
HAL Id: hal-01766881
https://hal.science/hal-01766881v1

Submitted on 14 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid realizability for intuitionistic and classical choice
Valentin Blot

To cite this version:
Valentin Blot. Hybrid realizability for intuitionistic and classical choice. 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, Jul 2016, New York, United States.
�10.1145/2933575.2934511�. �hal-01766881�

https://hal.science/hal-01766881v1
https://hal.archives-ouvertes.fr

Hybrid realizability for intuitionistic and classical choice

Valentin Blot
University of Bath
v.blot@bath.ac.uk

Abstract
In intuitionistic realizability like Kleene’s or Kreisel’s, the axiom of
choice is trivially realized. It is even provable in Martin-Löf’s intu-
itionistic type theory. In classical logic, however, even the weaker
axiom of countable choice proves the existence of non-computable
functions. This logical strength comes at the price of a compli-
cated computational interpretation which involves strong recursion
schemes like bar recursion. We take the best from both worlds and
define a realizability model for arithmetic and the axiom of choice
which encompasses both intuitionistic and classical reasoning. In
this model two versions of the axiom of choice can co-exist in a
single proof: intuitionistic choice and classical countable choice.
We interpret intuitionistic choice efficiently, however its premise
cannot come from classical reasoning. Conversely, our version of
classical choice is valid in full classical logic, but it is restricted
to the countable case and its realizer involves bar recursion. Hav-
ing both versions allows us to obtain efficient extracted programs
while keeping the provability strength of classical logic.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Denotational semantics; F.4.1 [Mathe-
matical Logic]

1. Introduction
Realizability appeared in [16] as a formal account of the Brouwer-
Heyting-Kolmogorov interpretation of logic, leading to the Curry-
Howard isomorphism between intuitionistic proofs and purely
functional programs. In [11], Griffin used control operators to ex-
tend the isomorphism to classical logic. While the first realizability
interpretations of classical logic relied on a negative translation fol-
lowed by an intuitionistic realizability interpretation, Griffin’s dis-
covery can be exploited to give a direct realizability interpretation
of classical logic. This allowed Krivine to interpret second-order
Peano arithmetic and the axiom of dependent choice in an un-
typed λ-calculus extended with the call/cc operator [17]. In the
work presented here, we interpret first-order classical arithmetic
and the axiom of countable choice in a model of the simply-typed
λµ-calculus [20], an extension of λ-calculus with control features.

The axiom of choice is ubiquitous in mathematics and is often
used without even noticing. Therefore, having a computational in-
terpretation of this axiom is essential to the extraction of programs
from a wide range of mathematical proofs. While in usual inter-

c© 2016 by Valentin Blot.
This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

LICS ’16, July 05-08, 2016, New York, NY, USA
ACM 978-1-4503-4391-6/16/07.
http://dx.doi.org/10.1145/2933575.2934511

pretations of intuitionistic logic the axiom of choice is trivially re-
alized, interpreting even its countable version in a classical setting
requires the use of strong recursion schemes, like the bar recursion
operator defined in [23] in the framework of Gödel’s Dialectica in-
terpretation. The requirement for such a strong recursion principle
can be explained by the much stronger provability strength of clas-
sical choice. For instance, since any formula can be reflected by a
boolean in classical logic, the axiom of countable choice can build
the characteristic function of any formula with integer parame-
ters. In particular, one can choose formulas encoding non-decidable
predicates and prove the existence of non-computable functions.

Variants of bar recursion were used in [2, 3] to interpret the
negative translation of the axiom of choice in an intuitionistic
setting, and therefore classical arithmetic with countable choice
through Gödel’s negative translation. In [8], it was shown that
bar recursion can be used in a language with control operators
to interpret directly the axiom of countable choice in a classical
setting. In the present work we extend this approach, adding strong
existentials to the realizability interpretation. While these strong
existentials are known to raise issues in the presence of control
operators [12], our proof system allows for a simple criterion which
forbids classical reasoning on these, ensuring the correctness of
our computational interpretation in λµ-calculus. Conversely, weak
existentials (which, in our setting, are double negations of the
strong ones) work well with control operators, but are less efficient
from the computational perspective because their interpretations
can hide some backtracks.

Rather than having to choose between an efficient system which
is restricted to intuitionistic logic or a full classical system with a
complex computational interpretation, we take the best from both
worlds and work within classical logic with strong existential quan-
tifications, using their weak counterparts when classical reasoning
is needed. In a proof where the excluded middle is never used on
some existential formula, this existential can be strong and benefit
from an efficient interpretation (in particular, the axiom of choice
is trivially realized in that case). If in the same proof some classi-
cal reasoning is performed on another existential formula, then that
existential must be weak, and while we can still use the axiom of
countable choice on it, its computational interpretation is given by
bar recursion and can involve a costly recursion.

We validate our model with an extraction result from proofs of
Π0

2 formulas with either a strong or a weak existential. The case of a
strong existential is immediate by definition of its semantics, while
the case of a weak existential relies on Friedman’s trick which, in
direct interpretations of classical logic, amounts to a non-empty
realizability interpretation of the false formula. Our system allows
for extraction of more efficient programs than with the usual direct
or indirect interpretations of classical logic, provided some care is
taken to choose strong existentials whenever possible.

The combination of strong existentials and classical logic was
also investigated in [13], where strong existentials were weakened
enough to make them compatible with classical logic while keeping

the validity of countable and dependent choices. The goal of [13]
was to find the minimal restriction of strong existentials which
makes them compatible with control operators. This was achieved
by an insightful analysis of proofs leading to the definition of
the negative-elimination-free ones, but came at the expense of a
complex computational interpretation, similarly to what happens
with bar recursion. In the present work, we have a different goal
and achieve it by following a different path: we keep the full power
of strong existentials (and therefore their simple computational
interpretation) and use bar recursion to computationally interpret
the classical axiom of countable choice with weak existentials.
In our goal of extraction of efficient programs, the presence of
strong existentials with their full power and simple interpretation
provides more efficient computational interpretations of classical
proofs than [13].

In section 2 we define the programming language System µTbr
in which proofs of our system are interpreted, and present the cat-
egorical models of this language. In section 3 we present our de-
duction system, which is a hybrid system allowing both intuition-
istic and classical reasoning. We discuss the provability strength of
this system and in particular how it can interpret both intuitionis-
tic arithmetic with choice and classical arithmetic with countable
choice. Then we prove that the terms interpreting our proofs are
well-typed in System µTbr . Finally, we present our realizability in-
terpretation in section 4, we prove its adequacy for our deduction
system, and we validate our computational interpretation with two
extraction results: for strong and weak existentials.

2. λµ-calculus and categories of continuations
In this section we define the programming language in which the
proofs will be interpreted. This language is an extension of Gödel’s
system T with the control features of λµ-calculus [20] and bar
recursion. We call this language System µTbr . In order to have
adequacy of the bar recursion operator for our variant of double-
negation shift, we do not work directly in System µTbr but in
a model of it. We therefore recall the definition of categories of
continuations [14], which are the universal models of λµ-calculus.

2.1 System µTbr

λµ-calculus has been introduced in [20] to provide a Curry-Howard
correspondence for classical natural deduction. We use here a par-
ticular λµ-theory with natural numbers and recursion that we call
System µT . The types of System µT are built from a single base
type for natural numbers, the empty type, product and arrow types:

T,U ::= I | 0 | T × U | T → U

The terms are given along with the typing rules in figure 1, and the
set Cst of constants for System µT are:

n : I succ : I → I rec : T → (I → T → T)→ I → T

The equational theory of System µT is given in figure 2, where
both sides of the equations must be well-typed.

