
HAL Id: hal-01766883
https://hal.science/hal-01766883

Submitted on 17 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An interpretation of system F through bar recursion
Valentin Blot

To cite this version:
Valentin Blot. An interpretation of system F through bar recursion. 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Jun 2017, Reykjavik, Iceland.
�10.1109/LICS.2017.8005066�. �hal-01766883�

https://hal.science/hal-01766883
https://hal.archives-ouvertes.fr

1

An interpretation of system F through bar recursion
Valentin Blot

Queen Mary University of London

Abstract—There are two possible computational interpreta-
tions of second-order arithmetic: Girard’s system F or Spector’s
bar recursion and its variants. While the logic is the same,
the programs obtained from these two interpretations have
a fundamentally different computational behavior and their
relationship is not well understood. We make a step towards
a comparison by defining the first translation of system F into a
simply-typed total language with a variant of bar recursion. This
translation relies on a realizability interpretation of second-order
arithmetic. Due to Gödel’s incompleteness theorem there is no
proof of termination of system F within second-order arithmetic.
However, for each individual term of system F there is a proof in
second-order arithmetic that it terminates, with its realizability
interpretation providing a bound on the number of reduction
steps to reach a normal form. Using this bound, we compute
the normal form through primitive recursion. Moreover, since
the normalization proof of system F proceeds by induction on
typing derivations, the translation is compositional. The flexibility
of our method opens the possibility of getting a more direct
translation that will provide an alternative approach to the study
of polymorphism, namely through bar recursion.

I. INTRODUCTION

Second-order λ-calculus [1], [2] is a poweful type system
that allows the typing of terms such as λx.x x. The language
obtained is still strongly normalizing, but so far all proofs of
this factrely on the notion of reducibility candidates (RCs): sets
of λ-terms satisfying some axioms. In these proofs, every type
has an associated RC such that every term belongs to the RC
associated to its type. Then the normalization property follows
as a consequence of the axioms of RCs. An important aspect
of these proofs is their impredicativity: the RC associated to a
universally quantified type is obtained as an intersection over
all RCs. The translation presented here avoids direct reliance
on the notion of RC by reducing termination of system F
to termination of a variant of bar recursion, which uses an
instance of Zorn’s lemma.

In 1962, Spector used bar recursion [3] to extend Gödel’s
Dialectica interpretation of arithmetic into an interpretation
of analysis, showing that bar recursion interprets the axiom
scheme of comprehension. Variants of bar recursion have then
been used to interpret the axioms of countable and depen-
dent choice in a classical setting through Kreisel’s modified
realizability. Among these variants, modified bar recursion [4]
relies on the continuity of one of its arguments to ensure
termination, rather than on the explicit termination condition
of original bar recursion. Krivine recently used this variant in
untyped realizability for set theory [5]. The variant that we use
is the BBC functional [6], that builds the family of realizers
in an order that depends on the order of computation rather
than on the usual order on natural numbers. While in [6], the
proof of correctness of the BBC functional relies on syntactic

arguments, we use an adaptation of the semantic poof of [7]
that relies on Zorn’s lemma. Using this we are then able to
interpret the axiom scheme of comprehension, which is the
only ingredient required on top of first-order arithmetic in
order to get a computational interpretation of second-order
arithmetic and therefore of normalization of system F.

For any single term of system F there exists a proof in
second-order arithmetic that it terminates. This mapping from
terms of system F to proofs of second-order arithmetic is
closely related to Reynolds’ abstraction theorem [8] which,
as explained in [9], relies on an embedding of system F into
second-order arithmetic. We use our interpretation of second-
order arithmetic to extract the normal form of the system F
term from its termination proof. Our technique is similar to
Berger’s work in the simply-typed case [10]. It is closely
related to normalization by evaluation, extended to system
F in [11], [12]. To avoid an encoding of λ-terms as natural
numbers, we define a multi-sorted first-order logic with a sort
for λ-terms with de Bruijn indices. To formalize the notion
of reducibility candidates, our logic also has a sort for sets
of λ-terms. Since these are first-order elements of the logic,
the instantiation of a set variable with an arbitrary formula is
not directly possible as in second-order arithmetic. We will
however get back this possibility through our interpretation of
the axiom scheme of comprehension with the BBC functional.

In a second step we fix the target programming language of
the translation. This language, that we call system ΛTbbc, is
purely functional with a type for λ-terms, primitive recursion,
and the BBC functional. System ΛTbbc is in particular simply-
typed and total. We also describe the sound and computation-
ally adequate semantics of this language in the category of
complete partial orders.

The last step is the definition of a realizability semantics for
our logic. To each formula we associate a type of system ΛTbbc
and a set of realizers in the domain interpreting that type.
Realizers are elements of the model rather than syntactic pro-
grams because the correctness of the BBC functional requires
the existence of non-computable functions on discrete types
which only exist in the model. Since we encode existential
quantifications using universal ones and negation, we are able
to interpret classical logic. On the other hand, the BBC func-
tional interprets a variant of the axiom of countable choice,
and its combination with our interpretation of classical logic
provides a realizer of the axiom scheme of comprehension.
Using this, we are then able to interpret the instantiation of
set variables with arbitrary formulas. Finally, we associate for
each term of system F a program that interprets the proof of its
termination for weak head reduction and computes the normal
form of the initial term of system F.

2

II. NORMALIZATION OF SYSTEM F

In this first section, we give the details of the proof of
normalization of system F that we will interpret through
realizability in section V. The interested reader will find
more information on this subject in e.g. [13]. Our proof
uses a notion of reducibility candidates that is a variant of
Tait’s saturated sets [14]. We do not use Girard’s reducibility
candidates [15] because the corresponding normalization proof
requires induction on the length of reduction of subterms when
proving that the arrow construction preserves the properties of
reducibility candidates. Therefore the interpretation would be
much more complicated. Moreover, our version is a simplified
version of Tait’s saturated sets that also appears in [13] and
is sufficient for weak head reduction. We make this choice
again because it simplifies the interpretation, but interpreting
another variant of the normalization proof is also possible.

A. Terms and substitutions

We first describe the syntax that we will be using throughout
the paper. Since we are interested in interpreting formal proofs
about λ-terms, we choose to represent them using de Bruijn
indices, avoiding the usual complications due to α-conversion.
The syntax for the set Λ of all λ-terms is as follows:

M,N ::= m | λ.M |M N

where m is a natural number. We suppose that the reader
is familiar with de Bruijn indices and do not recall here the
translations between usual λ-terms and λ-terms with de Bruijn
indices. We only give an example: the λ-term λxyz.y (λu.x)
is written with de Bruijn indices as λ.λ.λ.1 (λ.3). Since
we use Tait’s style of reducibility candidate, we will have
to manipulate λ-terms applied to an arbitrary number of
arguments. We therefore also consider lists of λ-terms, for
which we use the notation Π = 〈M0, . . . ,Mn−1〉. We write
M Π for MM0 . . . Mn−1 in Λ. Parallel substitution with de
Bruijn indices requires the definition of a shift operation ↑k
on terms. ↑kM is the result of incrementing the value of all
variables of M with an outer index ≥ k, and is defined as
follows:

↑km =

{
m+ 1 if m ≥ k
m otherwise

↑k(λ.M) = λ.
(
↑k+1M

)
↑k(M N) =

(
↑kM

) (
↑kN

)
This operation is extended to lists of terms:

↑k〈M0, . . . ,Mn−1〉 =
〈
↑kM0, . . . , ↑kMn−1

〉
We write ↑M (resp. ↑Π) for ↑0M (resp. ↑0Π). Using the shift
operation, we define parallel substitution N [k 7→ Π] where
Π = 〈M0, . . . ,Mn−1〉. The result of the parallel substitution
N [k 7→ Π] is obtained by substituting Mi for variables of
outer index i such that k ≤ i < k + n in N , and subtracting
n to variables of outer index i ≥ k + n:

m [k 7→ 〈M0, . . . ,Mn−1〉] =


m if m < k

Mm−k if k ≤ m < k + n

m− n otherwise
(λ.M) [k 7→ Π] = λ. (M [k + 1 7→↑Π])

0≤m<n
Tn−1, . . . , T0 ` m : Tm

Γ, T `M : U

Γ ` λ.M : T → U
Γ `M : T → U Γ ` N : T

Γ `M N : U

Γ `M : T
X/∈FV(Γ)

Γ `M : ∀X T
Γ `M : ∀X T

Γ `M : T {U/X}

Fig. 1. Typing rules of system F

(M N) [k 7→ Π] = (M [k 7→ Π]) (N [k 7→ Π])

Substitution of a single term is defined as:

M [k 7→ N] = M [k 7→ 〈N〉]

and we write M [Π] (resp. M [N]) for M [0 7→ Π] (resp.
M [0 7→ N]). The usual β-reduction of λ-calculus is therefore:

(λ.M)N �M [N]

The following lemma will be used in the proof of normaliza-
tion:

Lemma 1.

M [k 7→ 〈N,Π〉] = M
[
k + 1 7→↑kΠ

]
[k 7→ N]

where 〈N,Π〉 is the result of prepending N to Π.

Proof. By induction on M , using ↑
(
↑kΠ

)
=↑k+1(↑Π) for the

case of a λ-abstraction.

B. The normalization theorem

In this section we give the normalization proof of system
F that we will interpret through realizability in section V.
This proof is a simplified version of the usual one and only
proves weak head reduction. We choose this version because
it avoids some nested inductions. However, it is possible with
our technique to interpret another proof since our realizability
model interprets full second-order arithmetic.

First, we recall the typing rules of system F in figure 1,
where types are defined as follows:

T,U ::= X | T → U | ∀X T

where X ranges over a countable set of type variables. Since
we work with de Bruijn indices, contexts are ordered lists of
types (and the order is important). We use a Curry presentation
(without type abstractions and applications within the terms)
since it simplifies the syntax and we are not interested into type
checking or inference. As explained above, we only consider
weak head reduction:

(λ.M)N Π �M [N] Π

and write M↓ if M normalizes for the above reduction.
The normalization proof goes as follows: first, we define the

set RC ⊆ P (Λ) of reducibility candidates and we prove that
the set of normalizing terms is a reducibility candidate. Then,
we associate a set RCT,v ⊆ Λ to each type T of system F
with valuation v : FV (T)→ RC, and we prove that RCT,v is
a reducibility candidate. Finally, we prove that if a closed term

3

M is of closed type T , then M ∈ RCT,∅. Since one of the
properties of reducibility candidates is that they contain only
normalizing terms, we can then conclude that M normalizes.

