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Abstract
We use the control features of continuation models to interpret proofs in first-order classical
theories. This interpretation is suitable for extracting algorithms from proofs of Π0

2 formulas. It
is fundamentally different from the usual direct interpretation, which is shown to be equivalent
to Friedman’s trick. The main difference is that atomic formulas and natural numbers are
interpreted as distinct objects. Nevertheless, the control features inherent to the continuation
models permit extraction using a special “channel” on which the extracted value is transmitted at
toplevel without unfolding the recursive calls. We prove that the technique fails in Scott domains,
but succeeds in the refined setting of Laird’s bistable bicpos, as well as in game semantics.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages: Denotational
semantics, F.4.1 Mathematical Logic
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Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.13

1 Introduction

Game semantics appeared simultaneously in [13, 21, 2] and provides precise models for PCF.
These seminal works started a new line of research which led among other things to models
of languages with higher-order references [1] and control operators [18]. These interesting
features were obtained by removing some requirements of the original model: innocence for
references, and well-bracketing for control operators. This interesting property means that
the model is at first a model of a language with side effects, that we can then constrain to
eliminate non-functional behaviors. In this work, we are interested into giving computational
content to formulas through realizability, so it is an interesting feature to have an expressive
language in which we can write simple realizers for complicated formulas.

Realizability is a way to relate programs and formulas invented by Kleene [14]. To each
formula A in a given language L we associate a set |A| of realizers in a given programming
language P. The realizability interpretation |_| is usually defined by induction on the
formula, for example M ∈ |A⇒ B| is typically defined as: for all N ∈ |A|, M N ∈ |B|,
where M N is the application of the argument N to the program M in P. The property of
adequacy is obtained by the definition of a theory for L which is correct with respect to the
realizability interpretation. Adequacy allows the mapping of any proof π of a formula A in
the chosen theory to some [π] ∈ |A|. Finally, if the realizability interpretation is sufficiently
well behaved, then a realizer M of a formula ∀x ∃y A {x, y} is such that for any element a
in the model, A {a,M a} holds. This property combined with adequacy gives extraction:
from a proof of a formula A one can obtain a program M such that A {a,M a} holds for any
element a.
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13:2 Classical Extraction in Continuation Models

In the context of classical logic, there are mainly two extraction methods. The first
one relies on Gödel’s negative translation which maps a proof of ∀x∃y P {x, y} (where P is
an atomic predicate) in classical arithmetic to a proof of ∀x¬∀y ¬P {x, y} in intuitionistic
arithmetic. Then Friedman’s trick [8] replaces ⊥ with ∃y P {x, y}, to obtain an intuitionistic
proof of ∀x∃y P {x, y}. This turns any extraction method in intuitionistic arithmetic into
an extraction method for Π0

2 formulas in classical arithmetic. Refinements of this technique
have been studied in [5], and bar recursive interpretations of the negative translation of the
axiom of choice in this setting have been given in [4, 6].

The second method uses control operators [9] like scheme’s call/cc. If P has control
features, then adequacy can hold for a classical theory. Extraction with this method is
obtained by taking a non-empty set of realizers of ⊥. The first realizability models for
classical logic with control operators were built by Krivine [16] and use an untyped λ-calculus
extended with call/cc as programming language, and second order Peano arithmetic as logical
theory. They have also been later extended with the axiom of dependent choice, by the
addition of particular instructions to the language of realizers [15]. Krivine’s realizability has
also been related to Friedman’s A-translation in [22, 20], and several extraction methods in
this setting have been studied [20, 24].

In this work we define a variant of the second method and introduce control features
in P by working in simply-typed λµ-calculus [23]. Precisely, we take P to be a model of
λµ-calculus, that is, a category of continuations [12]. Working in a model rather than in a
language can be interesting when one wants features that fit more naturally in a model than
in the syntax. An example is the realization of the axiom of choice using the bar recursion
operator [7], which requires the existence of all the first-class functions in P. Taking the
game semantics model for P also gives access to references in the realizers.

In Section 2 we first fix the logical framework, that is first-order logic. We then describe
the mapping of intuitionistic (resp. classical) proofs to λ-calculus (resp. λµ-calculus) and
the realizability interpretation. We describe Friedman’s trick which turns extraction for
intuitionistic theories into extraction for classical theories, then we describe how control
operators can be used to interpret directly classical logic, and finally we explain why the two
methods are equivalent when working in a model. In Section 3 we present our method of
extraction for classical logic in a category of continuations and explain how it provides a
simpler interpretation. Finally we explain why this technique fails in models based on Scott
domains, but works in the model of unbracketed Hyland-Ong-style game semantics.

2 Friedman’s trick and direct interpretation

In this section, we fix the logical system we will be working with. Then we present on one
hand the indirect interpretation through negative translation and Friedman’s trick and on
the other hand the direct interpretation with control operators. Finally we explain why these
two interpretations are the same when we work in a model.

2.1 The logical system

The logical systems under consideration in this work are first-order minimal logic, M, and
first-order classical logic, C. C is simply an extension of M with double-negation elimination.
The common syntax of first-order terms and formulas of M and C is the following:

t, u ::= x | f
(
~t
)

A,B ::= P
(
~t
)
| ⊥ | A⇒B | A ∧B | ∀xA | A ∨B | ∃xA
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Γ, p : A ` p : A
Γ, p : A `M : B

Γ ` λp.M : A⇒B
Γ `M : B⇒A Γ ` N : B

Γ `MN : A

Γ `M1 : A1 Γ `M2 : A2
Γ ` 〈M1,M2〉 : A1 ∧A2

Γ `M : A1 ∧A2
Γ ` πiM : Ai

Γ `M : A (x /∈FV(Γ))
Γ ` Λx.M : ∀xA

Γ `M : ∀xA
Γ `M btc : A {t/x}

Γ `M : Ai
Γ ` iniM : A1 ∨A2

Γ `M : A1 ∨A2 Γ, p : A1 ` N1 : B Γ, p : A2 ` N2 : B
Γ ` caseM [in1 p 7→ N1, in2 p 7→ N2] : B

Γ `M : A {t/x}
Γ ` ex [t,M ] : ∃xA

Γ `M : ∃xA Γ, p : A ` N : B
(x /∈FV(Γ,B))

Γ ` destM as ex [x, p] inN : B

Figure 1 Rules for M.

where f (resp. P ) ranges over a set of function (resp. predicate) symbols given with their
arity. Quantification has precedence over other connectives and negation is encoded as usual:
¬A ∆= A⇒⊥. The proofs and proof terms of M are defined by the rules of Figure 1, where
Γ stands for a sequence of pairs p : A where p is a proof variable, for which we allow implicit
re-ordering.