In order to define the bar recursion operator, we need to be
able to manipulate finite lists of elements. There are several ways
to implement these in System µT . The particular implementation
chosen is irrelevant to our interpretation, so we fix one particular
encoding and write T � for the type of lists of elements of type T .
We also define some notations for the operations on finite lists: we
write ε : T � for the empty list, M ∗ N : T � for the list obtained
by appending N : T to M : T �, |M | : I for the size of M : T �

and M @N : I → T for the infinite extension of M : T � with the
values from N : I → T , i.e.:

(ε ∗M0 ∗ . . . ∗Mn−1 @N)m =

{
Mm if m < n

N m otherwise

Given this fixed implementation of lists in System µT , we can now
extend it to System µTbr by adding the bar recursion operator:

brec : (I × (T → 0)→ I → T)→ ((I → T)→ 0)→ T � → 0

together with its defining equation:

brecM N P = N (P @M 〈|P | , λx.brecM N (P ∗ x)〉)
We choose to present System µTbr as an equational theory for
simplicity, but one can define an abstract machine (as was done
in [8]) for which computational adequacy holds: for any termM : I
of System µTbr and any n ∈ N, M = n in the equational theory if
and only if M reduces to n in the abstract machine.

2.2 Categories of continuations
As stated in the introduction, the axiom of countable choice to-
gether with classical logic proves the existence of non-computable
functions. Therefore, our language of realizers needs to contain
such functions. While in [2] this was achieved by extending the
language with infinite terms, we work as in [3] in a model of our
programming language. Just like cartesian closed categories are the
universal models of λ-calculus, categories of continuations [14] are
the universal models of λµ-calculus. A category of continuations is
a full subcategory of a distributive category with exponentials of a
fixed object:

Definition 1 (Category of continuations). Let C be a distributive
category and let R be an object of C such that all exponentials RA

exist. Then the full subcategory RC consisting of the objects RA is
called a category of continuations.

We now fix a category of continuations RC together with an
object JIK ∈ Ob (C) and describe the semantics of System µTbr
in RC . The object JIK is the negative interpretation of the type
I , and from that parameter every type of System µTbr is given
both a negative interpretation JT K ∈ Ob (C) and a positive one
[T]

∆
= RJT K ∈ Ob

(
RC
)

by:

J0K ∆
= 1 JT × UK ∆

= JT K + JUK JT → UK ∆
= [T]× JUK

where 1, + and × correspond to the distributive structure of C.
We suppose a given interpretation [c] ∈ RC (1, [T]) for each
c : T ∈ Cst, from which we can define the interpretation of any
term of System µTbr:

[x1 : T1, . . . , xn : Tn `M : U | α1 : V1, . . . , αm : Vm]

∈ RC ([T1]× . . .× [Tn], [U]

&

([V1]

&

. . .

&

[Vm]))

where RA

&

RB
∆
= RA×B is a binoidal functor on RC (see [22]

for details).
We make some further assumptions on RC . First, the equations

for the constants are verified in RC , and therefore the model is
sound: ifM = N in System µTbr , then [M] = [N] inRC . Second,
the model is complete at type I: if [M] = [N] ∈ RC (1, [I]), then
M = N in System µTbr . The model will further be required to
satisfy sequence internalization (definition 2) and continuity (def-
inition 3), but these requirements will be discussed in section 4.2,
along with adequacy of bar recursion for classical choice.

We now briefly give two running examples of models of System
µTbr satisfying soundness and adequacy at type I .

• The first one is a category of Scott domains. If we choose C to be
the category of unpointed Scott domains (i.e. algebraic directed
complete partial orders in which any two compatible elements
have a lowest upper bound, see e.g. [1] for the definitions)
and continuous functions, R = N ∪ {⊥} with the ordering
a ≤ b ⇔ a = b or a = ⊥, which is the usual domain of
natural numbers, and JIK = {⊥}, then RC is a category of

~x : ~T , y : V ` y : V | ~α : ~U
(c:V ∈Cst)

~x : ~T ` c : V | ~α : ~U

~x : ~T , y : V `M : W | ~α : ~U

~x : ~T ` λy.M : V →W | ~α : ~U

~x : ~T `M : V | ~α : ~U ~x : ~T ` N : W | ~α : ~U

~x : ~T ` 〈M,N〉 : V ×W | ~α : ~U

~x : ~T `M : V | β : V, ~α : ~U

~x : ~T ` [β]M : 0 | β : V, ~α : ~U

~x : ~T `M : V →W | ~α : ~U ~x : ~T ` N : V | ~α : ~U

~x : ~T `MN : W | ~α : ~U

~x : ~T `M : V1 × V2 | ~α : ~U

~x : ~T ` πiM : Vi | ~α : ~U

~x : ~T `M : 0 | β : V, ~α : ~U

~x : ~T ` µβ.M : V | ~α : ~U

Figure 1. Typing rules for simply-typed λµ-calculus

(λx.M)N = M {N/x} λx.M x = M (x /∈ FV (M)) (µα.M)N = µα.M {[α] N/ [α] }
πi 〈M1,M2〉 = Mi 〈π1 M,π2 M〉 = M πi (µα.M) = µα.M {[α] πi / [α] }

[α] µβ.M = M {α/β} µα. [α] M = M (α /∈ FV (M)) µα.M = M { / [α] } (α : 0)

succ n = n + 1 succ (µα.M) = µα.M {[α] succ () / [α] }
recM N 0 = M recM N n + 1 = Nn (recM N n) recM N (µα.P) = µα.P {[α] recM N () / [α] }

Figure 2. Equational theory of System µT

Scott domains and a category of continuations. The objects of
RC being pointed, we can interpret general fixpoints in RC , so
in particular we can interpret bar recursion.

• The second example is the category of Hyland-Ong games [15]
in its unbracketed version [18], which is known to interpret
control operators. If C is the category of finite families of arenas
and strategies, R is the singleton family of the one-move arena
and JIK is the singleton family of the arena with countably
many moves then RC is a category of continuations which
is isomorphic to the category of unbracketed games (see [6],
sections 3.2.2 and 4.4.1). This category is cpo-enriched and can
therefore also interpret bar recursion.

From now on we will drop the interpretation brackets for terms
and use the syntax of λµ-calculus to manipulate morphisms of
RC . We will allow weakening without mentioning it, that is,
the injection from the homset RC ([T], [U]

&

[V]) to the homset
RC ([T]× [T ′], [U]

&

([V]

&

[V ′])) obtained by precomposition
with the left projection and postcomposition with [U]

&

wl[V],[V ′]
(with the notations of [22]) will be viewed as an inclusion:

RC ([T], [U]

&

[V]) ⊆ RC
(
[T]×

[
T ′
]
, [U]

&(
[V]

&[
V ′
]))

3. Classical logic and the axiom of choice
In this section, we define our logical framework, which is based
on classical logic with both strong and weak existentials (the latter
being the double negations of the former). Formulas are divided
into positive and negative, with classical reasoning being restricted
to the negative ones. This is achieved by considering two-sided
sequents in which at most one positive formula can appear on the
right hand side, in principal position.

3.1 The proof system
Our logic is multi-sorted, with one base sort ι for natural numbers
together with higher-order sorts built on it with the arrow construc-
tor:

σ, τ ::= ι | σ → τ

There is an infinite set of first-order variables for each sort, and
first-order terms are either variables, well-sorted applications or

constants:

tσ, uτ ::= xσ | tσ→τ uσ | cσ

Since we are in a multi-sorted setting, we can have constants for
combinators, natural numbers constructors, and recursor:

cσ ::= s(σ→τ→ν)→(σ→τ)→σ→ν | kσ→τ→σ

| 0ι | Sι→ι | recσ→(ι→σ→σ)→ι→σ

We can write every term of Gödel’s system T with these. In the
following, we will often omit the sorting information of the first-
order terms.

Since our logic encompasses both intuitionistic and classical
proofs, we define both positive and negative formulas, by mutual
induction. Full classical logic can be used on negative formulas,
while the positive ones will be restricted to intuitionistic reasoning.
Because we will perform a direct interpretation in System µTbr
which has control features, the atomic formulas (inequalities be-
tween first-order terms of the same sort, and falsity) will be neg-
ative. Conjunctions of negative formulas, universal quantifications
on negative formulas and implications with a negative conclusion
are negative, while existentials of any formula are positive, as well
as conjunctions with a positive component, implications with a pos-
itive conclusion and universal quantifications of positive formulas:

A−, B− ::= tσ 6=σ u
σ | ⊥ | A⇒B− | A− ∧B− | ∀xσA−

A+, B+ ::= A⇒B+ | A+ ∧B | A ∧B+ | ∀xσA+ | ∃xσA

Taking into account formulas on which classical reasoning is al-
lowed as well as formulas which are restricted to intuitionistic rea-
soning relies on a distinction between positive and negative formu-
las introduced in [7] and related to proof systems LU [10], PCL [19]
and LC [9] (see section 5.2).