We now give the proof in more details. First, define the set
RC of reducibility candidates:

Definition 1 (Reducibility candidate). X ⊆ Λ is in RC if:
• For any list of terms Π, we have 0 Π ∈ X
• If M ∈ X, then M↓
• If M [N] Π ∈ X, then (λ.M)N Π ∈ X

In particular, the set of normalizing terms is a reducibility
candidate:

Lemma 2. {M ∈ Λ |M↓} ∈ RC

Proof. • For any Π, 0 Π is in head normal form so 0 Π↓
• If M↓, then M↓
• If M [N] Π↓, then (λ.M)N Π↓ because:

(λ.M)N Π �M [N] Π

As explained above, in the second step we define a set
RCT,v ⊆ Λ for each type T with valuation v:

Definition 2. If T is a type of system F and if v : FV (T)→
RC, we define RCT,v inductively:
• RCX,v = v (X)
• RCT→U,v = {M | ∀N ∈ RCT,v,M N ∈ RCU,v}
• RC∀X T,v =

⋂{
RCT,v]{X 7→X}

∣∣ X ∈ RC}
These sets are indeed reducibility candidates:

Lemma 3. If T is a type and v : FV (T)→ RC, then RCT,v ∈
RC

Proof. By induction on T :
• Since v (X) ∈ RC, we have RCX,v = v (X) ∈ RC
• Suppose RCT,v ∈ RC and RCU,v ∈ RC.

– If Π is a list of terms and M ∈ RCT,v then 〈Π,M〉
(result of appending M to Π) is a list of terms so:

(0 Π)M = 0 〈Π,M〉 ∈ RCU,v

by induction hypothesis
– Let M ∈ RCT→U,v . We have 0 = 0 〈〉 ∈ RCT,v by

induction hypothesis, so M 0 ∈ RCU,v by definition
of RCT→U,v and M 0 ↓ by induction hypothesis.
Since any reduction step of M can be turned into
a reduction step of M 0, we get M↓

– Suppose M [N] Π ∈ RCT→U,v . Then for any P ∈
RCT,v we have by definition of RCT→U,v:

M [N] 〈Π, P 〉 = (M [N] Π)P ∈ RCU,v

and therefore:

(λ.M)N ΠP = (λ.M)N 〈Π, P 〉 ∈ RCU,v

by induction hypothesis
• Suppose RCT,v]{X 7→X} ∈ RC for every X ∈ RC.

– If Π is a list of terms, then 0 Π ∈ RCT,v]{X 7→X} for
every X ∈ RC by induction hypothesis

– If M ∈ RC∀X T,v , then M ∈ RCT,v]{X 7→{N | N↓}}
since {N | N↓} ∈ RC by lemma 2, and therefore
M↓ by induction hypothesis

– If M [N] Π ∈ RC∀X T,v and X ∈ RC, then:

M [N] Π ∈ RCT,v]{X 7→X}

and therefore:

(λ.M)N Π ∈ RCT,v]{X 7→X}

by induction hypothesis

In the last step of the normalization proof, we prove that
each term of system F belongs to the reducibility candidate
associated to its type:

Lemma 4. If Tn−1, . . . , T0 ` N : U in system F and if v :
FV (Tn−1, . . . T0, U) → RC and Π = 〈M0, . . . ,Mn−1〉 are
such that Mi ∈ RCTi,v for 0 ≤ i < n, then N [Π] ∈ RCU,v
Proof. By induction on the typing derivation:
• Tn−1, . . . , T0 ` m : Tm: we have m [Π] = Mm ∈
RCTm,v as an hypothesis

• Tn−1, . . . , T0 ` λ.N : U → V : if P ∈ RCU,v , we have:

N [1 7→↑Π] [P] = N [〈P,Π〉] ∈ RCV,v

by lemma 1 and induction hypothesis, so:

(λ.N) [Π]P = λ. (N [1 7→↑Π])P ∈ RCV,v

by definition of reducibility candidates
• Tn−1, . . . , T0 ` N P : V : we have:

(N P) [Π] = N [Π]P [Π] ∈ RCV,v

because N [Π] ∈ RCU→V,v and P [Π] ∈ RCU,v by
induction hypothesis

• Tn−1, . . . , T0 ` N : ∀X U : if X ∈ RC then we have
Mi ∈ RCTi,v]{X 7→X} because X /∈ FV (Ti), and there-
fore N [Π] ∈ RCU,v]{X 7→X} by induction hypothesis

• Tn−1, . . . , T0 ` N : U {V/X}: we have RCV,v ∈ RC by
lemma 3, so:

N [Π] ∈ RCU,v]{X 7→RCV,v} = RCU{V/X},v

by induction hypothesis (the equality between these two
reducibility candidates is proved by induction on U)

We can now conclude our normalization proof of system F:

Theorem 1. If a closed term M has closed type T in system
F, then M↓

Proof. Lemma 4 gives M ∈ RCT,∅ and we get M ↓ by
lemma 3 and by definition of reducibility candidates.

III. A LOGIC FOR λ-TERMS

This section is devoted to the definition of a first-order
multi-sorted logic in which we can easily formalize the nor-
malization proof of system F described in the previous section.
The main property is that our logic directly manipulates λ-
terms rather than representing them through an encoding into
natural numbers.

4

A. Definitions

Since our realizability interpretation will be simply-typed,
we use a first-order representation of second-order arithmetic.
In particular, sets of λ-terms (and reducibility candidates)
are first-order citizens and we cannot instantiate them with
arbitrary formulas. We will however get back this possibility in
the next section through an interpretation of the axiom scheme
of comprehension with the BBC functional. The logic has sorts
for natural numbers, λ-terms, lists of λ-terms, sets of λ-terms
and booleans. We distinguish elements of different sorts by
using diffferent notations:

m ::= i | 0 | S m
M ::= t | m | λ.M |M Π |M [Π]

Π ::= π | 〈〉 | 〈Π,M〉 X ::= X

Φ ::= b | tt | ff |M ∈ X |M\↓m

where i, t, π, X and b range over countable sets of sorted
variables of the logic. Notations m, M , Π and Φ are used as
meta-variables ranging over the terms of the logic. Since the
only terms of sort “set” (ranged over with X) are variables,
the meta-variables of sort “set” are exactly the variables of
the logic and we do not need any specific notation. The terms
Φ are booleans that reflect validity. Note that in M ∈ X
(resp. M\↓m), ∈ (resp. \↓) is a binary function symbol taking
a term M and a set X (resp. a term M and a natural number
m) and returning a boolean value. M\↓m means that M can
reduce for m steps of weak head reduction without reaching
a normal form. We abbreviate 〈〈. . . 〈〈〉 ,M0〉 , . . .〉 ,Mn−1〉
as 〈M0, . . . ,Mn−1〉 and M [〈N〉] as M [N]. Formulas are
defined as follows:

A,B ::= Φ | A⇒ B | A ∧B | ∀εA

where ε ranges over variables of any sort: i, t, π, X , b. The
predicate Φ should be thought of as “Φ = tt”. We also define
the following abbreviations:

¬A ∆
= A⇒ ff ∃εA ∆

= ¬∀ε¬A M↓∆
= ¬∀iM\↓i

A⇔ B
∆
= (A⇒ B) ∧ (B ⇒ A)

where ε ranges over variables of any sort. Note that our
logic does not contain primitive existential quantifications.
This is because we need classical logic for interpreting the
axiom scheme of comprehension, and therefore we choose to
work in a subset of the logic corresponding to the target of
Gödel’s negative translation. This is to be contrasted with the
dialectica-like interpretations that perform an explicit negative
translation from classical to intuitionistic logic, before giving
a computational interpretation of the target of the translation.

We also define the notion of dependent formulas that will
be useful to our formalization of the normalization proof. A
1-formula is a formula depending on elements of the logic.
For example, A (M,Φ) ≡ ∀π (M π ∈ X ⇒ Φ) is a formula
depending on a term M and a boolean Φ (containing moreover
a free variable X). We avoid the capture of bound variables, so
A (t π, t ∈ X) is ∀π′ (t π π′ ∈ X ⇒ t ∈ X). We also consider
2-formulas: formulas depending on 1-formulas. The only 2-
formulas that we consider depend on one 1-formula which

itself depends on one term. An example of 2-formula is
A (B) ≡ ∀π (B (t π)⇒ 0 ∈ X). Again, we avoid the capture
of bound variables: if B (M) ≡ M π ∈ X ⇒ M ∈ X , then
A (B) is ∀π′ ((t π′ π ∈ X ⇒ t π′ ∈ X)⇒ 0 ∈ X).

For each variable X of sort set we define the 1-formula
X (M) ≡ M ∈ X . We also define the 1-formula ⇓ (M) ≡
M ↓. If A is a formula and X is a variable of sort set, then
we write X 7→ A for the 2-formula such that

(
X 7→ A

)
(B)

is A where every atom of the form M ∈ X has been replaced
with B (M).

We also define the 2-formula RedCand (A) which says that
the set of M such that A (M) holds is a reducibility candidate:

RedCand (A)
∆
= (∀π A (0π) ∧ ∀t (A (t)⇒ t↓))
∧ ∀t∀u∀π (A (t [u]π)⇒ A ((λ.t) 〈u〉π))

Finally, to each type T of system F built from variables X
of our logic we associate the 1-formula RCT defined by
induction:

RCX
∆
= X RCT→U (M)

∆
= ∀t (RCT (t)⇒ RCU (M 〈t〉))

RC∀X T (M)
∆
= ∀X

(
RedCand

(
X
)
⇒ RCT (M)

)
It is easy to see that the free variables of sort set in RCT (M)
are exactly the free variables of T .

B. Stating normalization

We give now the main formulas that we will have to
realize in order to get a computational interpretation of the
normalization theorem. First, our logic is first-order. Therefore,
in order to interpret the instantiation of arbitrary formulas
for set variables we must first interpret the axiom scheme of
comprehension. If A is a 1-formula with one parameter of sort
term and if X is not a free set variable of A (M), then the
corresponding instance of comprehension is:

∃X ∀t (t ∈ X ⇔ A (t))

This scheme will be interpreted using the BBC functional.
Then, using comprehension, we will interpret the first-order
equivalent of the elimination of second-order quantification.
If A is a 2-formula, B is a 1-formula with one parameter of
sort term and X /∈ FV (A) (meaning that X /∈ FV (A (C))
whenever X /∈ FV (C)), then this elimination is:

∀XA
(
X
)
⇒ A (B)

Interpreting this family of implications from the axiom scheme
of comprehension requires the definition of a realizer by
induction on A. The interpretation of the instantiation of
set variables with arbitrary formulas provides us with an
interpretation of full second-order arithmetic. Building on this,
we then interpret the formalization of lemma 2 in our logic:

RedCand (⇓)

The second step is the interpretation of the formalization of
lemma 3. If FV (T) ⊆ {X0, . . . , Xn−1} then this is:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

5

The last step consists of interpreting the formaliza-
tion of lemma 4. If T0, . . . , Tm−1, U are types such
that FV (T0, . . . , Tm−1, U) ⊆ {X0, . . . , Xn−1} and if
Tm−1, . . . , T0 ` M : U is the conclusion of a valid typing
derivation in system F, then this is:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀tm−1(RCTm−1

(tm−1)⇒ . . .⇒ ∀t0(RCT0
(t0)

⇒ RCU (M [〈t0, . . . , tm−1〉])) . . .)) . . .)

