�λx.x�) is the empty strategy then its only augmented play is qO, which is losing on ⊥.

6. Conclusion & future work

We would like to thank the anonymous reviewers for their helpful comments.
We have built a realizability model for Peano arithmetic using winning conditions on arenas, and have

used it in the context of witness extraction for Π0
2-formulas. Future work will be the comparison of the

present model with the game interpretation of classical arithmetic of [7]. Our main goal is to compare two
different versions of realizers for the axiom of dependent choices: the modified bar recursion of [3] and the
clock of [13].

Acknowledgements

This research has been supported by the UK Engineering and Physical Sciences Research Council grant
EP/K037633/1. No new data were created during this study.

V. Blot / Annals of Pure and Applied Logic 168 (2017) 254–277 277
References

[1] S. Abramsky, K. Honda, G. McCusker, A fully abstract game semantics for general references, in: 13th Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Society, 1998, pp. 334–344.

[2] S. Abramsky, G. McCusker, Call-by-value games, in: 6th EACSL Annual Conference on Computer Science Logic, in:
Lecture Notes in Computer Science, Springer, 1997, pp. 1–17.

[3] S. Berardi, M. Bezem, T. Coquand, On the computational content of the axiom of choice, J. Symbolic Logic 63 (2) (1998)
600–622.

[4] V. Blot, Realizability for Peano arithmetic with winning conditions in HON games, in: 11th International Conference on
Typed Lambda Calculi and Applications, in: Lecture Notes in Computer Science, vol. 7941, Springer, 2013, pp. 77–92.

[5] P. Boudes, Thick subtrees, games and experiments, in: 9th International Conference on Typed Lambda Calculi and
Applications, in: Lecture Notes in Computer Science, vol. 5608, Springer, 2009, pp. 65–79.

[6] P. Clairambault, Least and greatest fixpoints in game semantics, in: 12th International Conference on Foundations of
Software Science and Computational Structures, in: Lecture Notes in Computer Science, Springer, 2009, pp. 16–31.

[7] T. Coquand, A semantics of evidence for classical arithmetic, J. Symbolic Logic 60 (1) (1995) 325–337.
[8] T. Griffin, A formulae-as-types notion of control, in: 17th Symposium on Principles of Programming Languages, ACM

Press, 1990, pp. 47–58.
[9] R. Harmer, Games and full abstraction for non-deterministic languages, Ph.D. thesis, Imperial College London (University

of London), 1999.
[10] M. Hyland, Game semantics, in: A. Pitts, P. Dybjer (Eds.), Semantics and Logics of Computation. Publications of the

Newton Institute, Cambridge University Press, 1997, pp. 131–184, Ch. 4.
[11] M. Hyland, L. Ong, On full abstraction for PCF: I, II, and III, Inform. and Comput. 163 (2) (2000) 285–408.
[12] J.-L. Krivine, Typed lambda-calculus in classical Zermelo–Frænkel set theory, Arch. Math. Logic 40 (3) (2001) 189–205.
[13] J.-L. Krivine, Dependent choice, ‘quote’ and the clock, Theoret. Comput. Sci. 308 (1–3) (2003) 259–276.
[14] J.-L. Krivine, Realizability in classical logic, Panor. Synthèses 27 (2009) 197–229.
[15] J. Laird, Full abstraction for functional languages with control, in: 12th Annual IEEE Symposium on Logic in Computer

Science, IEEE Computer Society, 1997, pp. 58–67.
[16] J. Laird, A semantic analysis of control, Ph.D. thesis, University of Edinburgh, 1999.
[17] P.-A. Melliès, Asynchronous games 3 an innocent model of linear logic, Electron. Notes Theor. Comput. Sci. 122 (2005)

171–192.
[18] P.-A. Melliès, Sequential algorithms and strongly stable functions, Theoret. Comput. Sci. 343 (1–2) (2005) 237–281.
[19] P.-A. Melliès, Asynchronous games 2: the true concurrency of innocence, Theoret. Comput. Sci. 358 (2–3) (2006) 200–228.
[20] A. Miquel, Existential witness extraction in classical realizability and via a negative translation, Log. Methods Comput.

Sci. 7 (2) (2011).
[21] H. Nickau, Hereditarily sequential functionals, in: Third International Symposium on Logical Foundations of Computer

Science, in: Lecture Notes in Computer Science, Springer, 1994, pp. 253–264.
[22] P. Selinger, Control categories and duality: on the categorical semantics of the λμ calculus, Math. Structures Comput.

Sci. 11 (2) (2001) 207–260.
[23] A.S. Troelstra, Realizability, in: S. Buss (Ed.), Handbook of Proof Theory, in: Studies in Logic and the Foundations of

Mathematics, vol. 137, Elsevier, 1998, pp. 407–473, Ch. 6.

http://refhub.elsevier.com/S0168-0072(16)30129-4/bib416272616D736B79486F6E64614D634375736B65725265666572656E636573s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib416272616D736B79486F6E64614D634375736B65725265666572656E636573s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib416272616D736B794D634375736B657243616C6C427956616C7565s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib416272616D736B794D634375736B657243616C6C427956616C7565s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4265726172646942657A656D436F7175616E64s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4265726172646942657A656D436F7175616E64s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib426C6F7457696E6E696E67s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib426C6F7457696E6E696E67s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib426F75646573546869636Bs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib426F75646573546869636Bs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib436C616972616D6261756C74466978706F696E74s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib436C616972616D6261756C74466978706F696E74s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib436F7175616E644A657578s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4772696666696E436F6E74726F6Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4772696666696E436F6E74726F6Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4861726D6572546865736973s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4861726D6572546865736973s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib48796C616E64426F6F6Bs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib48796C616E64426F6F6Bs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib484Fs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4B726976696E655A46s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4B726976696E65446570656E64656E74s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4B726976696E6550616E6F72616D6173s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4C61697264436F6E74726F6Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4C61697264436F6E74726F6Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4C61697264546865736973s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4D656C6C6965734173796E636833s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4D656C6C6965734173796E636833s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4D656C6C69657353657175656E7469616Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4D656C6C6965734173796E636832s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4D697175656C5769746E657373s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4D697175656C5769746E657373s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4E69636B6175s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib4E69636B6175s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib53656C696E676572436F6E74726F6Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib53656C696E676572436F6E74726F6Cs1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib54726F656C737472615265616C697A6162696C697479s1
http://refhub.elsevier.com/S0168-0072(16)30129-4/bib54726F656C737472615265616C697A6162696C697479s1

	Realizability for Peano arithmetic with winning conditions in HON games
	1 Introduction
	2 HON games
	2.1 Arenas
	2.2 Interaction sequences via thick subtrees
	2.2.1 Interaction sequences as thick subtrees
	2.2.2 Correspondence with the usual setting
	From pointed sequences to justiﬁed sequences
	From justiﬁed sequences to pointed sequences
	Equivalence of the two notions

	2.3 Strategies
	2.4 Cartesian closed structure
	2.5 Category of continuations
	2.6 Interpreting the call-by-name lambda-mu-calculus

	3 Winning conditions on arenas
	4 First-order logic
	4.1 Realizability
	4.2 Adequacy for minimal classical logic
	4.2.1 Translation of proofs to strategies
	4.2.2 Adequacy

	4.3 Full classical logic
	4.4 First-order logic with equality

	5 Peano arithmetic
	5.1 Deﬁnitions
	5.2 The relativization predicate
	5.3 The realizability interpretation
	5.4 Validity of axioms
	5.5 Extraction

	6 Conclusion & future work
	Acknowledgements
	References