Negation of a formula A is encoded as ¬A ∆
= A⇒⊥ (hence

it is always negative) and equality is encoded as tσ =σ uσ
∆
=

¬ (tσ 6=σ u
σ). We will define our interpretation of proofs in Sys-

tem µTbr by directly annotating them with terms of System µTbr .
In order to annotate the elimination rule of universal quantification
and the introduction rule of existential quantification, we need to
embed first-order terms into System µTbr . First, we interpret the

` λp.p : x = x | β : S 0 = 0, α : ∃x (x = 0)

` λxp.p : ∀x (x = x) | β : S 0 = 0, α : ∃x (x = 0)

` (λxp.p) 0 : 0 = 0 | β : S 0 = 0, α : ∃x (x = 0)

`
〈
0, (λxp.p) 0

〉
: ∃x (x = 0) | β : S 0 = 0, α : ∃x (x = 0)

` [α]
〈
0, (λxp.p) 0

〉
: ⊥ | β : S 0 = 0, α : ∃x (x = 0)

` µβ. [α]
〈
0, (λxp.p) 0

〉
: S 0 = 0 | α : ∃x (x = 0)

`
〈
1, µβ. [α]

〈
0, (λxp.p) 0

〉〉
: ∃x (x = 0) | α : ∃x (x = 0)

` [α]
〈
1, µβ. [α]

〈
0, (λxp.p) 0

〉〉
: ⊥ | α : ∃x (x = 0)

` µα. [α]
〈
1, µβ. [α]

〈
0, (λxp.p) 0

〉〉
: ∃x (x = 0) |

Figure 3. An incorrect proof

sorts of the logic as types of System µTbr:

ι∗
∆
= I (σ → τ) ∗

∆
= σ∗ → τ∗

Then, assuming that each first-order variable is a variable of System
µTbr , we map each first-order term to a term of System µTbr:

x∗
∆
= x (t u) ∗

∆
= t∗u∗ s∗

∆
= λxyz.x z (y z)

k∗
∆
= λxy.x 0∗

∆
= 0 S∗

∆
= succ rec∗

∆
= rec

Using this mapping, we define our proof system in which every
derivation is annotated with a term of System µTbr . The sequents
can have several formulas on the right, one of which is principal:

p1 : A1, . . . , pm : Am `M : C | α1 : B1
−, . . . , αn : Bn

−

The deduction rules are given in figure 4, and the set Ax of ax-
ioms is given in figure 5. The axiom (∃xι¬A⇒∀xιA)⇒¬¬∀xιA
(which is a variant of the usual double-negation shift) will allow us
to derive the classical axiom of countable choice from its intuition-
istic version in the next section. The meaning of the µ-variable κ
of type I will be explained in section 4.

The handling of positive and negative formulas is simplified by
our use of multi-conclusioned sequents with a principal formula
on the right of each sequent. All formulas on the right-hand side
of a sequent except the principal one must be negative, while
the principal formula and the formulas on the left-hand side of
a sequent can be either positive or negative. In particular, right
contraction is forbidden on positive formulas, which corresponds
to allowing only intuitionistic reasoning on these. This should be
put in parallel with our use of λµ-calculus, in which there is a
principal type on the right-hand side of a typing judgment, which is
the type of the current term (the other types on the right-hand side
are the types of the continuations variables). We give in figure 3 the
implementation of the counter-example of [12] in our setting. An
existential formula appears on the right-hand side in a non-principal
position, and therefore this proof is invalid in our system. We will
see at the end of section 4.2 that accepting such a proof in our
system would lead to a degenerated realizability model.

3.2 Proof-theoretic strength
In this section, we discuss some properties of our hybrid proof
system and relate it to more usual theories.

Non-extensional equality The equality in our system being de-
fined by Leibniz’s axiom schema, we easily have the following
facts:

xσ→τ =σ→τ y
σ→τ ⇒ ∀zσ (xσ→τ zσ =τ y

σ→τ zσ)

xσ =σ y
σ ⇒ ∀zσ→τ (zσ→τ xσ =τ z

σ→τ yσ)

The following principle of extensionality:

∀zσ (xσ→τ zσ =τ y
σ→τ zσ)⇒ xσ→τ =σ→τ y

σ→τ

doesn’t hold in general, since it is refuted in intensional models of
system T, like game semantics. However, there exist extensional
models of system T, like the category of Scott domains.

Primitive inequality We chose a primitive inequality rather than
equality in order to be able to realize Leibniz’s axiom schema.
This technique introduced by Krivine is now common in classical
realizability [17]. For the restriction of our system to negative
formulas this does not change provability: a negative formula with
equalities and/or inequalities is provable in our system (through
the encoding t = u ≡ ¬t 6= u) if and only it is provable in
the same system with negative equalities (through the encoding
t 6= u ≡ ¬t = u). In particular, since in the classical fragment of
our system (see the end of this section) every formula is negative,
provability isn’t changed for that fragment. However, for the full
system and the intuitionistic subsystem, things are less clear and
we leave this to future work.

Ex falso quodlibet The formula⊥⇒A is provable in our system
for any formulaA. For negative formulas, we have the simple proof
` λp.µα.p : ⊥ ⇒ A− |. For positive formulas, this proof is not
correct because α : A+ is forbidden in our system. Nevertheless,
there is still a proof of ⊥ ⇒ A+, by induction on A: if we have
`M : ⊥⇒A | and ` N : ⊥⇒B+ |, then:

` λpq.N p : ⊥⇒A⇒B+ | ` λp. 〈x,M p〉 : ⊥⇒ ∃xA |
` λp. 〈N p,M p〉 : ⊥⇒B+ ∧A | ` λpx.N p : ⊥⇒ ∀xB+ |
` λp. 〈M p,N p〉 : ⊥⇒A ∧B+ |

Intuitionistic arithmetic with choice The connection with intu-
itionistic logic is rather direct, since taking the set of rules of fig-
ure 4 with sequents restricted to the form ~p : ~A ` M : B |
gives precisely intuitionistic logic. In particular, with that form of
sequents, the rules for⊥ are removed, forbidding right contraction.
Remark that in that case, ⊥⇒ A is no longer provable so we have
in fact only minimal logic. To get back full intuitionistic logic, we
could have added⊥⇒ x 6= y as an axiom (which is realized in the
model of section 4 by λp.p), so⊥⇒A would have an intuitionistic
proof for any A, by induction on A. Considering its restriction to
the intuitionistic fragment of the system, our realizability interpre-
tation is similar to Kreisel’s modified realizability such as presented
in [5] for minimal logic, the main difference being that our inter-
pretation is performed in the meta-theory rather than presented in
the form of a logical translation.

When it comes to arithmetic, the set of axioms of figure 5 minus
(∃xι¬A⇒∀xιA)⇒ ¬¬∀xιA is almost the set of axioms of in-
tuitionistic arithmetic in higher types with choice. The only differ-
ence is that we have a primitive inequality, and our Leibniz’s axiom
schema concerns inequality. As stated above, the exact connection
with intuitionistic arithmetic with a primitive equality is still to be
investigated.