The interpretation of the formula above provides a realizer
of RCT (M) for each closed term M of closed type T in
system F, from which we will extract a bound on the number
of reduction steps needed for reaching a normal form. Finally,
we will use this extracted bound to compute the normal form
of M using primitive recursion.

IV. A SIMPLY-TYPED PROGRAMMING LANGUAGE WITH
THE BBC FUNCTIONAL

In this section, we define the target of our translation of
system F: a simply-typed functional programming language
that we call system ΛTbbc. This language has product types,
basic types for natural numbers, λ-terms and lists of λ-
terms, primitive recursion on these basic types and the BBC
functional. We also give a domain-theoretic denotational se-
mantics for this programming language that is sound and
computationally adequate.

A. Syntax of system ΛTbbc

We first define system ΛT , and then extend it to system
ΛTbbc by adding the BBC functional together with its re-
duction rule. The programming language system ΛT is an
extension of Gödel’s system T with types for λ-terms and lists
of λ-terms, together with primitive recursion on these. The
types of system ΛT are defined by the following grammar:

σ, τ ::= ι | λ | λ∗ | σ → τ | σ × τ

where ι is the type of natural numbers, λ is the type of λ-
terms, λ∗ is the type of lists of λ-terms, σ → τ is the type
of functions from σ to τ and σ × τ is the product type of
σ to τ . The syntax of system ΛT is given along with its
typing rules in figure 2 and its reduction rules are given in
figure 3. Note that we take the convention of writing lists
with the most recent element at the end since the addition of an
element to a list corresponds to the extension of an applicative
context with one more argument. We use iterators rather than
recursors only for simplicity: recursors can nevertheless be
defined using iterators and product types. Using iterators we
can define a generalized application app∗ : λ → λ∗ → λ
such that if M,N0, . . . ,Nn−1 ∈ λ:

app∗ M (cons (cons (. . .consnilN0 . . .)Nn−1))

 ∗ app (. . . (appMU0) . . .)Un−1

where Ni ∗ Ui. We can also define a shift operation on lists
of terms shift∗ : λ∗ → λ∗ implementing the operation ↑
described in section II-A. Finally, we can define a substitution

Γ, x : σ ` x : σ
(c:σ)∈Cst

Γ ` c : σ
Γ, x : σ ` M : τ

Γ ` λx.M : σ → τ
Γ ` M : σ → τ Γ ` N : σ

Γ ` MN : τ
Γ ` M : σ Γ ` N : τ

Γ ` 〈M,N〉 : σ × τ
Γ ` M : σ × τ
Γ ` p1 M : σ

Γ ` M : σ × τ
Γ ` p2 M : τ

where Cst is:
z : ι s : ι→ ι itι : σ → (σ → σ)→ ι→ σ

var : ι→ λ abs : λ→ λ app : λ→ λ→ λ

itλ : (ι→ σ)→ (σ → σ)→ (σ → σ → σ)→ λ→ σ

nil : λ∗ cons : λ∗ → λ→ λ∗

itλ∗ : σ → (σ → λ→ σ)→ λ∗ → σ

Fig. 2. Typing rules of system ΛT

(λx.M)N M {N/x}

p1 〈M,N〉 M p2 〈M,N〉 N

itι MNz M itι MN (sU) N (itι MNU)

itλ MNP (varU) MU

itλ MNP (absU) N (itλ MNPU)

itλ MNP (appUV) P (itλ MNPU) (itλ MNPV)

itλ∗ MNnil M

itλ∗ MN (consUV) N (itλ∗ MNU)V
M N

E [M] E [N]

where:
U,V ::= z | sU | varU | absU | appUV | nil | consUV
E [] ::= [] | E [] M | p1E [] | p2E []

| sE [] | itι MNE []

| varE [] | absE [] | appE [] | appUE []

| itλ MNPE []

| nil | consE [] | consUE [] | itλ∗ MNE []

Fig. 3. Reductions in system ΛT

operation subst : λ → ι → λ∗ → λ implementing the
operation [7→] described in section II-A.

We now extend ΛT with a functional that interprets the
axiom scheme of comprehension on λ-terms. The lack of
a canonical ordering on λ-terms is our main motivation
for choosing the BBC functional rather than modified bar
recursion. Before introducing the BBC functional on λ we
need a notion of partial functions on λ that we can test for
definedness at any value, so we now describe our encoding of
these in system ΛT . We define the type of these functions as:

σ†
∆
= λ→ ι× σ

with the convention that M : σ† is defined at N : λ if

6

p1 (MN) ∗ z, in which case its value is p2 (MN), and
undefined otherwise. In order to define the empty function
we need to have a canonical element canσ at every type σ,
defined inductively as follows:

canι
∆
= z canλ

∆
= varz canλ∗

∆
= nil

canσ→τ
∆
= λ .canτ canσ×τ

∆
= 〈canσ, canτ 〉

We write {} : σ† for the strict function with empty support:

{} ∆
= itλ (λ . 〈sz, canσ〉) (λ . 〈sz, canσ〉) (λ . 〈sz, canσ〉)

which is such that {} M ∗ 〈sz, canσ〉 for any M : λ, that
is, {} is the everywhere undefined function. The strictness of
{} will be necessary in the proof of correctness of the BBC
functional in section V-D. We also write M | N : λ → σ for
the completion of M : σ† with N : λ→ σ, defined as:

M | N ∆
= λx.itι (p2 (Mx)) (λ .Nx) (p1 (Mx))

and which is such that:

(M | N)P ∗
{
p2 (MP) if p1 (MP) ∗ z

NP otherwise

Since equality on λ is decidable in system ΛT (that is, there
exists a term M : λ → λ → ι such that for any N,P : λ,
MNP ∗ z if and only if N ∗ U and P ∗ U for some U),
we can also define M ∪ {N 7→ P} : σ† that overwrites/extends
M : σ† with value P : σ at input N : λ, that is:

(M ∪ {N 7→ P})Q ∗
{
〈z,P〉 if N ∗ U and Q ∗ U

MQ otherwise

With this new tool we can now define the BBC functional:

bbc : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

together with its reduction rule:

bbcMNP N (P | λy.M (λz.bbcMN (P ∪ {y 7→ z})))

System ΛTbbc is obtained by extending system ΛT with the
constant bbc together with its reduction rule.

B. Continuous semantics of system ΛTbbc

Because the proof of correctness of the BBC functional
requires the existence of non-computable realizers, our re-
alizers will be elements of a model of system ΛTbbc rather
than mere programs. Since system ΛTbbc can be seen as
a subset of PCF where recursion is restricted to primitive
recursion and the BBC functional, it is natural to consider
a domain-theoretic semantics. More precisely, we will define
a denotational semantics of system ΛTbbc in complete partial
orders. First, we recall some basic definitions:

Definition 3 (complete partial order). A partial order (D,≤)
is a complete partial order (cpo) if:
• D has a least element ⊥
• Every directed subset ∆ of D has a least upper bound
t∆, where ∆ ⊆ D is directed if it is non-empty and:

∀ϕ ∈ ∆∀ψ ∈ ∆∃θ ∈ ∆ (ϕ ≤ θ ∧ ψ ≤ θ)

Definition 4 (continuous function). If (D,≤) and (E,≤) are
cpos, a function ϕ : D → E is continuous if for every directed
subset ∆ of D, ϕ (∆) is directed and:

ϕ (t∆) = tϕ (∆)

Definition 5 (product of cpos). If (D,≤) and (E,≤) are cpos,
then D × E is a cpo for the pointwise ordering:

(ϕ,ψ) ≤ (ϕ′, ψ′)⇔ (ϕ ≤ ϕ′ ∧ ψ ≤ ψ′)

The projection functions from D × E to D and E will be
written π1 and π2.

Definition 6 (cpo of continuous functions). If (D,≤) and
(E,≤) are cpos, then the set of continuous functions from
D to E is a cpo for the pointwise ordering:

ϕ ≤ ϕ′ ⇔ ∀ψ ∈ D (ϕ (ψ) ≤ ϕ′ (ψ))

Definition 7 (flat cpo). If X is a set, then X⊥ = X ∪ {⊥} is
a cpo for the following ordering:

ϕ ≤ ψ ⇔ (ϕ = ψ ∨ ϕ = ⊥)

It is well-known that the category of cpos and continuous
functions is cartesian closed and provides a sound and com-
putationally adequate semantics for PCF where the type of
natural numbers is interpreted as N⊥. It is easy to extend
this semantics with a type of λ-terms interpreted as Λ⊥,
a type of lists of λ-terms interpreted as (Λ∗)⊥ (where Λ∗

denotes the set of finite sequences of λ-terms) and product
types interpreted with the categorical product of cpos. All the
constants of system ΛTbbc can be interpreted with fixpoints
and basic operations on flat domains, therefore the category
of cpos and continuous functions forms a model of system
ΛTbbc.

We now fix some notations. If σ is a type of system ΛTbbc,
then [[σ]] denotes the cpo interpreting σ. If a typing derivation
in system ΛTbbc has conclusion x0 : σ0, . . . , xn−1 : σn−1 `
M : τ and if v is a valuation such that v (xi) ∈ [[σi]] for each i,
then [[M]]v ∈ [[τ]] is the denotation of M with valuation v. The
category of cpos and continuous functions provides a sound
and computationally adequate model for system ΛTbbc:

Lemma 5. If M N in system ΛTbbc and if v is a valuation
then:

[[M]]v = [[N]]v

Moreover, if M : ι is a closed term and if [[M]] is some n ∈ N
then:

M ∗ sn z

These results are proved using standard techniques for
continuous models of PCF, see e.g. [16]. In system ΛTbbc,
computational adequacy in fact holds for every basic type,
but in our case we only need it on the type ι of natural
numbers. Finally, we also stress that the BBC functional is
a total element in this model, and therefore system ΛTbbc is
a total language: all computations terminate. This means that
if M is a closed term in system ΛTbbc, then [[M]] 6= ⊥. We do
not prove totality of the BBC functional here since the proof
is very similar to (and simpler than) its proof of adequacy
(lemma 8).