For C, we simply add the rules:

Γ ` dne : ¬¬A⇒A

Provability in M (resp. C) will be denoted m̀ (resp. c̀ ). We will sometimes write Γ m̀ A

(resp. Γ c̀ A) if we’re not interested in the proof term, and we may write X m̀ A (resp.
X c̀ A) for some set X, which means Γ m̀ A (resp. Γ c̀ A) for some finite sequence Γ of
formulas of X. Since contraction is derivable and weakening is admissible, we will use these
implicitly.

2.2 Mapping proofs to terms
We will use two programming languages that share a common ground to interpret M and C.
This common ground is simply-typed λ-calculus with products and unit types, and one base
type ι. The set of variables of this λ-calculus is the union of first-order variables x, y, . . . and
proof variables p, q, . . ., this union being ranged over with e, f, . . .. There is also one constant
f of type ι→ . . .→ ι→ ι (n+ 1 times) for each first-order constant f of arity n. The syntax
of types and terms of this common ground is as follows:

T,U ::= ι | T → U | 1 | T ×U M,N ::= f | λe.M |M N | 〈〉 | 〈M,N〉 | π1M | π2M

From this common ground, the first language we consider is λ+, in which we will interpret
M. λ+ is obtained by adding sum types to the common ground:

T,U ::= . . . | T +U M,N ::= . . . | in1M | in2M | caseM {in1 e 7→ N1 | in2 e 7→ N2}

The second language is λµ, in which we will interpret C, and which is obtained by adding to
the common ground an empty type, control features and µ-variables:

T,U ::= . . . | � M,N ::= . . . | µα.M | [α]M

FSCD 2016



13:4 Classical Extraction in Continuation Models

(A⇒B)∗ ∆= A∗ → B∗ (A ∧B)∗ ∆= A∗ ×B∗ (∀xA)∗ ∆= ι→ A∗

⊥∗m ∆= 1 P
(
~t
)∗m ∆= 1 (A ∨B)∗m ∆= A∗m +B∗m (∃xA)∗m ∆= ι×A∗m

⊥∗c ∆= � P
(
~t
)∗c ∆= � → � (A ∨B)∗c ∆= (¬ (¬A ∧ ¬B))∗c (∃xA)∗c ∆= (¬∀x¬A)∗c

Figure 2 Mapping formulas to types.

p∗
∆= p (λp.M)∗ ∆= λp.M∗ (M N)∗ ∆= M∗N∗ (Λx.M)∗ ∆= λx.M∗

(M btc)∗ ∆= M∗ t∗ 〈M,N〉∗ ∆= 〈M∗, N∗〉 (πiM)∗ ∆= πiM
∗ dne∗c ∆= λp.µα.p (λq. [α] q)

(iniM)∗m ∆= iniM∗m (ex [t,M ])∗m ∆= 〈t∗,M∗m〉

(iniM)∗c ∆= λp.πi pM
∗c (ex [t,M ])∗c ∆= λp.p t∗M∗c

(caseM [in1 p 7→ N1, in2 p 7→ N2])∗m ∆= caseM∗m [in1 p 7→ N1
∗m, in2 p 7→ N2

∗m]

(caseM [in1 p 7→ N1, in2 p 7→ N2])∗c ∆= dne∗c (λq.M∗c 〈λp.q N1
∗c, λp.q N2

∗c〉)

(destM as ex [x, p] inN)∗m ∆= (λxp.N∗m) (π1M
∗m) (π2M

∗m)

(destM as ex [x, p] inN)∗c ∆= dne∗c (λq.M∗c (λxp.q N∗c))

Figure 3 Mapping proof terms to λ+/λµ-terms.

We work in a call-by-name setting and refer to [12, 25] for the typing rules and equational
theory of λµ.

Note that terms of λ+ and λµ are not the same as the proof terms of Figure 1. In particular,
proof terms have no operational or denotational semantics, but provide a convenient way to
manipulate proofs. Proofs terms will now be mapped to terms of λ+ or λµ. First, we map
each formula A to a type A∗ of either λ+ or λµ. When the interpretation is different in M

and C we will write A∗m or A∗c. The mapping is defined in Figure 2.

In the case of C, since positive connectives are known to raise issues on the computational
level when combined with classical logic [11] (we also give a concrete example at the end of
Section 2.3) we use a negative encoding of connectives ∨ and ∃. First-order terms (which
are common to M and C) are mapped to terms of λ+ ∩ λµ by x∗ ∆= x and (f (t1, . . . , tn))∗ ∆=
f t1∗ . . . tn∗, and proof terms of M (resp. C) are mapped to terms of λ+ (resp. λµ) as in
Figure 3. The elimination of the encoded connectives in C is made possible by classical logic
and control features of λµ.