Classical arithmetic with countable choice Proofs of classical
logic can be embedded in our system through a simple transforma-
tion of formulas: we transform every existential ∃xA of classical
logic into a weak existential ∃cxA ∆

= ¬¬∃xA in our system and
work in the following restricted syntax of formulas:

Ac, Bc ::= t 6= u | ⊥ | Ac⇒Bc | Ac ∧Bc | ∀xAc | ∃cxAc

The negativity constraints on the right-hand side of our sequents
are then automatically satisfied since Ac is always negative. Since
only existential quantifications are modified by this transformation,
classical logic can be embedded in our system if we prove that

~p : ~A, q : C ` q : C | ~α : ~B−
(M :C ∈Ax)

~p : ~A `M : C | ~α : ~B−

~p : ~A, q : C `M : D | ~α : ~B−

~p : ~A ` λq.M : C⇒D | ~α : ~B−

~p : ~A `M : C | ~α : ~B− ~p : ~A ` N : D | ~α : ~B−

~p : ~A ` 〈M,N〉 : C ∧D | ~α : ~B−

~p : ~A `M : C− | β : C−, ~α : ~B−

~p : ~A ` [β]M : ⊥ | β : C−, ~α : ~B−

~p : ~A `M : C⇒D | ~α : ~B− ~p : ~A ` N : C | ~α : ~B−

~p : ~A `MN : D | ~α : ~B−

~p : ~A `M : C1 ∧ C2 | ~α : ~B−

~p : ~A ` πiM : Ci | ~α : ~B−

~p : ~A `M : ⊥ | β : C−, ~α : ~B−

~p : ~A ` µβ.M : C− | ~α : ~B−

~p : ~A `M : C | ~α : ~B−
(x/∈FV(~A, ~B−))

~p : ~A ` λx.M : ∀xC | ~α : ~B−

~p : ~A `M : ∀xC | ~α : ~B−

~p : ~A `M t∗ : C {t/x} | ~α : ~B−

~p : ~A `M : A {t/x} | ~α : ~B−

~p : ~A ` 〈t∗,M〉 : ∃xA | ~α : ~B−

~p : ~A, q : A ` N : C | ~α : ~B− ~p : ~A `M : ∃xA | ~α : ~B−
(M/∈FV(~A,C, ~B−))

~p : ~A ` (λxq.N) (π1 M) (π2 M) : C | ~α : ~B−

Figure 4. Deduction rules of our proof system

λp.p : x = x λp.p : ¬A⇒A {y/x}⇒ x 6= y

λp.p : sx y z = x z (y z) [κ] 0 : Sx 6= 0

λp.p : kx y = x rec : A {0/x}⇒ ∀xι (A⇒A {Sx/x})⇒∀xιA
λp.p : recx y 0 = x λp. 〈λx.π1 (p x) , λx.π2 (p x)〉 : ∀xσ∃yτA⇒∃vσ→τ∀xσA {v x/y}
λp.p : recx y (S z) = y z (recx y z) λpq.brec p q ε : (∃xι¬A⇒∀xιA)⇒¬¬∀xιA

Figure 5. Axioms of our proof system

the usual rules of existential quantification are admissible for weak
existentials ∃c. For the introduction rule:

if ~p : ~Ac `M : Cc {t/x} | ~α : ~Bc

then ~p : ~Ac `λq.q 〈t∗,M〉 : ∃cxCc | ~α : ~Bc

and for the elimination rule:

if ~p : ~Ac, q : Cc `M : Dc | ~α : ~Bc

and ~p : ~Ac `N : ∃cxCc | ~α : ~Bc

then

~p : ~Ac ` µβ.N (λr. [β] (λxq.M) (π1 r) (π2 r)) : Dc | ~α : ~Bc

which is valid since Dc is negative.
The usual axioms of classical arithmetic are all satisfied (in

particular, since every Ac is negative, provability is not changed
by our use of a primitive inequality, see above). The last require-
ment is then that the axiom of countable choice ∀xι∃cyσA ⇒
∃cvι→σ∀xιA {v x/y} is provable in our system:

Lemma 1. The following formula:

∀xι¬¬∃yσA⇒¬¬∃vι→σ∀xιA {v x/y}

is provable in our system.

Proof. We will derive it from the two axioms:

(∃xι¬B⇒∀xιB)⇒¬¬∀xιB
∀xι∃yσA⇒∃vι→σ∀xιA {v x/y}

As stated above ⊥ ⇒ ∀xιB is provable, therefore we can derive
¬∃xι¬B⇒¬¬∀xιB from the first axiom. We also have:

` λpq.p (π1 q) (π2 q) : ∀xι¬¬B⇒¬∃xι¬B |

so we get ∀xι¬¬B ⇒ ¬¬∀xιB, which is usually called double-
negation shift. Next, we instantiate B with ∃yσA to get:

∀xι¬¬∃yσA⇒¬¬∀xι∃yσA

Finally, the second axiom entails:

¬¬∀xι∃yσA⇒¬¬∃vι→σ∀xιA {v x/y}

so we get ∀xι¬¬∃yσA⇒¬¬∃vι→σ∀xιA {v x/y}, which was our
goal.

Remark that the axiom (∃xι¬B⇒∀xιB) ⇒ ¬¬∀xιB with
B negative is actually derivable in our system, as is the double-
negation shift for negative formulas. In the lemma, however, we in-
stantiate it with B ≡ ∃yσA, which is a positive formula. Therefore
we cannot use the classical proof, since control operators cannot be
used on strong existentials, as was demonstrated in [12].

For simplicity reasons, we did not consider here the axiom
of dependent choice. Realizing classical dependent choice in the
current setting would be possible with the slightly different bar
recursion operator of [7], but the version of the double-negation
shift that we use here is not sufficient to derive classical dependent
choice from intuitionistic choice because it allows shifting double
negations over first-order quantifications of type ι only.

The embedding of classical proofs in our system that we just
described is rough and doesn’t exploit the existence of strong ex-
istentials. The purpose of our hybrid system being to mix strong
and weak existentials in a single proof, we now explain how this is
possible. For example, one lemma could state:

∃uι→ι→ι∃vι→ι→ι∀xι∀yι

y = (ux y)× x+ (v x y)

∧
v x y < x

with appropriate encodings of multiplication, addition and ordering
using equality and System T. This lemma is clearly provable con-
structively, hence the strong existentials obtained using intuitionis-
tic choice. Another lemma could be:

∃cuι→ι∀xι (ux = 0⇔ ∃y1 . . . ykP (y1, . . . , yk) = x)

for some polynomial P with coefficients in N and such that
{P (n1, . . . , nk) | n1, . . . , nk ∈ N} is undecidable (such polyno-
mial exists by Matiyasevich’s negative answer to Hilbert’s tenth
problem). This lemma is provable using classical logic and the
axiom of countable choice, which is why we only have a weak
existential. Nevertheless, these two lemmas can be used in a single
proof. When using the first lemma, the efficient realizer of intu-
itionistic choice will perform the computations, while when using
the second, bar recursion will be used and unbounded search may
be performed. In order to make weak and strong existentials inter-
act, it may be necessary to turn a strong existential into a weak one,
which is possible since we have ` λpq.q p : ∃xA⇒ ∃cxA |. By
doing that the computational efficiency is not lost, since we only
encapsulate the strong existential into a weak one with possibilities
of backtrack which are not used.

We now explain briefly why the interpretation of a strong ex-
istential is more efficient that the interpretation of a weak one.
The first difference is on the types of the interpretation: while
(∃xσA) ∗ = σ∗ ×A∗, the type interpretation of the corresponding
weak existential is:

(∃cxσA) ∗ = ((∃xσA⇒⊥)⇒⊥) ∗ = (σ∗ ×A∗ → 0)→ 0

The second difference concerns the computational behavior of the
respective interpretations. On one hand, the interpretation of a
strong existential consists of a witness (of type σ∗) and a proof
(of type A∗) which are independent because of RC’s cartesianness.
On the other hand, the interpretation of a weak existential takes an
argument φ of type σ∗×A∗ → 0 and can call it several times (this
is called backtracking). In the general case, the arguments supplied
to φ in a given call can even depend on the outcome of the previous
calls. Therefore, using strong existentials whenever possible gives
an interpretation that may be more efficient than the usual double-
negation interpretation.

3.3 Soundness
We prove in this section that the System µTbr terms annotating the
proofs are well-typed. We first map every formula A to a type A∗

of System µTbr:

(t 6= u) ∗
∆
= 0 ⊥∗ ∆

= 0

(A⇒B) ∗
∆
= A∗ → B∗ (A ∧B) ∗

∆
= A∗ ×B∗

(∀xσA) ∗
∆
= σ∗ → A∗ (∃xσA) ∗

∆
= σ∗ ×A∗

Then we prove that the term associated to a derivation has the type
associated to the conclusion of the derivation. Note the presence of
a µ-variable κ, which is there for extraction purposes. Its meaning
will be explained in section 4.