7

Before ending this section, we mention a result that will be
useful for the proof of adequacy of the BBC functional:

Lemma 6. Write DX⊥ for the domain of continuous functions
from X⊥ to D. If ϕ is a continuous function from DX⊥ to
Y⊥ and if ψ ∈ DX⊥ is such that ϕ (ψ) 6= ⊥ and ψ (⊥) = ⊥,
then there exists a finite set F ⊆ X such that:

∀ψ′ ∈ DX⊥ (∀θ ∈ F (ψ′ (θ) = ψ (θ))⇒ ϕ (ψ′) = ϕ (ψ))

Proof. Define for F finite subset of X the continuous function:

ψF (θ) =

{
ψ (θ) if θ ∈ F
⊥ otherwise

Then {ψF | F ⊆ X finite} is directed and:

ψ = t{ψF | F ⊆ X finite}

so the continuity of ϕ implies that:

ϕ (ψ) = t{ϕ (ψF) | F ⊆ X finite}

By definition of the order on Y⊥, this means that there must
exist some finite F ⊆ X such that ϕ (ψF) = ϕ (ψ). If ψ′ is
such that ψ′ (θ) = ψ (θ) for every θ ∈ F , then ψ′ ≥ ψF so
ϕ (ψ′) ≥ ϕ (ψF) = ϕ (ψ). Finally, since ϕ (ψ) 6= ⊥ we obtain
ϕ (ψ′) = ϕ (ψ).

V. REALIZABILITY

This section contains the main contribution of our work:
the translation of system F into system ΛTbbc through a
bar recursive interpretation of second-order arithmetic. Our
realizability model follows the lines of Kreisel’s modified
realizability. A standard Dialectica interpretation for our logic
would not be possible because the interpretation of contraction
(A ⇒ A ∧ A) requires the decidability of quantifier-free
formulas, which we do not have in our logic (M ∈ X is
undecidable when X is the set of normalizing terms). However,
the Diller-Nahm interpretation [17] overcomes this difficulty
and we need to investigate the possibility of using it instead
of modified realizability.

We first define a syntactic mapping from our logic into
system ΛTbbc and the realizability values of formulas. Then
we show how we interpret classical logic, the axiom scheme
of comprehension and the instantiation of a set variable with
an arbitrary formula. Finally, we define the interpretation of
the normalization proof of section II and derive our translation
from it.

A. Mapping the logic into system ΛTbbc

In this section we define a mapping � from our logic to
system ΛTbbc. We will first map formulas to types, and then
elements of computational sort (natural numbers, terms and
lists of terms) to programs.

We now map formulas of our logic into types of system
ΛTbbc. We define such a mapping because our realizability
model is typed, which means that the set of realizers of
a formula A will be defined as a subset of the domain

interpretation of A�. The mapping of formulas to types is as
follows:

(A⇒ B)
�

= A� → B� (A ∧B)
�

= A� ×B�

Φ� = ι (∀i A)
�

= ι→ A� (∀t A)
�

= λ→ A�

(∀π A)
�

= λ∗ → A� (∀X A)
�

= (∀bA)
�

= A�

The atomic formulas are mapped to the type of natural
numbers. This is because we want to extract natural numbers
(bounds on the numbers of reduction steps for reaching a
normal form) from proofs in classical logic. Indeed, interpret-
ing atomic formulas with ι allows us to perform the standard
technique of defining the set of realizers of the false formula
as a well-chosen subset of the natural numbers. This technique
was already used in [6] and is the computational counterpart
of Friedman’s A-translation. The types universal quantifica-
tions are mapped to depend on the sort of the quantified
variable. The sorts of natural numbers, terms and lists of
terms are called computational: a realizer of a quantification
on a computational sort takes an element of that sort as input
and builds a realizer of the instantiation of the formula with
that element. Conversely, the sorts of sets and booleans are
not computational: a realizer of a quantification on a non-
computational sort must be uniform, in the sense that it must
realize all the instantiations regardless of the element the
formula is instantiated with.

Since the type associated to a formula only depends on
its propositional structure, the type associated to an instance
of a 1-formula A (, . . . ,) does not depend on the instance
and will simply be written A�. On the other hand, the type
associated to a 2-formula depends on its particular instance.

Since the realizer of a quantification on a computational
sort depends on the element of the logic it is instantiated
with, we also need a mapping from elements of computational
sort to system ΛTbbc programs of the corresponding type. For
simplicity and without loss of generality we suppose that the
variables i, t and π of the logic are also variables of system
ΛTbbc with respective types ι, λ and λ∗. A first-order element
m, M or Π of the logic is then mapped to a program m�, M�

or Π� with the same set of variables. The mapping is defined
inductively as follows:

i� = i 0� = z (S m)
�

= sm�

t� = t m� = varm� (λ.M)
�

= absM�

(M Π)
�

= app∗M�Π� (M [Π])
�

= substM� zΠ�

π� = π 〈〉� = nil 〈Π,M〉� = consΠ�M�

B. Realizability values
In this section we define the realizability model with which

we interpret the normalization proof of section II using pro-
grams of system ΛTbbc. The set |A| of realizers of a formula A
will be defined as a subset of [[A�]], where � is the mapping
from formulas to types of system ΛTbbc defined in section V-A
and [[]] is the semantic interpretation of section IV-B.

Because a formula can contain free variables, its realizabil-
ity value | | will depend on a valuation. A valuation v on a
formula A is a function v on the free variables of A such that:

v (i) ∈ N v (t) ∈ Λ v (π) ∈ Λ∗

8

v (X) ∈ P (Λ) v (b) ∈ {tt; ff}

where Λ∗ denotes the set of finite sequences of λ-terms. Since
N ⊆ N⊥ = [[ι]], Λ ⊆ Λ⊥ = [[λ]] and Λ∗ ⊆ (Λ∗)⊥ = [[λ∗]], we
have that for any term m, M or Π appearing in A, a valuation
on A is in particular a valuation in the domain-theoretic
sense on m�, M� or Π�, where � is the mapping from
computational terms to programs of system ΛTbbc defined
in section V-A. Therefore, [[m�]]v ∈ [[ι]], [[M�]]v ∈ [[λ]]
and [[Π�]]v ∈ [[λ∗]] are well-defined. Moreover, [[m�]]v ∈ N,
[[M�]]v ∈ Λ and [[Π�]]v ∈ Λ∗: they are different from ⊥.

As explained in the previous section, the set of realizers
of false atomic formulas will be a well-chosen set of natural
numbers so we can extract computational content from proofs
in classical logic. For now this set is a parameter of our
realizability model:

⊥⊥ ⊆ N

From that parameter, we define the realizability value |A|v ⊆
[[A�]] of a formula A with valuation v in figure 4. The
realizability value of a boolean formula Φ is either the
whole set [[Φ�]] = N⊥ or the parameter ⊥⊥, which is a
standard definition in realizability models for classical logic.
In the definition of |M\↓m|v , remember that [[M�]]v ∈ Λ and
[[m�]]v ∈ N (they are not ⊥), so the definition is correct. The
realizability value for quantifications depends on whether the
sort of the quantified variable is computational or not. In the
case of computational quantifications, the realizers takes as
input the element the formula is instantiated with, while for
non-computational quantifications the realizer does not depend
on the particular value the formula is instantiated with: the
realizer is uniform. Realizability values of implication and
conjunction are standard.

In the following, we will also use terms and formulas with
parameters, instead of valuations. This means that we syntacti-
cally substitute elements of [[σ]] for free variables of type σ in
interpretations of terms of system ΛTbbc, and elements of N,
Λ, Λ∗, P (Λ) and {tt; ff} for free variables of the corresponding
sort in realizability values of formulas. For example, we
write [[λx.appϕx]] instead of [[λx.app y x]]{y 7→ϕ}, and we
write

∣∣∀t t\↓S 7
∣∣ for

∣∣∀t t\↓S i
∣∣
{i 7→7}. A closed element with

parameters is an element with parameters that does not have
any free variables anymore.

C. Classical logic

In this section, we explain how we deal with classical logic.
As explained in section III, we work in the target of Gödel’s
negative translation. This means that classical principles can
be realized. In particular, we can define realizers of double-
negation elimination by induction on formulas:

dneΦ = λx.x (λy.y) dne∀bA = dne∀X A = dneA

dne∀η A = λxη.dneA (λy.x (λz.y (z η)))

dneA⇒B = λxy.dneB (λz.x (λu.z (u y)))

dneA∧B =

λx. 〈dneA (λy.x (λz.y (p1 z))) , dneB (λy.x (λz.y (p2 z)))〉

where η ranges over variables of computational sort i, t and
π. These terms indeed realize double-negation elimination:

Lemma 7. If A is a closed formula with parameters then:

[[dneA]] ∈ |¬¬A⇒ A|

Proof. By induction on A, the base case A ≡ Φ is as follows:
since by definition |Φ| is either |tt| or |ff |, it is sufficient to
check that [[λx.x (λy.y)]] ∈ |¬¬tt⇒ tt| and [[λx.x (λy.y)]] ∈
|¬¬ff ⇒ ff |.
• [[λx.x (λy.y)]] ∈ |¬¬tt⇒ tt|: let ϕ ∈ |(tt⇒ ff)⇒ ff |.

We have to show that [[ϕ (λy.y)]] ∈ |tt|, but this is
immediate since |tt| = N⊥

• [[λx.x (λy.y)]] ∈ |¬¬ff ⇒ ff |: let ϕ ∈ |(ff ⇒ ff)⇒ ff |.
We have to show that [[ϕ (λy.y)]] ∈ |ff |, which is true
because [[λy.y]] ∈ |ff ⇒ ff |

We also define the following term:

exfA = λx.dneA (λ .x)

which immediately realizes the ex falso quodlibet principle:

[[exfA]] ∈ |ff ⇒ A|

D. Realizing the axiom scheme of comprehension

It is well known that the combination of the axiom of count-
able choice with classical logic implies the comprehension
scheme on natural numbers. The idea is that classical logic
provides a proof of ∀i∃b (b⇔ A (i)). Then using the axiom of
choice, we obtain ∃f ∀i (f (i)⇔ A (i)), where f is a function
from natural numbers to booleans. Therefore, we can interpret
second-order arithmetic through an encoding of sets of natural
numbers as functions from natural numbers to booleans.