A proof term p1 : A1, . . . , pn : An m̀ M : A (resp. p1 : A1, . . . , pn : An c̀ M : A)
with FV (A1, . . . , An, A) = {x1, . . . , xm} is therefore mapped to a term M∗m : A∗m (resp.
M∗c : A∗c) of λ+ (resp. λµ) with free variables among p1 : A1

∗, . . . , pn : An∗, x1 : ι, . . . , xm : ι,
and no free µ-variable (in the case of C).
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∣∣P (~t)∣∣
m

∆=
{
{〈〉} if ~t∗ ∈ {|P |}
∅ otherwise

|A1 ∧A2|
∆= {φ | π1 φ ∈ |A1| and π2 φ ∈ |A2|}

∣∣P (~t)∣∣
c

∆=
{
|⊥⇒⊥|

c
if ~t∗ ∈ {|P |}

{φ | if ψ ∈ C (1, �) then φψ ∈ |⊥|
c
} otherwise

|A⇒B| ∆= {φ | if ψ ∈ |A| then φψ ∈ |B|} |∀xA| ∆= {φ | if ψ ∈ 〈|ι|〉 then φψ ∈ |A {ψ/x}|}

|A1 ∨A2|m
∆= {in1 φ | φ ∈ |A1|m} ∪ {in2 φ | φ ∈ |A2|m} |A1 ∨A2|c

∆= |¬ (¬A1 ∧ ¬A2)|
c

|∃xA|
m

∆= {φ | π1 φ ∈ 〈|ι|〉 and π2 φ ∈ |A {π1 φ/x}|m} |∃xA|
c

∆= |¬ ∀x¬A|
c

Figure 4 The realizability interpretation.

2.3 Typed realizability
We now describe the realizability semantics of M and C. Let C be a cartesian closed
category. We also suppose that C has coproducts in the case of M, or that it is a category of
continuations (see [12, 25] and Section 2.6) in the case of C. Every type of λ+ (for M) or λµ
(for C) is interpreted as an object of C in the standard way, from a chosen interpretation of ι.
We will therefore consider types as objects of C. Similarly, we suppose given a morphism for
each constant f of λ+ ∩ λµ (remember from Section 2.2 that there is one such constant for
each first-order constant f), so that every term of λ+ or λµ is interpreted as a morphism in
the homset corresponding to its context. We will therefore also consider terms as morphisms
in C, and we will use the syntax of λ+ and λµ to manipulate morphisms with domain 1. In
order to define the realizability values of the formulas, we first fix a set 〈|ι|〉 ⊆ C (1, ι) such
that for every closed first-order term t, t∗ ∈ 〈|ι|〉. This set represents the elements of the
model on which we quantify. Typically, if C (1, ι) is a domain of natural numbers with a
bottom element, 〈|ι|〉 would be the set of natural numbers (the domain minus the bottom
element). We also fix for every predicate P of arity n a set {|P |} ⊆ 〈|ι|〉n of n-tuples satisfying
the predicate. The set of realizers of a closed formula with parameters in 〈|ι|〉 is then a
set of morphisms |A| ⊆ C (1, A∗). When the interpretation is different in M and C we will
again write |A|

m
or |A|

c
. We take |⊥|

m
= ∅, but |⊥|

c
is a parameter of the realizability

interpretation. The interpretation is defined in Figure 4.
It is worth noting here that taking |⊥|

c
= ∅ gives a degenerated model, in which |A|

c
is

either empty or the full homset C (1, A∗). Indeed, suppose that |A|
c
6= ∅, and let φ ∈ C (1, A∗).

First, since |A|
c
6= ∅ and |⊥|

c
= ∅, we have |¬A|

c
= ∅, and therefore |¬¬A|

c
= C

(
1, (¬¬A)∗

)
.

But since λp.p φ ∈ C
(
1, (¬¬A)∗

)
, we get λp.p φ ∈ |¬¬A|

c
, and then dne∗ (λp.p φ) = φ ∈ |A|

c

by adequacy (Lemma 1 below). Therefore, if we want to get computational content from
classical proofs, we need to consider |⊥|

c
6= ∅.

We can already state an adequacy lemma for M and C:

I Lemma 1 (Adequacy). Suppose ~p : ~A `M : B is a proof in M or C and write FV
(
~A,B

)
=

~x = {x1, . . . , xn}. Then for any ~φ in 〈|ι|〉n and any realizers ~ψ ∈
∣∣∣ ~A{~φ/~x}∣∣∣, we have

M∗
{
~φ/~x, ~ψ/~p

}
∈
∣∣∣B {~φ/~x}∣∣∣.

Proof. By induction on M . An interesting case is that of dne : ¬¬A⇒A in the case of C
(we will write dneA in this proof), which is proved by induction on A. If A is atomic, then it

FSCD 2016



13:6 Classical Extraction in Continuation Models

is a case analysis. In the other cases, it follows from the observation that in C:

dneA⇒B∗c = λpq.dneB∗c (λr.p (λs.r (s q))) dne∀xA∗c = λpx.dneA∗c (λq.p (λr.q (r x)))

dneA∧B∗c = λp. 〈dneA∗c (λq.p (λr.q (π1 r))) , dneA∗c (λq.p (λr.q (π2 r)))〉 J

We can now explain by reformulating the ideas of [11] why we encoded ∃xA in C

instead of interpreting it as in M. Suppose there is a binary predicate P (t, u) and some
φ, ψ1, ψ2 ∈ 〈|ι|〉 such that (φ, ψ1) /∈ {|P |} and (φ, ψ2) ∈ {|P |} (for example, P may be equality
and ψ1 6= φ = ψ2). Consider the proof:

r : P (x, y2) c̀ dne (λp.p ex [y1, dne (λq.p ex [y2, r])]) : ∃y P (x, y)

If (ex [_,_])∗c was a pair like in M, then this proof would be translated to a term of
λµ which is equal in C to µα. [α] 〈y1, µβ. [α] 〈y2, r〉〉. Adequacy would imply that for any
ξ ∈ |P (φ, ψ2)|

c
:

ζ = µα. [α] 〈ψ1, µβ. [α] 〈ψ2, ξ〉〉 ∈ |∃y P (φ, y)|
c

so π2 ζ ∈ |P (φ, π1 ζ)|
c
(if |∃ y_|

c
was as in M). But since π1 ζ = ψ1 and π2 ζ = ξ,

this would mean that ξ ∈ |P (φ, ψ1)|
c
. The other inclusion being easy, we would get

|P (φ, ψ1)|
c

= |P (φ, ψ2)|
c
, that is, |P (φ, ψ)|

c
would not depend on whether (φ, ψ) ∈ {|P |} or

not and the model would be degenerated.