Proposition 1 (Soundness). If a derivation has conclusion:

~p : ~A `M : C | ~α : ~B−

and if FV
(
~A,C, ~B−

)
= ~x~σ , then there is a corresponding typing

derivation of M :

~x : ~σ∗, ~p : ~A∗ `M : C∗ | ~α : ~B−∗, κ : I

Proof. First, we prove that for any first-order term tτ with FV (t) =
~x~σ there is a typing derivation:

~x : ~σ∗ ` t∗ : τ∗ |

by induction on t. Then the proof is by induction on the derivation.

This result is typical of typed realizability, in which a realizer
of a formula is a typed program, its type being inferred from the
formula. Working in typed realizability allows in particular the use
of models with strong properties, like categories of continuations
in our case.

4. Realizability
We define here our realizability interpretation and prove that the
System µTbr term annotating a proof of a formula is a realizer of
that formula. Finally, we give two extraction results, for strong and
weak existentials.

4.1 Realizability values
In this section, each formula gets an associated realizability value,
which is a set of morphisms in RC . First, we set the range of the
quantifiers by defining a set |σ| ⊆ RC (1, [σ∗]) for each sort σ:

|ι| ∆
= {n | n ∈ N} |σ → τ | ∆

= {φ | ∀ψ ∈ |σ| , φ ψ ∈ |τ |}

For the sake of extraction, the realizability model is parameterized
with a set ⊥⊥ ⊆ |ι|, as in [7, 8] and similarly to [17]. This set is
used to define a non-empty realizability value for the formula ⊥,
as usual in classical realizability. The realizability values are de-
fined for closed formulas with parameters in RC , that is, formulas
in which every free variable xσ has been replaced with some ele-
ment of |σ|. Again for the sake of extraction, the realizability value
of a formula A will not be a subset of RC (1, [A∗]), but a subset
of RC (1, [A∗]

&

[I]). Reasons for this choice are discussed before
proving adequacy for the logical rules, and details can be found
in [7]. Morphisms in this homset should be thought of as having a
free µ-variable of type I , for which we use the reserved name κ. In-
tuitively, a realizer ofA has two output channels: one is of typeA∗,
while the other is of type I . This corresponds to Krivine’s distinc-
tion between realizers and proof-like realizers [17]. A realizer may
output an element of ⊥⊥ on the channel κ of type I , while a proof-
like realizer must output on the principal channel of typeA∗. Apart
from the interpretation of the atomic formulas which takes into ac-
count the parameter ⊥⊥, the interpretation of the other connectives
is the same as in usual intuitionistic realizability like Kleene’s or
Kreisel’s:

|⊥| ∆
= {φ | µκ.φ ∈ ⊥⊥}

|t 6= u| ∆
=

{
|⊥| if t∗ = u∗

RC (1, [0]

&

[I]) otherwise

|A⇒B| ∆
= {φ | ∀ψ ∈ |A| , φ ψ ∈ |B|}

|A ∧B| ∆
= {φ | π1 φ ∈ |A| ∧ π2 φ ∈ |B|}

|∀xσA| ∆
= {φ | ∀ψ ∈ |σ| , φ ψ ∈ |B {ψ/x}|}

|∃xσA| ∆
= {φ | π1 φ ∈ |σ| ∧ π2 φ ∈ |B {π1 φ/x}|}

Remember that we use implicit weakening, as stated at the end of
section 2.2. This means that in the definition of |∀xσA|, ψ ∈ |σ| ⊆
RC (1, [σ∗]) is considered as a morphism in RC (1, [σ∗]

&

[I])
when we apply φ to it, and in the definition of |∃xσA|, while π1 φ
is a morphism in RC (1, [σ∗]

&

[I]), π1 φ ∈ |σ| means that π1 φ is
equal to some ζ ∈ |σ| ⊆ RC (1, [σ∗]), when ζ is considered as a
morphism in RC (1, [σ∗]

&

[I]).

4.2 Adequacy
In this section, we prove the adequacy of our realizability inter-
pretation, that is, the interpretation in RC of a System µTbr term
annotating a proof of a formula is a realizer of that formula. First,
we prove adequacy for the axioms, and then for the rules.

Adequacy for the axioms

• The equalities which are verified in RC are realized by the
identity:

Lemma 2. If φ ∈ |σ| then λp.p ∈ |φ = φ|.

Proof. Since |φ = φ| = |(φ 6= φ)⇒⊥| and |φ 6= φ| = |⊥|.

SinceRC satisfies the equations of figure 2 and because of the inter-
pretation of first-order terms in System µTbr given in section 3.1,
the lemma above proves adequacy of the axiom of reflexivity and
the definitional axioms of s, k and rec.

• Leibniz scheme is realized by the identity as well:

Lemma 3. If φ, ψ ∈ |σ| then:

λp.p ∈ |¬A {φ/x}⇒A {ψ/x}⇒ φ 6= ψ|

Proof. If φ 6= ψ then |φ 6= ψ| = RC (1, [0]

&

[I]) and the result
is trivial, and if φ = ψ then |φ 6= ψ| = |⊥| and |A {φ/x}| =
|A {ψ/x}| so |¬A {φ/x}| = |A {ψ/x}⇒ φ 6= ψ|

• Anything realizes that 0 is no successor:

Lemma 4. If n ∈ |ι| then [κ] 0 ∈ |S n 6= 0|.

Proof. n + 1 6= 0 by adequacy of RC for System µTbr at type I ,
therefore we have |S n 6= 0| = RC (1, [0]

&

[I]) and the result is
trivial.

• Recursion realizes induction:

Lemma 5. rec ∈ |A {0/x}⇒ ∀xι (A⇒A {Sx/x})⇒∀xιA|.

Proof. If φ ∈ |A {0/x}| and ψ ∈ |∀xι (A⇒A {Sx/x})|, then
recφψ n ∈ |A {n/x}| by induction on n ∈ N.

• The intuitionistic version of countable choice is trivially real-
ized:

Lemma 6.

λp. 〈λx.π1 (p x) , λx.π2 (p x)〉
∈ |∀xσ∃yτA⇒∃vσ→τ∀xσA {v x/y}|

Proof. Immediate.

• Adequacy of bar recursion for our version of the double-
negation shift requires two assumptions on RC : sequence inter-
nalization and continuity. Sequence internalization means that any
sequence of morphisms can be turned into a morphism of sequence
type:

Definition 2 (Sequence internalization). If (φn)n∈N is a sequence
of morphisms in RC ([T], [U]

&

[V]), then there exists a morphism
φ ∈ RC ([T], [I → U]

&

[V]) such that for any n ∈ N, φ n = φn.

In particular, all functions on natural numbers must exist in the
model, even the uncomputable ones. This is consistent with the fact
that the combination of the axiom of choice with classical logic
proves the existence of such functions. Sequence internalization is
verified in the two examples given in section 2.2, Scott domains and
game semantics, but it is of course not satisfied by the term model
of System µTbr , and this is the main motivation for working in a
model rather than directly with the syntactic language.
The second requirement is continuity:

Definition 3 (Continuity). If φ ∈ RC (1, [(I → T)→ 0]

&

[I]),
ψ ∈ RC (1, [I → T]

&

[I]) and µκ.φψ ∈ |ι|, then there exists
m ∈ N such that for any ζ ∈ RC (1, [I → T]

&

[I]):(
∀m′ < m, ζm′ = ψm′

)
⇒ φ ζ = φψ

m is called the modulus of continuity of φ at ψ.