In our case, we want to interpret the comprehension scheme
on λ-terms rather than on natural numbers. Therefore, we
will interpret the following version of the axiom of countable
choice:

∀t∃bA (b, t)⇒ ∃X ∀t A (t ∈ X, t)

We actually interpret a slightly weaker version: we define a
program that turns an element of

⋂
M∈Λ |∃bA (b,M)| into

an element of |∃X ∀t A (t ∈ X, t)|. The difference is that a
realizer of ∀t∃bA (b, t) takes a term as input (since the sort
of terms is computational), while in our particular case we can
build a realizer of ∃b (b⇔ A (t)) that is uniform in t. Because
of that, the weaker version is sufficient for interpreting the
comprehension scheme. The usual BBC functional [6] (where
the first argument would be of type λ→ (σ → ι)→ σ) can
in fact realize the stronger version where the left quantification
on t is relativized. Our version is slightly weaker because the
first argument is only of type (σ → ι) → σ. It is not clear
yet whether the usual versions are computationally strictly
stronger than our version. Our proof of adequacy is inspired
by [7] and uses Zorn’s lemma:

Lemma 8. If A (Φ,M) is a closed 1-formula with parameters
and if ϕ ∈

⋂
M∈Λ |∃bA (b,M)| then:

[[λx.bbc (λy.exfA (ϕy))x {}]] ∈ |∃X ∀t A (t ∈ X, t)|

9

|b|v =

{
N⊥ if v (b) = tt

⊥⊥ if v (b) = ff

|tt|v = N⊥
|ff |v = ⊥⊥

|M ∈ X|v =

{
N⊥ if [[M�]]v ∈ v (X)

⊥⊥ if [[M�]]v /∈ v (X)

|M\↓m|v =

{
N⊥ if [[M�]]v can reduce for [[m�]]v steps of weak head reduction without reaching a normal form
⊥⊥ otherwise

|A⇒ B|v = {ϕ ∈ [[A� → B�]] | ∀ψ ∈ |A|v , ϕ (ψ) ∈ |B|v} |A ∧B|v = {(ϕ,ψ) ∈ [[A� ×B�]] | ϕ ∈ |A|v ∧ ψ ∈ |B|v}

|∀i A|v =
{
ϕ ∈ [[ι→ A�]]

∣∣∣ ∀n ∈ N, ϕ (n) ∈ |A|v]{i7→n}

}
|∀t A|v =

{
ϕ ∈ [[λ→ A�]]

∣∣∣ ∀M ∈ Λ, ϕ (M) ∈ |A|v]{t7→M}

}
|∀π A|v =

{
ϕ ∈ [[λ∗ → A�]]

∣∣∣ ∀p ∈ Λ∗, ϕ (p) ∈ |A|v]{π 7→p}

}
|∀X A|v =

⋂
X∈P(Λ)

|A|v]{X 7→X} |∀bA|v =
⋂

b∈{tt;ff}

|A|v]{b 7→b}

Fig. 4. Realizability values

Proof. Let ψ ∈ |∀X ¬∀t A (t ∈ X, t)| and write θ =
[[bbc (λy.exfA (ϕy))ψ]]. We have to prove that:

[[θ {}]] ∈ |ff |

First, we fix the set E of ξ ∈
[[
A�†

]]
such that:

• π2 (ξ (M)) ∈ |A (tt,M)| ∪ |A (ff,M)| if π1 (ξ (M)) = 0
• ξ (M) = (1, [[canA�]]) otherwise
• ξ (⊥) = ⊥
• θ (ξ) /∈ |ff |

and we define a partial order ≺ on E by:

ξ ≺ ξ′ ⇐⇒ (π1 (ξ (M)) = 0⇒ ξ′ (M) = ξ (M))

We will prove that every non-empty chain of E has an upper
bound in E and that E has no maximal element. Therefore
by Zorn’s lemma the empty set cannot have an upper bound
in E and so E = ∅. In particular [[{}]] /∈ E and so [[θ {}]] =
θ ([[{}]]) ∈ |ff | because [[{}]] satisfies all other conditions of E
(since {} is strict).
• Every non-empty chain of E has an upper bound in E:

Let C be a non-empty chain of E and build ξmax as
follows:

ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C
(1, [[canA�]]) otherwise

ξmax (⊥) = ⊥

This function is well-defined because C is a chain
for ≺ so if ξ, ξ′ ∈ C are such that π1 (ξ (M)) =
π1 (ξ′ (M)) = 0 for some M, then ξ (M) = ξ′ (M).
Also, if π1 (ξmax (M)) = 0 then π1 (ξ (M)) = 0 for
some ξ ∈ C, and therefore:

π2 (ξmax (M)) = π2 (ξ (M)) ∈ |A (tt,M)| ∪ |A (ff,M)|

The only non-trivial property left to prove in order to get
ξmax ∈ E is that θ (ξmax) /∈ |ff |. Suppose θ (ξmax) ∈
|ff |. Then, θ (ξmax) 6= ⊥ because |ff | = ⊥⊥ ⊆ N.
Moreover, ξmax (⊥) = ⊥ so we can apply lemma 6 with
X = Λ, D = [[ι×A�]] and Y = N to get a finite set
F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

For every M ∈ F there exists some ξM ∈ C such that
ξM (M) = ξmax (M): if π1 (ξmax (M)) = 0 then this is
by definition of ξmax and if π1 (ξmax (M)) 6= 0 then any
element of C meets the condition (remember that C is
non-empty). C is a non-empty chain and {ξM |M ∈ F}
is a finite subset of C so it has a greatest element ξM0

.
Then it is easy to see that for any M ∈ F , ξM0

(M) =
ξmax (M). Therefore θ (ξmax) = θ (ξM0

) /∈ |ff | since
ξM0 ∈ C ⊆ E, hence the contradiction.

• E has no maximal element:
Suppose for the sake of contradiction that ξ is some
maximal element of E. We have the following equation:

[[θ ξ]] = [[ψ (ξ | λy.exfA (ϕ (λz.θ (ξ ∪ {y 7→ z}))))]]

Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A (tt,M)|}. Since we
have ψ ∈ |¬∀t A (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff |, we
get:

[[ξ | λy.exfA (ϕ (λz.θ (ξ ∪ {y 7→ z})))]]
/∈ |∀t A (t ∈ X, t)|

Therefore there is some M ∈ Λ such that:

[[(ξ | λy.exfA (ϕ (λz.θ (ξ ∪ {y 7→ z}))))M]]

/∈ |A (M ∈ X,M)|

If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A (M ∈ X,M)|,
but since ξ ∈ E we also have:

π2 (ξ (M)) ∈ |A (tt,M)| ∪ |A (ff,M)|

and we have a contradiction by definition of X. Therefore
π1 (ξ (M)) 6= 0. Moreover π1 (ξ (M)) 6= ⊥ because ξ ∈
E, so we obtain:

[[exfA (ϕ (λz.θ (ξ ∪ {M 7→ z})))]] /∈ |A (M ∈ X,M)|

and therefore [[ϕ (λz.θ (ξ ∪ {M 7→ z}))]] /∈ |ff |. Finally,
since ϕ ∈ |¬∀b¬A (b,M)|, we have:

[[λz.θ (ξ ∪ {M 7→ z})]] /∈ |∀b¬A (b,M)|

which means that there exists some:

ζ ∈ |A (tt,M)| ∪ |A (ff,M)|

10

such that [[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |. It is then
easy to check that [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺
[[ξ ∪ {M 7→ ζ}]], contradicting the maximality of ξ.

As explained before the lemma, the next step is the defi-
nition of an element of

⋂
M∈Λ |∃b (b⇔ A (M))|, so that its

combination with the realizer above provides an interpretation
of the comprehension scheme: ∃X ∀t (t ∈ X ⇔ A (t)).

Lemma 9. If A (M) is a closed 1-formula with parameters
such that b /∈ FV (A (t)), then:

[[λx.x 〈exfA, λy.x 〈λ .y, λ .z〉〉]] ∈
⋂

M∈Λ

|∃b (b⇔ A (M))|

Proof. Let M ∈ Λ and ϕ ∈ |∀b¬ (b⇔ A (M))|. We have to
prove that:

[[ϕ 〈exfA, λy.ϕ 〈λ .y, λ .z〉〉]] ∈ |ff |

Since ϕ ∈ |¬ (ff⇔ A (M))|, it is sufficient to prove:

[[exfA]] ∈ |ff⇒ A (M)|
[[λy.ϕ 〈λ .y, λ .z〉]] ∈ |¬A (M)|

The first one is immediate. For the second, let ψ ∈ |A (M)|.
Since ϕ ∈ |¬ (tt⇔ A (M))|, it is sufficient to prove:

[[λ .ψ]] ∈ |tt⇒ A (M)|
[[λ .z]] ∈ |A (M)⇒ tt|

The first one is immediate, and the second one follows from
the fact that |tt| = N⊥.

Combining the two realizers above, we can now define:

compA =

λx.bbc (λy.exfA (y 〈exfA, λu.y 〈λ .u, λ .z〉〉))x {}

which by construction realizes the axiom scheme of compre-
hension:

[[compA]] ∈ |∃X ∀t (t ∈ X ⇔ A (t))|

E. Realizing second-order elimination

We have now realized the existence of a first-order element
of sort set witnessing any formula. However, we still need to
subtitute an arbitrary 1-formula for a first-order set variable.
In other words, we have to interpret:

∀XA
(
X
)
⇒ A (B)

for arbitrary 2-formula A (C) and 1-formula B (M). The first
step towards the interpretation of second-order elimination is
the interpretation of the following formula:

∀t (B (t)⇔ C (t))⇒ (A (B)⇔ A (C))

The combination of a realizer of that formula with compB will
then allow us to deduce A (B) from A

(
X
)
.