2.4 Extraction for minimal logic

We fix now a theory Ax, that is, a set of closed formulas, or axioms. We also suppose that
for each A ∈ Ax we have some realizer ζA ∈ |A|m. Extraction is an immediate consequence
of adequacy:

I Theorem 2 (Extraction). Let ~pA : ~A m̀ M : ∀x∃y B be a proof, where ~A ⊆ Ax and
FV (B) ⊆ {x; y}. From that proof we can extract some φ ∈ C (1, ι→ ι×B∗m) such that for
any ψ ∈ 〈|ι|〉, π1 (φψ) ∈ 〈|ι|〉 and:

π2 (φψ) ∈ |B {ψ/x, π1 (φψ) /y}|
m

Proof. Immediate from adequacy, with φ = M∗m

{
~ζA/ ~pA

}
. J

Let’s look at the particular example of Ax being the set of axioms of arithmetic. Suppose we
have realizers of these axioms in C (which usually means that C is a model of Gödel’s system
T) and 〈|ι|〉 is isomorphic to N with the constants interpreted accordingly. The extraction
result tells us that from a proof of ∀x ∃y (t = 0) in Ax we can extract an element:

φ′ = λx.π1 (φx) ∈ C (1, ι→ ι)

such that for any n ∈ N, |t {n/x, φ′ n/y} = 0|
m
6= ∅, and so (n, φ′ n) ∈ {|=|} by definition of

the realizability interpretation in M. If moreover {|=|} is equality on 〈|ι|〉 ' N then it tells us
that t∗ {n/x, φ′ n/y} = 0 in N.
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pR
∆= p (λp.M)R ∆= λq.

(
λp.MR

)
(π1 q) (π2 q) (M N)R ∆= λp.MR

〈
NR, p

〉
〈M1,M2〉R

∆= λp.case p
[
in1 q 7→MR

1 q, in2 q 7→MR
2 q
]

(πiM)R ∆= λp.MR (ini p)

(Λx.M)R ∆= λp.dest p as ex [x, q] inMR q (M btc)R ∆= λp.MRex [t, p]

(iniM)R ∆= λp.πi pM
R (ex [t,M ])R ∆= λp.p ex

[
t,MR

]
(caseM [in1 p 7→ N1, in2 p 7→ N2])R ∆= λq.MR

〈
λp.NR

1 q, λp.NR
2 q
〉

(destM as ex [x, p] inN)R ∆= λq.MR
(
λr.dest r as ex [x, p] inNR q

)
dneR ∆= λp.π1 p 〈λq.π1 q (π2 p) , λr.r〉

Figure 5 Lafont-Reus-Streicher translation of proofs from C to M.

2.5 Negative translation and Friedman’s trick
In this section we explain the indirect interpretation of classical theories via negative
translation and Friedman’s trick. Negative translation has been defined by Gödel to study
the relationship between intuitionistic and classical provability. A formula A is translated to
A¬ by inductively replacing every positive formula by a (classically) equivalent negative one.
Negative translation turns classical provability into intuitionistic provability, in the sense
that if A1, . . . , An c̀ B, then A¬1 , . . . , A¬n m̀ B¬.

Adapting Friedman’s original translation [8], we can parameterize negative translation by
an arbitrary formula R playing the role of ⊥. R will be instantiated later on with a carefully
chosen formula. This is known as Friedman’s trick and can be used to prove conservativity
of classical arithmetic over intuitionistic arithmetic for Π0

2 formulas. Here we use a slightly
different version: Lafont-Reus-Streicher (LRS) translation [17]. This version makes explicit
the connection with the direct interpretation that we will present in Section 2.6.

For each formula A we define an intermediate translation AR in order to then define
AR ≡ AR⇒R. AR and AR are parameterized by the arbitrary formula R:(

P
(
~t
))R ∆= P

(
~t
)
⇒R ⊥R ∆= ⊥⇒⊥ (∀xA)R ∆= ∃xAR (∃xA)R ∆= ∃xAR⇒R

(A⇒B)R ∆= AR ∧BR (A ∧B)R ∆= AR ∨BR (A ∨B)R ∆=
(
AR⇒R

)
∧
(
BR⇒R

)
This translation turns provability in classical logic into provability in minimal logic:

I Lemma 3. If Γ c̀ A then ΓR m̀ AR (modulo α-conversion to avoid capture of the free
variables of R).

Proof. The translation M 7→MR on proof terms is given in Figure 5 J

We now show how we can transpose the extraction Theorem 2 into an extraction theorem
for a classical theory through LRS translation. We fix C to be a cartesian closed category
with coproducts as in Section 2.3, with a chosen object ι, a set 〈|ι|〉 ⊆ C (1, ι), interpretations
of the constants f and interpretations of the predicates {|P |} ⊆ 〈|ι|〉n. We also fix a theory
Ax, and we suppose that for each A ∈ Ax we have some realizer ζA ∈ |A|m. Extraction
from classical proofs of Π2

0 formulas is obtained through Friedman’s trick combined with the
extraction Theorem 2:

FSCD 2016



13:8 Classical Extraction in Continuation Models

I Theorem 4 (Extraction). Suppose that for every A ∈ Ax we have Ax m̀ AR. From a proof
of Ax c̀ ∀x∃y P

(
~t
)
where FV

(
~t
)
⊆ {x; y}, we can extract a morphism φ ∈ C (1, ι→ ι) such

that for any ψ ∈ 〈|ι|〉, φψ ∈ 〈|ι|〉 and:

~t∗ {ψ/x, φψ/y} ∈ {|P |}

Proof. Elimination of the ∀ quantification gives Ax c̀ ∃y P
(
~t
)
, and LRS translation com-

bined with the proofs Ax m̀ AR gives some proof term:

~pA : ~A m̀ M :
(
∃y P

(
~t
))R ≡ (∃y ((P (~t)⇒R

)
⇒R

)
⇒R

)
⇒R

for some ~A ⊆ Ax. We apply now Friedman’s trick: take R ≡ ∃ y P
(
~t
)
(its only free variable

is x so there is no capture of variables). Then we have:

~pA : ~A m̀ Λx.M (λp.dest p as ex [y, q] in q (λr.ex [y, r])) : ∀x∃ y P
(
~t
)

to which we apply Theorem 2 and get some φ0 such that for any ψ ∈ 〈|ι|〉:

π2 (φ0 ψ) ∈
∣∣P (~t {ψ/x, π1 (φ0 ψ) /y}

)∣∣
m

so
∣∣P (~t {ψ/x, π1 (φ0 ψ) /y}

)∣∣
m
6= ∅, and ~t∗ {ψ/x, φψ/y} ∈ {|P |} with φ = λx.π1 (φ0 x) . J

We discuss now about the assumption that for every A ∈ Ax we have Ax m̀ AR.
In the case of arithmetic, since equality is decidable in minimal logic, all the axioms

A ∈ Ax but induction are such that Ax m̀ AR. For induction it is even simpler since its
translation is itself an instance of induction. Therefore, the extraction in minimal arithmetic
presented in Section 2.4 can be turned into extraction for classical arithmetic.

This assumption however doesn’t hold for every theory. For example, consider the axiom
of dependent choice DC (that we can formulate in a multi-sorted version of first-order logic).
DC fails to prove DCR in minimal logic. However, DCR is a consequence of DNS +DC in
minimal logic, where DNS is the double-negation shift:

∀x ((A⇒R)⇒R)⇒ (∀xA⇒R)⇒R

where the sort of x is that of natural numbers. In a single-sorted setting, one can even show
that DNS proves A⇒AR for any formula A in minimal logic. Historically, this technique
has been used to give computational content to the axiom of choice in a classical setting,
interpreting DNS intuitionistically with Spector’s operator of bar recursion [4, 6].

2.6 Direct interpretation
Since Griffin’s discovery [9], we can directly interpret proofs of classical logic in functional
programming languages with control operators, as was done in Section 2.2. In order to
interpret λµ (in which classical proofs are mapped), we fix a category of continuations C = �D
(see [12, 25]). This means that D is a distributive category, � is an object of D such that
all exponents �X exist in D, and �D is the full subcategory of D consisting of the objects
�X . As suggested by the notation, � is the object interpreting the type � of λµ. In order
to perform extraction we suppose ι = � in C. We fix a theory Ax and we suppose that for
each A ∈ Ax we have some realizer ζA ∈ |A|c. Extraction requires a clever choice of the
parameter |⊥|

c
of the realizability interpretation:
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Figure 6 Correspondence of direct and indirect realizability interpretations.

I Theorem 5 (Extraction). From a proof of Ax c̀ ∀x∃y P
(
~t
)
where FV

(
~t
)
⊆ {x; y}, we

can extract a morphism φ ∈ C (1, ι→ ι) such that for any ψ ∈ 〈|ι|〉, φψ ∈ 〈|ι|〉 and:

~t∗ {ψ/x, φψ/y} ∈ {|P |}

Proof. Write ~pA : ~A c̀ M : ∀x ∃y P
(
~t
)
where ~A ⊆ Ax. By adequacy we have for any

ψ ∈ 〈|ι|〉:

M∗c

{
~ζA/ ~pA

}
ψ ∈

∣∣∃y P (~t {ψ/x})∣∣
c

=
∣∣¬∀y ¬P (~t {ψ/x})∣∣

c

Remember now that |⊥|
c
⊆ C (1, �) = C (1, ι) is a parameter that we can choose freely. Take

now:

|⊥|
c

=
{
ζ ∈ 〈|ι|〉

∣∣ ~t∗ {ψ/x, ζ/y} ∈ {|P |}}
By a simple disjunction of cases we prove that λyp.p y ∈

∣∣∀y ¬P (~t {ψ/x})∣∣
c
for this choice

of |⊥|
c
. Note that this term is well-typed precisely because ι = �. The following morphism

then has the required property:

φ = λx.M∗c

{
~ζA/ ~pA

}
x (λyp.p y) . J

2.7 Correspondence of the two methods
The indirect and direct methods presented in the previous two sections share some similarities,
which we shall now make explicit. More precisely, we will prove that the diagram of Figure 6
commutes.

Fix a category of continuations C = �D. First, observe that the LRS translation of
Section 2.5 is such that for any formula A, AR belongs to a restricted syntax of formulas
where implications are all of the form B⇒ R. Moreover, AR doesn’t contain ∀, therefore,
the simple type

(
AR
)∗m is itself in a restricted syntax where arrow types are all of the

form T → R∗. This means that D has enough structure to interpret the LRS translations
of C-proofs if we suppose R∗m ' � (remember that D has all exponentials �X). Finally,
since

(
AR
)∗m =

(
AR
)∗m

→ R∗m, LRS translations of C-proofs can be interpreted in the
full subcategory C = �D. We claim now that this interpretation is the same as the direct
interpretation of Section 2.6.

The following lemma, proved by induction on formulas and proofs, connects the two
interpretations in C at the level of formulas, proof terms and realizers:

I Lemma 6. If R∗m ' �, then:
for any formula A,

(
AR
)∗m ' A∗c in C

for any C-proof term M ,
(
MR

)∗m and M∗care equal in C, up to the previous isomorphism

FSCD 2016
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if |R|
m

and |⊥|
c
are equal up to the isomorphism R∗m ' �, then for any formula A,∣∣AR∣∣

m
is equal to |A|

c
, up to the isomorphism

(
AR
)∗m ' A∗c

To conclude this section, we show that in the extraction Theorems 4 and 5, we indeed have
R∗m ' � and |R|

m
equal to |⊥|

c
up to this isomorphism. On one hand, in the extraction

Theorem 4, we fixed R ≡ ∃y P
(
~t
)
, and therefore:

R∗m =
(
∃y P

(
~t
))∗m = ι× 1 ' ι

And on the other hand, in the extraction Theorem 5 we supposed that ι = �. Therefore we
have indeed R∗m ' �. Also, in Theorem 4 we have for any ψ ∈ 〈|ι|〉:

|R {ψ/x}|
m

=
∣∣∃y P (~t {ψ/x})∣∣

m
=
{
φ
∣∣ π1 φ ∈ 〈|ι|〉 and π2 φ ∈

∣∣P (~t {ψ/x, π1 φ/y}
)∣∣

m

}
but since π2 φ ∈ C (1, 1) which is a singleton, |R {ψ/x}|

m
is isomorphic to:{

ζ ∈ 〈|ι|〉
∣∣ ∣∣P (~t {ψ/x, ζ/y})∣∣

m
6= ∅
}

=
{
ζ ∈ 〈|ι|〉

∣∣ ~t∗ {ψ/x, ζ/y} ∈ {|P |}}
but this last set is exactly the one chosen for |⊥|

c
in Theorem 5. Finally, the requirement of

Theorem 4 that for every A ∈ Ax we have Ax m̀ AR provides through adequacy a method
to turn a set of realizers {ζB ∈ |B|m | B ∈ Ax} into a realizer ξA ∈ |A|c '

∣∣AR∣∣
m
.

Before presenting another method for direct extraction, we discuss the reason for the
correspondence between the two methods. This correspondence comes from the fact that we
chose � = ι in the direct interpretation so we could take elements of ι as realizers of ⊥. This
choice was motivated by the fact that taking |⊥|

c
= ∅ gives a degenerated model. However,

this is an unnatural interpretation, since the object � should represent an empty type. We
will see that even though this natural interpretation is not possible in Scott domains, it is
possible in bistable bicpos and game semantics.

3 Another direct interpretation

In this section we present another direct realizability interpretation of C in a category of
continuations C = �D. The interpretation of C-proofs as terms of λµ is almost identical as in
Section 2.2, the only difference being that a proof term ~p : ~A c̀ M : B with FV

(
~A,B

)
= {~x}

is now mapped to a term M∗c : B∗c of λµ with free λ-variables among ~p : ~A∗c, ~x : ~ι, and a
special free µ-variable κ : ι, which doesn’t appear in M∗c but may appear in an arbitrary
realizer. This free µ-variable will only be used for extraction, as a channel to transmit the
extracted value. In categories of continuations, a term M : T of λµ with λ-context Γ and
µ-context ∆ is interpreted as a morphism in C (Γ, T &∆) where &is the pretensor defined
by �X &

�Y ∆= �X×Y , see [25]. Therefore, we adapt the realizability semantics, with the
realizability value of a formula A being now |A|

c
⊆ C (1, A∗ &

ι). The parameter |⊥|
c
is now

a subset of C (1, � &

ι), which is isomorphic to the homset C (1, ι) used in the previous direct
interpretation. The difference is that now we can choose � 6= ι and take � to be a “truly”
empty object. The new realizability value for atomic predicates is:∣∣P (~t)∣∣

c

∆=
{
|⊥⇒⊥|

c
if ~t∗ ∈ {|P |}

{φ | if ψ ∈ C (1, � &

ι) then φψ ∈ |⊥|
c
} otherwise

and the other definitions go through easily, the “ &

ι” part being carried over transparently
as a “semantic” free µ-variable. For the definition of |∀xA|

c
, the morphism ψ ∈ 〈|ι|〉 ⊆ C (1, ι)

is viewed as a morphism in C (1, ι &

ι) by adding the semantic µ-variable κ with weakening,
that is, post-composing ψ with wlι,ι (with the notations of [25], r emark 2.6). Adequacy still
holds and the extraction theorem is very similar to the previous one:
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I Theorem 7 (Extraction). From a proof of Ax c̀ ∀x∃y P
(
~t
)
where FV

(
~t
)
⊆ {x; y}, we

can extract a morphism φ ∈ C (1, ι→ ι) such that for any ψ ∈ 〈|ι|〉, φψ ∈ 〈|ι|〉 and:

~t∗ {ψ/x, φψ/y} ∈ {|P |}

Proof. Write ~pA : ~A c̀ M : ∀x ∃y P
(
~t
)
where ~A ⊆ Ax. Adequacy gives for any ψ ∈ 〈|ι|〉:

M∗c

{
~ζA/ ~pA

}
ψ ∈

∣∣∃y P (~t {ψ/x})∣∣
c

=
∣∣¬∀y ¬P (~t {ψ/x})∣∣

c

We fix now the parameter |⊥|
c
⊆ C (1, � &

ι):

|⊥|
c

=
{
ζ ∈ C (1, � &

ι)
∣∣ µκ.ζ ∈ 〈|ι|〉 and ~t∗ {ψ/x, µκ.ζ/y} ∈ {|P |}

}
Here, the morphism ζ ∈ C (1, � &

ι) is viewed as a term of λµ of type � with the special
free µ-variable κ of type ι, and therefore µκ.ζ ∈ C (1, ι). We prove that λyp.p ([κ] y) ∈∣∣∀y ¬P (~t {ψ/x})∣∣

c
by taking ϕ ∈ 〈|ι|〉 and ξ ∈

∣∣P (~t {ψ/x, ϕ/y})∣∣
c
and showing ξ ([κ]ϕ) ∈

|⊥|
c
. We distinguish two cases. If ~t∗ {ψ/x, ϕ/y} ∈ {|P |}, then ξ ∈ |⊥⇒⊥|

c
and we are left

to prove [κ]ϕ ∈ |⊥|
c
, which is true since µκ. [κ]ϕ = ϕ (because the semantic µ-variable κ

doesn’t appear in ϕ which comes from weakening), ϕ ∈ 〈|ι|〉 and ~t∗ {ψ/x, ϕ/y} ∈ {|P |}. In
the other case ~t∗ {ψ/x, ϕ/y} /∈ {|P |}, and ξ ([κ]ϕ) ∈ |⊥|

c
by definition of

∣∣P (~t {ψ/x, ϕ/y})∣∣
c
,

since [κ]ϕ ∈ C (1, � &

ι). Therefore we get:

φ0 = M∗
{
~ζA/ ~pA

}
ψ (λyp.p ([κ] y)) ∈ |⊥|

c

so µκ.φ0 ∈ 〈|ι|〉 and ~t∗ {ψ/x, µκ.φ0/y} ∈ {|P |} by definition of |⊥|
c
. Finally, the following

morphism has the required property:

φ = λx.µκ.M∗
{
~ζA/ ~pA

}
x (λyp.p ([κ] y)) . J

The computational behavior of the extracted term is different from that of the extracted
term of Section 2.6, because as soon as the argument (λyp.p ([κ] y)) is called inside M∗c,
y receives a value which is directly transmitted over channel κ and redirected to toplevel.
Conversely, in the previous direct interpretation, once the argument (λyp.p y) was called,
the value given to y had to go through all the call stack before returning to toplevel. This
interpretation corresponds to the meaning of the control features of λµ-calculus.

This new direct interpretation’s improvement relies heavily on the fact that we do not
require � = ι anymore, and we can choose � to be a “truly” empty object. We will see in the
next sections that the ability to choose � 6= ι is very dependent on the particular model that
we choose.

3.1 Failure in Scott domains
In this section, we explain why in Scott domains, we have no choice but to take � = ι if
we want ι to be in the category of continuations. Recall that a Scott domain is a partial
order with a least element, least upper bounds of directed subsets, least upper bounds of
non-empty upper-bounded subsets, and which is algebraic (see e.g. [3] for the definitions and
basic properties). The standard domain interpretation of a base type ι with set-theoretic
interpretation [[ι]] is [[ι]]⊥ = ([[ι]] ∪ {⊥},≤) with x ≤ y if and only if x = y or x = ⊥. First, we
should ask ourselves what should D be if �D is a category of continuations of domains. The
category of Scott domains is cartesian closed and has fixpoints: for any morphism φ : X → X

there is a morphism ψ : 1→ X such that ψ;φ = ψ. It is well-known that a bicartesian closed
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category with fixpoints has to be trivial (since in that case 1 ' 0). Therefore, since D should
have coproducts, we should relax one of the conditions of Scott domains. The most natural
choice is to drop the requirement of existence of a least element and define D as the category
of unpointed Scott domains. In that case, the set-theoretic disjoint union provide D with a
bicartesian closed structure, at the expense of not having fixpoints. We can now state the
following failure lemma:

I Lemma 8. If D is a category of unpointed Scott domains, if C = �D is a category of Scott
domains, if [[ι]] 6= ∅ and if [[ι]]⊥ is an object of C, then � ' [[ι]]⊥.

Proof. Suppose [[ι]]⊥ is an object of C = �D. Then there is some unpointed domain X in
D such that [[ι]]⊥ is the domain �X of functions from X to �. If X is empty then �X has
only one element, which is impossible since [[ι]] 6= ∅. If X has only one element, then X ' 1
and � ' [[ι]]⊥, which is the conclusion of the lemma. Suppose now that X has at least two
elements a 6= b. We will derive a contradiction. Since X is non-empty and �X = [[ι]]⊥ is
pointed, � is also pointed and we write ⊥� for its least element. If � = {⊥�} then �X has
only one element, which is impossible since [[ι]] 6= ∅. Therefore there must be some c 6= ⊥� in
�. Since X is algebraic, we can suppose without loss of generality that a and b are compact
(a non-compact element dominates infinitely many compact elements), and since a 6= b, we
can also suppose without loss of generality that a � b. Define now monotone continuous
functions f , g and h from X to � by:

f (x) = ⊥� g (x) =
{

c if x ≥ b
⊥� otherwise

h (x) = c

From the above assumptions we have f < g < h (a � b ensures g 6= h), but [[ι]]⊥ has no chain
of length > 2, so �X 6' [[ι]]⊥. J

3.2 Bistable bicpos
In this section we prove that the category of bistable bicpos [19] is a category of continuations
�D in which the natural interpretation of ι is in general different from �. First we recall the
definition of bistable biorders and bistable functions:

I Definition 9 (Bistable Biorder). A bistable biorder is a partial order (X,≤) together
with an equivalence relation l on X such that for each l-equivalence class E,

(
E,≤|E

)
is a

distributive lattice and the inclusion E ⊆ X preserves meets and joins.

I Definition 10 (Bistable Function). A bistable function from (X,≤X , lX) to (Y,≤Y , lY ) is
a monotone function f : X → Y such that for any x, y ∈ X, x lX y implies:

f (x) lY f (y) f (x ∧ y) = f (x) ∧ f (y) f (x ∨ y) = f (x) ∨ f (y)

The set Y X of bistable functions from (X,≤X , lX) to (Y,≤Y , lY ) is itself a bistable biorder:

I Lemma 11. If f, g are bistable functions from (X,≤X , lX) to (Y,≤Y , lY ), define:

f ≤Y X g ≡ ∀x ∈ X, f (x) ≤Y g (x)

f lY X g ≡


∀x ∈ X, f (x) lY g (x)

∀x, y ∈ X,x lX y ⇒

{
f (x) ∧ g (y) = f (y) ∧ g (x)
f (x) ∨ g (y) = f (y) ∨ g (x)

(note that if x lX y then f (x) lY f (y) lY g (x) lY g (y) )(
Y X ,≤Y X , lY X

)
is a bistable biorder.
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As shown in [19], the category of bistable biorders is bicartesian closed, the product and
coproduct of bistable biorders being defined pointwise. Bistable bicpos are then defined by
adding notions of completeness and continuity to bistable biorders:

I Definition 12. Let (X,≤, l) be a bistable biorder. If E,F are directed subsets of X, write
E l F if for any x ∈ E and y ∈ F there exists x′ ∈ E and y′ ∈ F such that x ≤ x′, y ≤ y′

and x′ l y′. (X,≤, l) is a bistable bicpo if (X,≤) has least upper bounds of directed subsets
and for any E l F ,

∨
E l

∨
F and

∨
E ∧

∨
F =

∨
{x ∧ y | x ∈ E, y ∈ F, x l y}.