Continuity of the higher-order functional φ (which takes infinite
objects as input) means that if the output of φ on input ψ is a
natural number, then it only depends on a finite amount of ψ:
the finite sequence ψ 0, . . . , ψm− 1 (where m is the modulus of
continuity of φ at ψ). This requirement is also satisfied in Scott
domains (it is an immediate consequence of Scott continuity) and in
game semantics since in that case RC is a cpo-enriched category in
which the base types I and 0 are interpreted as flat domains. Note,
however, that the full set-theoretic model doesn’t satisfy continuity,
since we can for example consider a function which gives 0 if the
input sequence is the constant 0 sequence, and 1 otherwise.
Using these two assumptions on RC , we can now prove adequacy
of bar recursion for our version of the double-negation shift:

Lemma 7. λpq.brec p q ε ∈ |(∃xι¬A⇒∀xιA)⇒¬¬∀xιA|.

Proof. Let φ ∈ |∃xι¬A⇒∀xιA| and ψ ∈ |¬∀xιA|. The follow-
ing fact is easily provable, using the equation defining brec:

Let ∀i < n, ζi ∈
∣∣A{i/x}∣∣ and write ξ = ε ∗ ζ0 ∗ . . . ∗ ζn−1.

If λx.brecφψ (ξ ∗ x) ∈ |¬A {n/x}| then brecφψ ξ ∈ |⊥|

Now suppose for the sake of contradiction that brecφψ ε /∈ |⊥|.
Then by the above fact we have:

λx.brecφψ (ξ ∗ x) /∈
∣∣¬A{0/x}∣∣

so there exists ζ0 ∈
∣∣A{0/x}∣∣ such that brecφψ (ε ∗ ζ0) /∈ |⊥|.

Iterating this argument gives us an infinite sequence (ζn)n∈N such
that for every n ∈ N, ζn ∈ |A {n/x}| and:

brecφψ (ε ∗ ζ0 ∗ . . . ∗ ζn−1) /∈ |⊥|

We now internalize this sequence as ϕ ∈ RC (1, [I → A∗]

&

[I])
using our assumption on RC . But then ϕ ∈ |∀xιA|, so ψ ϕ ∈ |⊥|.
Finally, using continuity of RC (since µκ.ψ ϕ ∈ ⊥⊥ ⊆ |ι|), let n be
the modulus of continuity of ψ at ϕ and write ξ = ε∗ζ0∗. . .∗ζn−1.
We have:

ψ (ξ @ φ 〈n, λx.brecφψ (ξ ∗ x)〉) = ψ ϕ ∈ |⊥|
but this morphism is brecφψ ξ, which by construction is not in
|⊥|, hence the contradiction.

The proof above together with lemma 1 and adequacy for the
logical rules (see next paragraph) proves that the computational
interpretation of the axiom of countable choice for classical logic
with bar recursion is adequate with respect to our realizability
semantics. In [13], Herbelin defines a logic with strong existentials
which are weakened to make them compatible with classical logic
but which still allow the derivation of the axioms of countable and

dependent choices. While the classical axiom of dependent choice
could be realized in our framework as well, Herbelin’s approach
in [13] seems rather different from ours. Herbelin restricts the
elimination of strong existentials and uses an elaborate operational
semantics with coinductive formulas to keep these compatible with
classical logic. We choose to have both strong existentials (with
an unrestricted elimination rule) on which no classical reasoning is
allowed but which have a very easy computational interpretation,
and weak existentials on which full classical logic can be used, but
for which the axiom of countable choice requires the use of bar
recursion. We believe that a detailed proof of normalization for the
calculus of [13] would shed some lights on its connections with bar
recursion, which would in turn clarify the relationship between his
logic and the present work.

Adequacy for the logical rules Classical computations often rely
on a duality between a program and its environment. In Krivine’s
classical realizability [17], a program is an element in a set Λ of
terms, while an environment is an element in a set Π of stacks.
Each formula gets both a realizability value which is a subset of
Λ and a falsity value which is a subset of Π. Krivine’s model is
parameterized by an orthogonality relation ⊥⊥ ⊆ Λ × Π and each
formula gets first a falsity value in P (Π) and then a realizability
value in P (Λ) which is the orthogonal of its falsity value.

In our setting, programs are morphisms of the category RC ,
and environments are morphisms of the category C. Since our
realizability is typed, we do not have a set Λ of programs as
in Krivine’s untyped setting, but we have a set RC (1, [T]) of
programs of type T for each type T . The idea is then to define a
typed orthogonality relation between RC (1, [T]) and C (1, JT K).
In order to do that, we can simply perform evaluation (since [T] =
RJT K) to get a morphism from 1 to R. This duality is similar to the
one encountered in vector spaces, where the dual of someR-vector
space E is the vector space E∗ of linear forms from E to R. In this
setting, an orthogonality relation is usually defined between E and
E∗ by stating that x ∈ E and ϕ ∈ E∗ are orthogonal to each other
if and only if ϕ (x) = 0 in R.

In order to define an orthogonality relation between RC and C,
there should be at least two morphisms from 1 to R, but there is
no reason for this to hold. For example, if RC is the category of
unbracketed Hyland-Ong games described in section 2.2, then R is
the one-move arena and there is only one morphism from 1 to R.
In order to extract programs computing natural numbers, we even
need to have at least countably many such morphisms. To circum-
vent this issue, we will not define an orthogonality relation between
RC (1, [T]) and C (1, JT K) but rather between RC (1, [T]

&

[I])
and C (JIK, JT K), based on our parameter ⊥⊥ ⊆ |ι|. In a general
way, we can combine morphisms:

φ ∈ RC ([U], [T]

&

[V]) and ж ∈ C ([U]× JV K, JT K)

by, first, partially uncurrying φ into Λ−1
JV Kφ ∈ C ([U]× JV K, [T]),

pairing it with ж, evaluating, and then currying the result to get:

[ж]φ ∈ RC ([U], [0]

&

[V])

The notation [ж]φ corresponds to the idea that ж is an environment
that is substituted for the µ-variable α : T in [α]φ. In the particular
case of [U] = 1 and [V] = [I] we therefore get:

If φ ∈ RC (1, [T]

&

[I]) and ж ∈ C (JIK, JT K)

then [ж]φ ∈ RC (1, [0]

&

[I]) and µκ. [ж]φ ∈ RC (1, [I])

where κ is a reserved name for the free µ-variable of type I
in RC (1, [T]

&

[I]) and RC (1, [0]

&

[I]) (see section 4.1). The
orthogonality relation between RC (1, [T]

&

[I]) and C (JIK, JT K)
can now be defined from our parameter ⊥⊥ ⊆ |ι|:

Definition 4 (Orthogonality). For any type T we define an orthog-
onality relation between RC (1, [T]

&

[I]) and C (JIK, JT K) by:

φ ⊥ ж ⇐⇒ µκ. [ж]φ ∈ ⊥⊥

with φ ∈ RC (1, [T]

&

[I]) and ж ∈ C (JIK, JT K).

That is the reason why in section 4.1 we chose to define
the realizability value of a formula A as a set of morphisms in
RC (1, [A∗]

&

[I]) and we choose now to define the falsity value
of A as a set of morphisms in C (JIK, JA∗K). More details can be
found in [7],

Until now there has been no semantic distinction between pos-
itive and negative formulas in our realizability interpretation be-
cause the distinction relates to the possibility of using classical rea-
soning or not and axioms are indifferent to the kind of logic used.
The classical aspects of our proof system are entirely taken care
of by the rules, which we now prove adequate. The distinction be-
tween positive and negative formulas is reflected in the realizability
semantics by the fact that only the realizability value of a negative
formula need to be the orthogonal of some falsity value. This is
not necessary for positive formulas: orthogonality is only needed
for classical logic. Therefore, only negative formulas A− have a
falsity value

∥∥A−∥∥ ⊆ C (JIK, JA∗K):

‖⊥‖ ∆
= C (JIK, J0K) ‖t 6= u‖ ∆

=

{ ‖⊥‖ if t∗ = u∗

∅ otherwise∥∥A⇒B−
∥∥ ∆

=
{
pair

(
Λ−1

JIKφ,ж
)∣∣∣ φ ∈ |A| ∧ж ∈ ‖B‖

}
∥∥A− ∧B−∥∥ ∆

= {inj1 ◦ж | ж ∈ ‖A‖} ∪ {inj2 ◦ж | ж ∈ ‖B‖}∥∥∀xσA−∥∥ ∆
=
{
pair

(
Λ−1

JIKφ,ж
)∣∣∣ φ ∈ |σ| ∧ж ∈ ‖A {φ/x}‖

}
where Λ−1

JIK, pair (_, _), inji and ◦ are respectively partial un-
currying (fromRC (1, [T]

&

[I]) to C (JIK, [T])), pairing, injection
and composition in C.