Since we build the realizer replA of that formula by
induction on A, we need to explicitly take into account the free
variables of A which are of computational sort. That means
that replA will be such that FV (replA) = FV (A) ∩ η (by
FV (A) ∩ η we mean the free variables of A that are of a

computational sort, i.e. i, t or π). In particular, if A is closed
then replA is closed as well. For simplicity, we will actually
define repl′A such that FV (repl′A) = FV (replA)∪{x}, and
then define replA = λx.repl′A. The definition of repl′A is
given in figure 5. We can then prove the intended result by
induction on A:

Lemma 10. If A (D) is a 2-formula, B (M), C (M) are
closed 1-formulas with parameters and v is a valuation on
A then:

[[replA]]v ∈ |∀t (B (t)⇔ C (t))⇒ (A (B)⇔ A (C))|v
We now have all the ingredients to interpret the instantiation

of a set variable with an arbitrary 1-formula B (M):

∀X A
(
X
)
⇒ A (B)

Since the existential quantifier is not primitive in our logic,
our version of the axiom scheme of comprehension is in fact:

¬∀X ¬∀t (t ∈ X ⇔ B (t))

therefore, the elimination of such an existential quantifier will
require classical logic. Our realizer elimA,B of second-order
elimination (where A (C) is a 2-formula and B (M) is a 1-
formula) is such that FV (elimA,B) = FV (A) ∩ η and is
defined as:

elimA,B = λx.dneA(B) (λy.compB (λz.y (p1 (replA z)x)))

Correctness of this realizer is then an easy consequence of the
lemmas above:

Lemma 11. If A (C) is a 2-formula such that X /∈ FV (A)
(meaning that X /∈ FV (A (C)) whenever X /∈ FV (C)), if
B (M) is a closed 1-formula with parameters and if v is a
valuation on A then:

[[elimA,B]]v ∈
∣∣∀X A

(
X
)
⇒ A (B)

∣∣
v

Proof. Let ϕ ∈
∣∣∀X A

(
X
)∣∣
v
. Since:[[

dneA(B)

]]
∈ |¬¬A (B)⇒ A (B)|v

we are left to prove:

[[λy.compB (λz.y (p1 (replA z)ϕ))]]v ∈ |¬¬A (B)|v
Let ψ ∈ |¬A (B)|v . Since:

[[compB]] ∈ |¬∀X ¬∀t (t ∈ X ⇔ B (t))|

we are left to prove:

[[λz.ψ (p1 (replA z)ϕ)]]v ∈ |∀X ¬∀t (t ∈ X ⇔ B (t))|v
Let X ⊆ Λ and θ ∈ |∀t (t ∈ X⇔ B (t))|v . We need to prove:

[[ψ (p1 (replA θ)ϕ)]]v ∈ |ff |v
but we have:

[[p1 (replA θ)]]v ∈
∣∣A (X)⇒ A (B)

∣∣
v

and since ϕ ∈
∣∣A (X)∣∣

v
we get:

[[p1 (replA θ)ϕ]]v ∈ |A (B)|v
finally, since ψ ∈ |¬A (B)|v we obtain:

[[ψ (p1 (replA θ)ϕ)]]v ∈ |ff |v

11

repl′
X 7→M∈X = xM� repl′

X 7→Φ
= 〈λy.y, λy.y〉 if Φ 6≡M ∈ X

repl′A1⇒A2
=
〈
λyz.p1 repl

′
A2

(
y
(
p2 repl

′
A1
z
))
, λyz.p2 repl

′
A2

(
y
(
p1 repl

′
A1
z
))〉

repl′A1∧A2
=
〈
λy.
〈
p1 repl

′
A1

(p1 y) ,p1 repl
′
A2

(p2 y)
〉
, λy.

〈
p2 repl

′
A1

(p1 y) ,p2 repl
′
A2

(p2 y)
〉〉

repl′∀η A = 〈λyη.p1 repl
′
A (y η) , λyη.p2 repl

′
A (y η)〉 repl′∀X A = repl′∀bA = repl′A

Fig. 5. Definition of replA

F. Realizing normalization of system F

We now have an interpretation of full second-order arith-
metic. Therefore, we can describe the details of our inter-
pretation of the proof of normalization of system F given in
section II using the realizer elim of previous section. The first
realizer corresponds to lemma 2 and is defined as follows:

normrc =
〈〈

normrc(1), normrc(2)
〉
, normrc(3)

〉
where:

normrc(1) = λπx.xz normrc(2) = λtx.x

normrc(3) = λtuπxy.x (λi.y (s i))

normrc can be shown to be the computational interpretation
of the proof of lemma 2:

Lemma 12.
[[normrc]] ∈ |RedCand (⇓)|

In the next step, we give the interpretation of the proof
of lemma 3: if we have RedCand

(
X
)

for each X ∈ FV (T),
then we have RedCand (RCT). For that we inductively define
in figure 6 for each type T of system F built from variables
X of the logic a term:

isrcT =
〈〈

isrc
(1)
T , isrc

(2)
T

〉
, isrc

(3)
T

〉
such that FV (isrcT) = {xX | X ∈ FV (T)}. Our claim is
then that if we substitute a realizer of RedCand

(
X
)

for
each corresponding variable xX , we obtain a realizer of
RedCand (RCT):

Lemma 13. If T is a type of system F built from variables
X of the logic, if v : FV (T) → P (Λ) is a valuation
on RedCand (RCT) and if v′ : {xX | X ∈ FV (T)} →[[
RedCand

(
X
)�]]

(this codomain does not depend on the
particular X chosen) is a valuation such that v′ (xX) ∈∣∣RedCand (X)∣∣

v
for each X ∈ FV (T), then:

[[isrcT]]v′ ∈ |RedCand (RCT)|v

The last step of the interpretation of normalization of system
F is the interpretation of lemma 4, which is given in figure 7.
Despite the fact that each term defined there depends on
a full typing derivation in system F, we use the informal
notation adeqΓ`M :T , refering to the full derivation only by
its conclusion. In order to ease our definition, the terms
adeqΓ`M :T contain the following free variables:

{xX | X ∈ FV (Γ, T)} ∪ {tU | U ∈ Γ} ∪ {yU | U ∈ Γ}

where xX is meant to be replaced with a realizer of
RedCand

(
X
)
, tU is meant to be replaced with some term

MU ∈ Λ and yU is meant to be replaced with a real-
izer of RCU (MU). In the notations tU and yU , U refers
to an occurence of U in Γ, rather than to U itself. The
notation ~tΓ in figure 7 and in the lemma is a short-
hand for cons

(
cons (. . .consnil tU0 . . .) tUn−1

)
if Γ =

Un−1, . . . , U0. It can then be shown that the terms adeqΓ`M :T

satisfy the intended property:

Theorem 2. If Γ ` M : T is a valid typing judgement in
system F, and if v is a valuation such that:
• v (X) ⊆ Λ and v (xX) ∈

∣∣RedCand (X)∣∣
v

for each
variable X ∈ FV (Γ, T)

• v (tU) ∈ Λ and v (yU) ∈ |RCU (tU)|v for each U ∈ Γ

then:
[[adeqΓ`M :T]]v ∈

∣∣RCT (M [
~tΓ
])∣∣

v

Finally, if a closed term M is of closed type T in system
F we can define:

norm`M :T = isrc
(2)
T M� adeq`M :T

Immediately, we have:

[[norm`M :T]] ∈ |M↓| =
∣∣¬∀iM\↓i∣∣

The final step is the extraction of a witness n ∈ N such that
M normalizes in at most n steps of weak head reduction.
The technique is standard in realizability for classical logic
and requires that we fix the set of realizers of false boolean
formulas to a well-chosen set:

Theorem 3. If a closed term M is of closed type T in system
F, then norm`M :T (λx.x) reduces to some snz where n is such
that M reaches a weak head normal form in at most n steps.

Proof. We first fix the set of realizers of false boolean formu-
las:

⊥⊥ = {n ∈ N |M reaches a normal form in at most n steps}

Now we prove that:

[[λx.x]] ∈
∣∣∀iM\↓i∣∣

Indeed, let n ∈ N and let show that n ∈ |M\↓n|. If n ∈ ⊥⊥
then [[M�]] = M reaches a normal form in at most n steps
so |M\↓n| = ⊥⊥ and therefore n ∈ |M\↓n|. If n /∈ ⊥⊥ then
[[M�]] = M can reduce for n steps without reaching a normal
form so |M\↓n| = N⊥ and therefore n ∈ |M\↓n| trivially. Using
that result, we obtain:

[[norm`M :T (λx.x)]] ∈ |ff | = ⊥⊥

12

isrc
(1)
X = p1 (p1 xX) isrc

(2)
X = p2 (p1 xX) isrc

(3)
X = p2 xX isrc

(1)
T→U = λπtx.isrc

(1)
U (consπ t)

isrc
(2)
T→U = λtx.isrc

(2)
U (app t (varz))

(
x (varz)

(
isrc

(1)
T nil

))
isrc

(3)
T→U = λtuπxvy.isrc

(3)
U t u (consπ v) (x v y)

isrc
(1)
∀X T = λπxX .isrc

(1)
T π isrc

(3)
∀X T = λtuπyxX .isrc

(3)
T t u π (y xX)

isrc
(2)
∀X T = λtx.elimX 7→RedCand(X)⇒∀t(RCT (t)⇒t↓),⇓

(
λxXisrc

(2)
T

)
normrc t

(
elimX 7→RedCand(X)⇒RCT (t),⇓ x normrc

)
Fig. 6. Definition of isrcT

adeqΓ`m:U = yU adeqΓ`λ.M :U→T = λtUyU .isrc
(3)
T

(
substM� (sz)

(
shift∗ ~tΓ

))
tU nil adeqΓ,U`M :T

adeqΓ`M N :T = adeqΓ`M :U→T
(
substN� z ~tΓ

)
adeqΓ`N :U adeqΓ`M :∀X T = λxX .adeqΓ`M :T

adeqΓ`M :T{U/X} = elimX 7→RedCand(X)⇒RCT (M[~tΓ]),RCU
adeqΓ`M :∀X T isrcU

Fig. 7. Definition of adeqΓ`M :T

Now, computational adequacy of the model with respect to
system ΛTbbc implies that norm`M :T (λx.x) reduces to some
snz where n ∈ ⊥⊥, so n is such that M reaches a weak head
normal form in at most n steps.

It is easy to implement one-step weak head reduction in
system ΛTbbc, that is, there exists a term red : λ → λ such
that for every λ-term M :

• if M � N , then redM� ∗ N�

• if M is in weak head normal form then redM� ∗ M�

Therefore, using our extracted bound we can compute the
normal form of any closed λ-term M of closed type T in
system F:

itιM
� red (norm`M :T (λx.x)) U

where U is the representation of the normal form of M in
system ΛTbbc.

VI. FUTURE WORKS

The main difficulty of our translation is the interpretation of
the axiom scheme of comprehension, and then the instantiation
of a first-order set variable with an arbitrary formula. This
part is rather canonical and difficult to improve but the other
components could be modified in many ways to provide a
more direct translation in the future.

One could extract the normal form directly, rather than a
bound on the number of reduction steps. The main issue is
the computation of the normal form of M from that of M 0.
To do so we could consider not only weak head reduction,
but full head reduction. One could also interpret of a proof
of strong normalization. Doing so would require complicated
realizers, but provide a way to obtain β-normal forms rather
than (weak) head normal forms.

Implementing the translation can be done using deep or
shallow embedding. Since the realizers depend on the types
appearing in the typing derivation of system F, shallow embed-
ding requires an untyped or a dependently typed programming
language.

REFERENCES

[1] J.-Y. Girard, “Une extension de l’interprétation de Gödel à l’analyse, et
son application à l’élimination des coupures dans l’analyse et la théorie
des types,” in 2nd Scandinavian Logic Symposium. North-Holland,
1971, pp. 63–69.

[2] J. Reynolds, “Towards a theory of type structure,” in Programming
Symposium, Paris, April 9-11, 1974, ser. Lecture Notes in Computer
Science. Springer, 1974, pp. 408–423.

[3] C. Spector, “Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles in current intuitionistic
mathematics,” in Recursive Function Theory: Proceedings of Symposia
in Pure Mathematics, vol. 5. American Mathematical Society, 1962,
pp. 1–27.

[4] U. Berger and P. Oliva, “Modified bar recursion and classical dependent
choice,” in Logic Colloquium ’01, ser. Lecture Notes in Logic, vol. 20.
Springer-Verlag, 2005, pp. 89–107.

[5] J.-L. Krivine, “Bar Recursion in Classical Realisability: Dependent
Choice and Continuum Hypothesis,” in 25th EACSL Annual Conference
on Computer Science Logic. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016, pp. 25:1–25:11.

[6] S. Berardi, M. Bezem, and T. Coquand, “On the Computational Content
of the Axiom of Choice,” Journal of Symbolic Logic, vol. 63, no. 2, pp.
600–622, 1998.

[7] U. Berger, “The Berardi-Bezem-Coquand-
functional in a domain-theoretic setting,”
http://www-compsci.swan.ac.uk/˜csulrich/ftp/bbc.ps.gz.

[8] J. C. Reynolds, “Types, Abstraction and Parametric Polymorphism,” in
IFIP Congress, 1983, pp. 513–523.

[9] P. Wadler, “The Girard-Reynolds isomorphism (second edition),” Theo-
retical Computer Science, vol. 375, no. 1-3, pp. 201–226, 2007.

[10] U. Berger, “Program Extraction from Normalization Proofs,” in 1st
International Conference on Typed Lambda Calculi and Applications.
Springer, 1993, pp. 91–106.

[11] T. Altenkirch, M. Hofmann, and T. Streicher, “Reduction-Free Normal-
isation for a Polymorphic System,” in 11th IEEE Symposium on Logic
in Computer Science. IEEE Computer Society, 1996, pp. 98–106.

[12] A. Abel, “Weak beta-eta-Normalization and Normalization by Evalu-
ation for System F,” in 15th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning. Springer, 2008,
pp. 497–511.

[13] J.-L. Krivine, Lambda-calculus, types and models, ser. Ellis Horwood
series in computers and their applications. Masson, 1993.

[14] W. W. Tait, “A realizability interpretation of the theory of species,” in
Logic Colloquium. Springer, 1975, pp. 240–251.

[15] J.-Y. Girard, “Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur,” Ph.D. dissertation, Université Paris 7,
1972.

[16] R. Amadio and P.-L. Curien, Domains and Lambda-Calculi, ser. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1998, vol. 46.

[17] J. Diller and W. Nahm, “Eine Variante zur Dialectica-Interpretation der
Heyting-Arithmetik endlicher Typen,” Archiv für mathematische Logik
und Grundlagenforschung, vol. 16, pp. 49–66, 1974.

13

APPENDIX

Proof of lemma 10. We have to prove that if ϕ ∈ |∀t (B (t)⇔ C (t))|, then:

[[λx.repl′A]]v (ϕ) = [[repl′A]]v]{x7→ϕ} ∈ |A (B)⇔ A (C)|v
We write v′ = v] {x 7→ ϕ} and proceed by induction on A:
• A (D) ≡ D (M): since [[M�]]v ∈ Λ, we have by hypothesis on ϕ:

[[xM�]]v′ = ϕ ([[M�]]v) ∈ |B (t)⇔ C (t)|v]{t 7→[[M�]]v} = |B (M)⇔ C (M)|v = |A (B)⇔ A (C)|v

• A (D) ≡ Φ 6≡ D (M): immediate since A (B) ≡ A (C)
• A (D) ≡ A1 (D)⇒ A2 (D): we have by induction hypothesis:[[

p2 repl
′
A1

]]
v′
∈ |A1 (C)⇒ A1 (B)|v

therefore if ψ ∈ |A (B)|v and θ ∈ |A1 (C)|v we get:[[
ψ
(
p2 repl

′
A1
θ
)]]

v′
∈ |A2 (B)|v

but the second induction hypothesis gives:[[
p1 repl

′
A2

]]
v′
∈ |A2 (B)⇒ A2 (C)|v

so that we have: [[
p1 repl

′
A2

(
ψ
(
p2 repl

′
A1
θ
))]]

v′
∈ |A2 (C)|v

and therefore: [[
λyz.p1 repl

′
A2

(
y
(
p2 repl

′
A1
z
))]]

v′
∈ |A (B)⇒ A (C)|v

similarly we have: [[
λyz.p2 repl

′
A2

(
y
(
p1 repl

′
A1
z
))]]

v′
∈ |A (C)⇒ A (B)|v

and therefore [[repl′A]]v′ ∈ |A (B)⇔ A (C)|v
• A (D) ≡ A1 (D) ∧A2 (D): we have by induction hypothesis:[[

p1 repl
′
A1

]]
v′
∈ |A1 (B)⇒ A1 (C)|v

therefore if ψ ∈ |A (B)|v we get: [[
p1 repl

′
A1

(p1 ψ)
]]
v′
∈ |A1 (C)|v

but the second induction hypothesis gives:[[
p1 repl

′
A2

]]
v′
∈ |A2 (B)⇒ A2 (C)|v

so that we have: [[
p1 repl

′
A2

(p2 ψ)
]]
v′
∈ |A2 (C)|v

and therefore: [[
λy.
〈
p1 repl

′
A1

(p1 y) ,p1 repl
′
A2

(p2 y)
〉]]

v′
∈ |A (B)⇒ A (C)|v

similarly we have: [[
λy.
〈
p2 repl

′
A1

(p1 y) ,p2 repl
′
A2

(p2 y)
〉]]

v′
∈ |A (C)⇒ A (B)|v

and therefore [[repl′A]]v′ ∈ |A (B)⇔ A (C)|v
• A (D) ≡ ∀η A0 (D): we do the case η ≡ t, the other ones being similar. The induction hypothesis implies that for any

M ∈ Λ: [[
p1 repl

′
A0

]]
v′]{t7→M} ∈ |A0 (B)⇒ A0 (C)|v]{t 7→M}

if ψ ∈ |A (B)|v and M ∈ Λ then:

[[ψ t]]v′]{t 7→M} = ψ (M) ∈ |A0 (B)|v]{t7→M}

so that we have: [[
p1 repl

′
A0

(ψ t)
]]
v′]{t 7→M} ∈ |A0 (C)|v]{t 7→M}

and therefore: [[
λyt.p1 repl

′
A0

(y t)
]]
v′
∈ |A (B)⇒ A (C)|v

14

similarly we have: [[
λyt.p2 repl

′
A0

(y t)
]]
v′
∈ |A (C)⇒ A (B)|v

and therefore [[repl′A]]v′ ∈ |A (B)⇔ A (C)|v
• A (D) ≡ ∀X A0 (D) or A (D) ≡ ∀bA0 (D): we treat only the case of X since the other one is similar. The induction

hypothesis implies that for any X ⊆ Λ:[[
repl′A0

]]
v′]{X 7→X} ∈ |A0 (B)⇔ A0 (C)|v]{X 7→X}

but since repl′A0
does not contain variable X we get:[[

repl′A0

]]
v′
∈ |A0 (B)⇔ A0 (C)|v]{X 7→X}

so we get: [[
repl′A0

]]
v′
∈ |∀X (A0 (B)⇔ A0 (C))|v

but since for any closed formulas with parameters D and D′ we have:

|∀X (D ∧D′)| = |∀XD ∧ ∀XD′|
|∀X (D ⇒ D′)| ⊆ |∀XD ⇒ ∀XD′|

we then obtain [[repl′A]]v′ ∈ |A (B)⇔ A (C)|v
Proof of lemma 12. •

[[
normrc(1)

]]
∈
∣∣∀π ¬∀i 0π\↓i

∣∣: let p ∈ Λ∗ and let ϕ ∈
∣∣∀i 0 p\↓i

∣∣. Then ϕ ([[z]]) = ϕ (0) ∈
∣∣0 p\↓0∣∣.

Since
[[

(0 p)
�]]

= [[app∗ (varz) p]] is in head normal form,
∣∣0 p\↓0∣∣ = |ff | and therefore ϕ (0) ∈ |ff |

•
[[
normrc(2)

]]
∈ |∀t (t↓⇒ t↓)|: immediate

•
[[
normrc(3)

]]
∈ |∀t∀u∀π ((t [u]π)↓⇒ ((λ.t) 〈u〉π)↓)|: let M,N ∈ Λ, p ∈ Λ∗, ϕ ∈ |(M [N] p)↓| and ψ ∈∣∣∀i ((λ.M) 〈N〉 p) \↓i

∣∣. We have to prove that:

[[ϕ (λi.ψ (s i))]] ∈ |ff |

but since ϕ ∈ |(M [N] p)↓|, this reduces to:

[[λi.ψ (s i)]] ∈
∣∣∀i (M [N] p) \↓i

∣∣
Let n ∈ N, we need to prove:

ψ (n + 1) ∈ |(M [N] p) \↓n|

But ψ (n + 1) ∈
∣∣((λ.M) 〈N〉 p) \↓n+1

∣∣ and:

[[app∗ (app (absM)N) p]] � [[app∗ (substMz (consnilN)) p]]

for weak head reduction and therefore: ∣∣((λ.M) 〈N〉 p) \↓n+1
∣∣ = |(M [N] p) \↓n|

Proof of lemma 13. • X: we have by hypothesis:

v′ (xX) ∈
∣∣RedCand (X)∣∣

v
= |RedCand (RCX)|v

therefore:
[[〈〈p1 (p1 xX) ,p2 (p1 xX)〉 ,p2 xX〉]]v′ = [[xX]]v′ ∈ |RedCand (RCX)|v

• T → U :
–
[[
isrc

(1)
T→U

]]
v′
∈ |∀π RCT→U (0π)|v: let p ∈ Λ∗, M ∈ Λ and ϕ ∈ |RCT (M)|v . The induction hypothesis gives:[[

isrc
(1)
U

]]
v′
∈ |∀π RCU (0π)|

therefore: [[
isrc

(1)
U (cons pM)

]]
v′
∈ |RCU (0 〈p,M〉)|

–
[[
isrc

(2)
T→U

]]
v′
∈ |∀t (RCT→U (t)⇒ t↓)|v: let M ∈ Λ and ϕ ∈ |RCT→U (M)|v . The induction hypothesis implies:[[

isrc
(1)
T nil

]]
v′
∈ |RCT (0 〈〉)|v = |RCT (0)|v

so since [[ϕ (varz)]] ∈ |RCT (0)⇒ RCU (M 〈0〉)|v we get:[[
ϕ (varz)

(
isrc

(1)
T nil

)]]
v′
∈ |RCU (M 〈0〉)|v

15

The second induction hypothesis implies:[[
isrc

(2)
U (appM (varz))

]]
v′
∈ |RCU (M 〈0〉)⇒M 〈0〉↓|v

and therefore: [[
isrc

(2)
U (appM (varz))

(
ϕ (varz)

(
isrc

(1)
T nil

))]]
v′
∈ |M 〈0〉↓|v

To conclude, we prove that |M 〈0〉↓|v ⊆ |M↓|v . This follows from
∣∣∀iM\↓i∣∣

v
⊆
∣∣∀iM 〈0〉\↓i∣∣

v
, which follows from

|M\↓n|v ⊆ |M 〈0〉\↓n|v . This last inclusion comes from the fact that if M does not reach a normal form in n steps,
then M 0 does not reach a normal form in n steps either.