It is now a property (rather than a definition as in Krivine’s
setting) that realizability values are the orthogonals of falsity values
for negative formulas:

Lemma 8. For any negative formula A− with parameters:

φ ∈
∣∣A−∣∣ ⇐⇒ ∀ж ∈

∥∥A−∥∥ , φ ⊥ ж

Proof. Follows from
[
pair

(
Λ−1

JIK (ψ) ,ж
)]
φ = [ж]φψ and

[inji ◦ж]φ = [ж]πi φ

Since |∃xσA| =
⋃
φ∈|σ| {〈φ, ψ〉 | ψ ∈ |A {φ/x}|}, the fact

that |∃xσA| is not the orthogonal of some falsity value is also
reminiscent of what happens in vector spaces: a union of linear
subspaces is in general not a linear subspace, and therefore it is
strictly included in its double orthogonal (which is the sum of
the subspaces). Conversely, since we can also write

∣∣∀xσA−∣∣ =⋂
φ∈|σ|

{
ψ
∣∣ ψ φ ∈ ∣∣A− {φ/x}∣∣}, this realizability value is stable

by double orthogonality and has a corresponding falsity value, just
like any intersection of linear subspaces is still a linear subspace.
We can now state the adequacy lemma:

Proposition 2 (Adequacy). If a derivation has conclusion:

~p : ~A `M : C | ~α : ~B−

and if FV
(
~A,C, ~B−

)
⊆ ~x~σ , then for any ~φ ∈ ~|σ|, and for any

~ψ ∈
∣∣∣ ~A{~φ/~x}∣∣∣ and ~ж ∈

∥∥∥ ~B− {~φ/~x}∥∥∥, we have:

M
{
~ψ/~p, ~ж/~α

}
∈
∣∣∣C {~φ/~x}∣∣∣

Proof. First, we prove that for any first-order term tτ with FV (t) ⊆
~x~σ and for any ~φ ∈ ~|σ|, we have t∗

{
~φ/~x

}
∈ |τ | by induction on

t. Then the proof is by induction on the derivation and relies on
the fact that the falsity values are only necessary for the negative
formulas ~B−.

We end this section by showing that if the proof of figure 3
was correct in our system, then the realizability model would be
degenerated. This proves that the issue identified in [12] arises
in our system as well. Suppose for the sake of contradiction that
adequacy holds for the proof of figure 3. This means that M ∈
|∃x (x = 0)|, where:

M = µα. [α]
〈
1, µβ. [α]

〈
0, (λxp.p) 0

〉〉
Calculation shows that π1 M = 1 and π2 M = λp.p, so we get
λp.p ∈

∣∣1 = 0
∣∣, and since

∣∣1 6= 0
∣∣ = RC (1, [0]

&

[I]), we obtain
|⊥| = RC (1, [0]

&

[I]) (remember that 1 = 0 is
(
1 6= 0

)
⇒⊥).

This implies that |t 6= u| = RC (1, [0]

&

[I]) regardless of wether
t∗ = u∗ or not, and therefore the realizability model is degenerated.

4.3 Extraction
Finally, we validate our model with two extraction results. Recall
that =σ is the non-extensional equality defined in section 3.1 and
discussed in section 3.2. The first extraction result is immediate and
relies on strong existentials:

Proposition 3. Suppose we have a derivation of some closed Π0
2

formula:
`M : ∀xσ∃yτ (tν =ν u

ν) |
then for any φ ∈ |σ|, we have π1 (M φ) ∈ |τ | and moreover
t∗ {φ/x, π1 (M φ) /y} = u∗ {φ/x, π1 (M φ) /y} holds in RC .

Proof. We choose ⊥⊥ = ∅, therefore:

|t∗ {φ/x, π1 (M φ) /y} = u∗ {φ/x, π1 (M φ) /y}| 6= ∅
⇐⇒

t∗ {φ/x, π1 (M φ) /y} = u∗ {φ/x, π1 (M φ) /y} in RC

And then the result is immediate by definition of the realizability
values of strong existentials. We could also conclude by applying
the intuitionistic axiom of choice to M .

In particular, if we choose σ = τ = ι and if we have a computa-
tionally adequate abstract machine to execute System µTbr (which
is possible, as explained at the end of section 2.1), then for any
n ∈ N, π1 (M n) reduces to some m such that t∗ {n/x,m/y} and
u∗ {n/x,m/y} are equal in RC . Proposition 3 also holds for for-
mulas of arbitrary complexity if we replace the concluding equality
by the existence of a uniform realizer (a realizer with ⊥⊥ = ∅), but
the goal here is to compare it to extraction from weak existentials,
which holds only for Π0

2 formulas.
The second extraction result concerns weak existentials:

Proposition 4. Suppose we have a derivation of some closed for-
mula of the form:

`M : ∀xσ¬¬∃yι (tτ =τ u
τ) |

then for any φ ∈ |σ|, µκ.M φ (λx.π2 x ([κ]π1 x)) is some n ∈ |ι|
such that t∗ {φ/x, n/y} = u∗ {φ/x, n/y} holds in RC .

Proof. If φ ∈ |σ| then M φ ∈ |¬¬∃y (t {φ/x} = u {φ/x})|. We
now fix ⊥⊥ ⊆ |ι| to be:

⊥⊥ =
{
m
∣∣∣ t∗ {φ/x,m/y} = u∗ {φ/x,m/y} holds in RC

}

and we prove that:

λx.π2 x ([κ]π1 x) ∈ |¬∃y (t {φ/x} = u {φ/x})|
Let ψ ∈ |∃y (t {φ/x} = u {φ/x})|. Then π1 ψ ∈ |ι| and π2 ψ ∈
|¬ (t {φ/x, π1 ψ/y} 6= u {φ/x, π1 ψ/y})|, so it suffices to prove
that [κ]π1 ψ ∈ |t {φ/x, π1 ψ/y} 6= u {φ/x, π1 ψ/y}|. For that,
we distinguish two cases:

• π1 ψ ∈ ⊥⊥: in that case µκ. [κ]π1 ψ = π1 ψ ∈ ⊥⊥, therefore
[κ]π1 ψ ∈ |⊥| ⊆ |t {φ/x, π1 ψ/y} 6= u {φ/x, π1 ψ/y}|

• π1 ψ /∈ ⊥⊥: then by our choice of the parameter ⊥⊥ we have
t∗ {φ/x, π1 ψ/y} 6= u∗ {φ/x, π1 ψ/y}, and therefore we get
|t {φ/x, π1 ψ/y} 6= u {φ/x, π1 ψ/y}| = RC (1, [0]

&

[I])

Finally we get M φ (λx.π2 x ([κ]π1 x)) ∈ |⊥|, and therefore
µκ.M φ (λx.π2 x ([κ]π1 x)) ∈ ⊥⊥, which achieves the proof.

Again, if we choose σ = τ = ι, then for any n ∈ N,
µκ.M n (λx.π2 x ([κ]π1 x)) reduces in the abstract machine to
some m such that t∗ {n/x,m/y} and u∗ {n/x,m/y} are equal in
RC .

A variant of proposition 3 in the case τ = ι can also be obtained
from proposition 4 since weak existentials are derivable from the
strong ones: if M is as in proposition 3 with τ = ι, then for any
φ ∈ |σ|, µκ.π2 (M φ) ([κ]π1 (M φ)) is some n ∈ |ι| such that
t∗ {φ/x, n/y} = u∗ {φ/x, n/y} holds in RC .