–
[[
isrc

(3)
T→U

]]
v′
∈ |∀t∀u∀π (RCT→U (t [u]π)⇒ RCT→U (λ.t u π))|v: let M ∈ Λ, N ∈ Λ, p ∈ Λ∗, ϕ ∈

|RCT→U (M [N] p)|v , P ∈ Λ and ψ ∈ |RCT (P)|v . The induction hypothesis implies:[[
isrc

(3)
U MN (cons pP)

]]
v′
∈ |RCU (M [N] 〈p,P〉)⇒ RCU ((λ.M) 〈N〉 〈p,P〉)|v

We also have:
[[ϕPψ]] ∈ |RCU (M [N] p 〈P〉)|v

so since:

[[app (app∗ (substMz (consnilN)) p)P]] = [[app∗ (substMz (consnilN)) (cons pP)]]

we have:
|RCU (M [N] p 〈P〉)|v = |RCU (M [N] 〈p,P〉)|v

and therefore: [[
isrc

(3)
U MN (cons pP) (ϕPψ)

]]
v′
∈ |RCU ((λ.M) 〈N〉 〈p,P〉)|v

and finally since:

[[app∗ (app (absM)N) (cons pP)]] = [[app (app∗ (app (absM)N) p)P]]

we obtain: [[
isrc

(3)
U MN (cons pP) (ϕPψ)

]]
v′
∈ |RCU ((λ.M) 〈N〉 p 〈P〉)|v

• ∀X T :
–
[[
isrc

(1)
∀X T

]]
v′
∈ |∀π RC∀X T (0π)|v: let p ∈ Λ∗, X ⊆ Λ and ϕ ∈

∣∣RedCand (X)∣∣
v]{X 7→X}. Then by induction

hypothesis: [[
isrc

(1)
T p

]]
v′]{xX 7→ϕ}

∈ |RCT (0 p)|v]{X 7→X}

therefore: [[
λxX .isrc

(1)
T p

]]
v′
∈
∣∣RedCand (X)⇒ RCT (0 p)

∣∣
v]{X 7→X}

and finally: [[
λxX .isrc

(1)
T p

]]
v′
∈ |RC∀X T (0 p)|v

–
[[
isrc

(2)
∀X T

]]
v′
∈ |∀t (RC∀X T (t)⇒ t↓)|v: let M ∈ Λ and ϕ ∈ |RC∀X T (t)|v]{t 7→M}. The induction hypothesis

implies that for any X ⊆ Λ:[[
λxX .isrc

(2)
T

]]
v′
∈
∣∣RedCand (X)⇒ ∀t (RCT (t)⇒ t↓)

∣∣
v]{X 7→X}

therefore: [[
λxX .isrc

(2)
T

]]
v′
∈
∣∣∀X (RedCand (X)⇒ ∀t (RCT (t)⇒ t↓)

)∣∣
v

and so by lemma 11:[[
elimX 7→RedCand(X)⇒∀t(RCT (t)⇒t↓),⇓

(
λxX .isrc

(2)
T

)]]
v′
∈
∣∣RedCand (⇓)⇒ ∀t ((X 7→ RCT (t)

)
(⇓)⇒ t↓

)∣∣
v

and then by lemma 12:[[
elimX 7→RedCand(X)⇒∀t(RCT (t)⇒t↓),⇓

(
λxX .isrc

(2)
T

)
normrc t

]]
v]{t 7→M}

∈
∣∣(X 7→ RCT (t)

)
(⇓)⇒ t↓

∣∣
v]{t7→M}

On the other hand, since:
ϕ ∈

∣∣∀X (RedCand (X)⇒ RCT (t)
)∣∣
v]{t 7→M}

16

and since by lemma 11, for any M ∈ λ:[[
elimX 7→RedCand(X)⇒RCT (t),⇓

]]
v]{t7→M}

∈
∣∣∀X (RedCand (X)⇒ RCT (t)

)
⇒ RedCand

(
⇓
)
⇒
(
X 7→ RCT (t)

)
(⇓)
∣∣
v]{t 7→M}

we have: [[
elimX 7→RedCand(X)⇒RCT (t),⇓ ϕ normrc

]]
v]{t7→M}

∈
∣∣(X 7→ RCT (t)

)
(⇓)
∣∣
v]{t7→M}

and therefore we get:[[
elimX 7→RedCand(X)⇒∀t(RCT (t)⇒t↓),⇓

(
λxX .isrc

(2)
T

)
normrc t

(
elimX 7→RedCand(X)⇒RCT (t),⇓ ϕ normrc

)]]
v]{t7→M}

∈ |t↓|v]{t 7→M} = |M↓|

–
[[
isrc

(3)
∀X T

]]
v′
∈ |∀t∀u∀π (RC∀X T (t [u]π)⇒ RC∀X T (λ.t u π))|v: let M ∈ Λ, N ∈ Λ, p ∈ Λ∗, ϕ ∈

|RC∀X T (M [N] p)|v , X ⊆ Λ and ψ ∈
∣∣RedCand (X)∣∣

v]{X 7→X}. The induction hypothesis implies:[[
isrc

(3)
T MNp

]]
v]{xX 7→ψ}

∈ |RCT (M [N] p)⇒ RCT (λ.MNp)|v]{X 7→X}

but we have also:
[[ϕψ]] ∈ |RCT (M [N] p)|v]{X 7→X}

therefore: [[
isrc

(3)
T MNp (ϕψ)

]]
v]{xX 7→ψ}

∈ |RCT (λ.MNp)|v]{X 7→X}

and therefore: [[
λxX .isrc

(3)
T MNp (ϕxX)

]]
v′
∈
∣∣RedCand (X)⇒ RCT (λ.MNp)

∣∣
v]{X 7→X}

and since this holds for any X ⊆ Λ we obtain:[[
λxX .isrc

(3)
T MNp (ϕxX)

]]
v′
∈ |RC∀X T (λ.MNp)|v

Proof of theorem 2. • Γ ` m : U : the hypothesis gives:

v (yU) ∈ |RCU (tU)|v
but since

[[
subst (var (sm z))z ~tΓ

]]
v

= [[tU
�]]v we have:∣∣RCU (m [~tΓ])∣∣v = |RCU (tU)|v

• Γ ` λ.M : U → T : let M ∈ Λ and ϕ ∈ |RCU (M)|v . If we write N =
[[
substM� (sz)

(
shift∗ ~tΓ

)]]
v
∈ Λ, then

lemma 13 implies: [[
isrc

(3)
T NMnil

]]
v
∈ |RCT (N [M] 〈〉)⇒ RCT ((λ.N)M 〈〉)|v

On the other hand, the induction hypothesis implies:[[
adeqΓ,U`M :T

]]
v]{tU 7→M;xU 7→ϕ}

∈
∣∣RCT (M [

~tΓ,U
])∣∣

v]{tU 7→M}

but since we have by a version of lemma 1 in system ΛTbbc:[[
(N [M] 〈〉)�

]]
v

=
[[
subst

(
substM� (sz)

(
shift∗ ~tΓ

))
z (consnilM)

]]
v

=
[[
substM� z ~tΓ,U

]]
v]{tU 7→M}

=
[[(
M
[
~tΓ,U
])�]]

v]{tU 7→M}

we also have:
|RCT (N [M] 〈〉)|v =

∣∣RCT (M [
~tΓ,U
])∣∣

v]{tU 7→M}

and therefore:[[
isrc

(3)
T

(
substM� (sz)

(
shift∗ ~tΓ

))
tU nil adeqΓ,U`M :T

]]
v]{tU 7→M;xU 7→ϕ}

∈ |RCT ((λ.N)M)|v

17

• Γ `M N : T : the first induction hypothesis implies:[[
adeqΓ`M :U→T

(
substN� z ~tΓ

)]]
v
∈
∣∣RCU (N [~tΓ])⇒ RCT

(
M
[
~tΓ
] 〈
N
[
~tΓ
]〉)∣∣

v

and the second induction hypothesis gives:

[[adeqΓ`N :U]]v ∈
∣∣RCU (N [~tΓ])∣∣v

so since: [[
app

(
substM� z ~tΓ

) (
substN� z ~tΓ

)]]
v

=
[[
subst (appM�M�)z ~tΓ

]]
v

we obtain: [[
adeqΓ`M :U→T

(
substN� z ~tΓ

)
adeqΓ`N :U

]]
v
∈
∣∣RCT ((M 〈N〉) [~tΓ])∣∣v

• Γ `M : ∀X T : let X ⊆ Λ and ϕ ∈
∣∣RedCand (X)∣∣

v]{X 7→X}. Then the induction hypothesis gives immediately:

[[adeqΓ`M :T]]v]{X 7→X;xX 7→ϕ} ∈
∣∣RCT (M [

~tΓ
])∣∣

v]{X 7→X;xX 7→ϕ}

• Γ `M : T {U/X}: the induction hypothesis gives:

[[adeqΓ`M :∀X T]]v ∈
∣∣∀X (RedCand (X)⇒ RCT

(
M
[
~tΓ
]))∣∣

v

therefore lemma 11 implies:[[
elimX 7→RedCand(X)⇒RCT (M[~tΓ]),RCU

adeqΓ`M :∀X T

]]
v
∈
∣∣RedCand (RCU)⇒

(
X 7→ RCT

(
M
[
~tΓ
]))

(RCU)
∣∣
v

and since by lemma 13 we have:
[[isrcU]]v ∈ |RedCand (RCU)|v

and moreover for any M : (
X 7→ RCT (M)

)
(RCU) ≡ RCT{U/X} (M)

we obtain: [[
elimX 7→RedCand(X)⇒RCT (M[~tΓ]),RCU

adeqΓ`M :∀X T isrcU

]]
v
∈
∣∣RCT{U/X} (M [

~tΓ
])∣∣

v