5. Conclusion
We defined a realizability framework allowing the use of both
strong and weak existential quantifications. Any proof in classical
arithmetic with the axiom of countable choice can be interpreted
as a program and a concrete value can be extracted from a proof
of a Π0

2 formula in this theory. Moreover, if some care is taken to
use strong existentials whenever possible, the extracted program is
more efficient that the ones obtained with the usual interpretations.

5.1 Future works
In the current setting, it is up to the person writing the proof to de-
termine whether at some point the use of a strong existential is pos-
sible. However, no theoretic reason forbids this to be checked auto-
matically. With an automatic procedure for this, one could work in
the general setting of classical logic with countable choice and still
obtain extracted programs which are as efficient as possible.

A concrete implementation of our framework would lead to a
quantitative analysis of the efficiency of the extracted programs. In
particular, we could do some efficiency comparison while staying
in our framework, since the usual interpretation (with weak sums
everywhere) is implementable directly in our system.

The impact of choosing a primitive inequality rather than an
equality in our system is still to be investigated. Indeed, while prov-
ability is unchanged for the subsystem with only negative formulas
as well as for its fragment with only weak existential quantifica-
tions (that fragment being equivalent to classical arithmetic with
countable choice from the point of view of provability), this is still
unclear for the full system or its intuitionistic restriction (without
the right-hand context).

5.2 Related works
Our polarities are the ones defined in [7], where we mentioned
a possible connection with Girard’s LU proof system [10]. We
recently became aware of the work of Liang and Miller [19] and
believe that there is a strong connection between our polarities and
the ones of their PCL system, despite their claim that the polarities
of PCL are different from the ones of LU. In particular our system
seems to be related to an extension of LC [9] with an intuitionistic

implication. However, any universal quantification is negative in
LC, while in our system it is negative if and only if the formula
quantified on is negative.

On the computational side, Herbelin managed to define in [13]
a logic in which strong existentials are weakened just enough to
be compatible with both classical logic and the axiom of countable
choice, at the cost of a complicated computational interpretation
involving corecursion and a lazy call-by-name evaluation strategy.
We believe that there are strong connections between the opera-
tional semantics of Herbelin’s calculus and bar recursion. This pos-
sible connection could appear from a careful analysis of a detailed
proof of termination of Herbelin’s calculus.

Refinements of program extraction were also investigated in [5]
(with an application in [4]) in the context of negative translations.
In [5], the authors identify definite and goal formulas, which allows
them to double-negate only what they call the critical atoms. Since
we work directly with classical proofs interpreted using control op-
erators, we do not have to take care of double-negations in front of
atomic formulas expicitly. On the other hand, the existentials of [5]
are defined as “¬∀¬” and are therefore equivalent to our weak ex-
istentials. They also consider a contructive existential (equivalent
to our strong existential) that they write ∃∗ and which serves as a
formal account of Friedman’s trick. For that reason, its only legal
use is as ∃∗yG in a proof of ∀x¬∀y¬G. This is very different from
our setting where strong existentials are part of the syntax of for-
mulas and can be manipulated as any other formula, provided the
negativity condition is verified.

Raffalli described in [21] an extraction technique relying on an
interaction between a classical proof of a forall-exists formula and
an intuitionistic proof of decidability for the corresponding subfor-
mula. Despite the use of second-order logic, untyped calculus and
the absence of strong existentials, his work has some similarities
with ours. In order to take into account the intuitionistic nature of
the proof of decidability, formulas of second-order logic are built
from both intuitionistic and classical second-order variables, and
double-negation elimination is restricted to classical variables. A
formula is then said classical if it ends with a classical proposi-
tional variable. This distinction between intuitionistic and classical
formulas is similar to our distinction between negative and positive
formulas. This similarity can also be observed in the semantic in-
terpretation of [21] where classical variables get an interpretation
which is the orthogonal of some set of stacks, while intuitionistic
variables have a primitive interpretation as a set of terms. This is
very similar to our framework, where negative formulas have both a
realizability and a falsity value which are orthogonal to each other,
while positive formulas only have a primitive realizability value.

Acknowledgments
I would like to thank the anonymous reviewers for their help-
ful comments and suggestions. I also thank Camille Paoletti for
her preliminary comments leading to significant improvements in
the paper’s readability. This research has been supported by the
UK Engineering and Physical Sciences Research Council grant
EP/K037633/1. No new data were created during this study.

References
[1] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi, vol-

ume 46 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1998.

[2] S. Berardi, M. Bezem, and T. Coquand. On the Computational Content
of the Axiom of Choice. Journal of Symbolic Logic, 63(2):600–622,
1998.

[3] U. Berger and P. Oliva. Modified bar recursion and classical dependent
choice. In Logic Colloquium ’01, Proceedings of the Annual European

Summer Meeting of the Association for Symbolic Logic, volume 20 of
Lecture Notes in Logic, pages 89–107. A K Peters, Ltd., 2005.

[4] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall Al-
gorithm and Dickson’s Lemma: Two Examples of Realistic Program
Extraction. Journal of Automated Reasoning, 26(2):205–221, 2001.

[5] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program
extraction from classical proofs. Annals of Pure and Applied Logic,
114(1-3):3–25, 2002.

[6] V. Blot. Game semantics and realizability for classical logic. PhD
thesis, École Normale Supérieure de Lyon, 2014.

[7] V. Blot. Typed realizability for first-order classical analysis. Logical
Methods in Computer Science, 11(4), 2015.

[8] V. Blot and C. Riba. On Bar Recursion and Choice in a Classical
Setting. In 11th Asian Symposium on Programming Languages and
Systems, volume 8301 of Lecture Notes in Computer Science, pages
349–364. Springer, 2013.

[9] J. Girard. A New Constructive Logic: Classical Logic. Mathematical
Structures in Computer Science, 1(3):255–296, 1991.

[10] J. Girard. On the Unity of Logic. Annals of Pure and Applied Logic,
59(3):201–217, 1993.

[11] T. Griffin. A Formulae-as-Types Notion of Control. In 17th Sympo-
sium on Principles of Programming Languages, pages 47–58. ACM
Press, 1990.

[12] H. Herbelin. On the Degeneracy of Sigma-Types in Presence of
Computational Classical Logic. In 7th International Conference on
Typed Lambda Calculi and Applications, Lecture Notes in Mathemat-
ics, pages 209–220. Springer, 2005.

[13] H. Herbelin. A Constructive Proof of Dependent Choice, Compatible
with Classical Logic. In 27th IEEE Symposium on Logic in Computer
Science, pages 365–374. IEEE Computer Society, 2012.

[14] M. Hofmann and T. Streicher. Completeness of Continuation Models
for λµ-Calculus. Information and Computation, 179(2):332–355,
2002.

[15] M. Hyland and L. Ong. On Full Abstraction for PCF: I, II, and III.
Information and Computation, 163(2):285–408, 2000.

[16] S. C. Kleene. On the Interpretation of Intuitionistic Number Theory.
Journal of Symbolic Logic, 10(4):109–124, 1945.

[17] J.-L. Krivine. Realizability in classical logic. Panoramas et synthèses,
27:197–229, 2009.

[18] J. Laird. Full Abstraction for Functional Languages with Control. In
12th Annual IEEE Symposium on Logic in Computer Science, pages
58–67. IEEE Computer Society, 1997.

[19] C. Liang and D. Miller. Unifying Classical and Intuitionistic Logics
for Computational Control. In 28th ACM/IEEE Symposium on Logic
in Computer Science, pages 283–292. IEEE Computer Society, 2013.

[20] M. Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical
Natural Deduction. In 3rd International Conference on Logic Pro-
gramming and Automated Reasoning, volume 624 of Lecture Notes in
Computer Science, pages 190–201. Springer, 1992.

[21] C. Raffalli. Getting results from programs extracted from classical
proofs. Theoretical Computer Science, 323(1-3):49–70, 2004.

[22] P. Selinger. Control categories and duality: on the categorical seman-
tics of the λµ calculus. Mathematical Structures in Computer Science,
11(2):207–260, 2001.

[23] C. Spector. Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles in current intuitionistic
mathematics. In Recursive Function Theory: Proceedings of Symposia
in Pure Mathematics, volume 5, pages 1–27. American Mathematical
Society, 1962.