Similarly to the case of Scott domains, we say that a bistable bicpo is pointed if it has both a
least and a greatest element which are l-equivalent. The category of unpointed bistable bicpos
and bistable continuous functions is bicartesian closed, while the full subcategory of pointed
bistable bicpos is cartesian closed and has fixpoints. The standard interpretation of a base
type ι with set-theoretic interpretation [[ι]] is the bistable bicpo [[ι]]>⊥ = ([[ι]] ∪ {⊥;>},≤, l)
with x ≤ y if and only if x = y or x = ⊥ or y = >, and x l y if and only if x = y or
{x; y} = {⊥;>}. If we choose D to be the category of unpointed bistable bicpos and � = ∅>⊥,
then C = �D is a category of continuations of bistable bicpos and all [[ι]]>⊥ are objects of C.
Indeed, it was proved in [19] (for [[ι]] = N, but the extension to arbitrary [[ι]] is straightforward)
that if [[ι]] denotes the unpointed bistable bicpo ([[ι]] ,≤, l) with x ≤ y if and only if x = y

and x l y if and only if x = y, then [[ι]]>⊥ is isomorphic to the space of bistable continuous
functions from

(
∅>⊥
)[[ι]] to ∅>⊥.

One may wonder if the failure in Scott domains was not simply because we interpreted
the datatype with values in [[ι]] as [[ι]]⊥ rather than [[ι]]>⊥, which is also a Scott domain.
This is not the case, since the space of monotone continuous functions from ∅>⊥

[[ι]] (where
[[ι]] is the unpointed Scott domain with x ≤ y iff x = y) to ∅>⊥ is isomorphic to the
set {E ⊆ Pfin ([[ι]]) | E ∈ E ∧ E ⊆ F ⇒ F ∈ E} ordered with inclusion, which is clearly not
isomorphic to [[ι]]>⊥. A careful analysis shows that if we restrict ourselves to bistable continuous
functions, then the sets E ⊆ Pfin ([[ι]]) above also have to satisfy: E ∈ E∧F ∈ E ⇒ E∩F ∈ E
and E ∪ F ∈ E ⇒ E ∈ E ∨ F ∈ E . The only possibilities are then E = ∅, E = Pfin ([[ι]]) and
E = {E ∈ Pfin ([[ι]]) | v ∈ E} for v ∈ [[ι]], and we indeed get back [[ι]]>⊥.

3.3 Game semantics
In this section, we take C to be the category of unbracketed non-innocent but single-
threaded Hyland-Ong games. Hyland-Ong game semantics provide precise models of various
programming languages such as PCF [13, 21, 2], also augmented with control operators [18]
and higher-order references [1]. In game semantics, plays are interaction traces between
a program (player P ) and an environment (opponent O). A program is interpreted by a
strategy for P which represents the interactions it can have with any environment. We will
only define what is necessary for our result, and we refer to e.g. [10] for the full definitions
and properties. In the category C, objects are arenas and morphisms are strategies:

I Definition 13 (Arena). An arena is a countably branching, finite depth forest of moves.
Each move is given a polarity O (for Opponent) or P (for Player or Proponent): a root is of
polarity O and a move which is not a root has the inverse polarity than that of his parent.
A root of an arena is also called an initial move.

I Definition 14 (Play, Strategy). A play on an arena X is a justified sequence of moves of
X with alternating polarities, starting with an O-move. A strategy on X is a non-empty
even-prefix-closed set of even-length plays on X which is deterministic and single-threaded.
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A play on an arena is the trace of an interaction between a program and a context, each one
performing an action alternately, and a strategy represents all the interactions that a given
program can have with its environment. The definitions of justified sequence, determinism and
single-threadedness are standard and can be found for example in [10]. C is cartesian closed
and has countable products, the I-indexed product of {Xi | i ∈ I} being the juxtaposition of
arenas Xi, and if X and Y are arenas consisting of the trees X1 . . . Xp . . . and Y1 . . . Yq . . .,
then the arena Y X can be represented as follows (roots are at the top):

Y1 · · ·

X1 · · · Xp
· · ·

Yq · · ·

X1 · · · Xp
· · ·

The standard interpretation of a base type ι in C is the flat arena [[ι]]† associated to the
set-theoretic interpretation [[ι]] of ι. This flat arena is the tree with one root move and a
child move for each element of [[ι]] = {a1; a2; . . . ; ai; . . .}:

•

a1 a2 · · · ai · · ·

As in the cases of Scott domains and bistable bicpos, if we want to get a category of
continuations �D, we must first find out what D should be. In game semantics, however,
there is no natural notion of unpointed arena, since the strategy consisting of only the empty
play is always a least element. We will therefore simply take D to be the countable coproduct
completion Fam (C) of C:

I Definition 15 (Fam (C)). The objects of Fam (C) are families of objects of C indexed by
countable sets, and a morphism from {Xi | i ∈ I} to {Yj | j ∈ J} is a function f : I → J

together with a family of morphisms of C from Xi to Yf(i), for i ∈ I.

Fam (C) is a distributive category, the empty product being the singleton family {1}, the
product of {Xi | i ∈ I} and {Yj | j ∈ J} being {Xi × Yj | (i, j) ∈ I × J}, the empty coproduct
being the empty family {}, and the coproduct of two families being the disjoint union of the
two families. Fam (C) is not cartesian closed, but has exponentials of all singleton families:
the object of functions from {Xi | i ∈ I} to the singleton family {Y } is the singleton family{

Πi∈IY
Xi
}
. This property implies that if � is a singleton family, then �D = �Fam(C) is a

category of continuations. We now prove that if we choose � carefully, we can completely
reveal the continuation structure of C:

I Lemma 16. If � =
{
∅†
}
, then the category �D = �Fam(C) is isomorphic to the category C.

Proof. Since
{
∅†
}
is a singleton family, the objects of �D are all singleton families and we

have a functor from �D to C which is full, faithful and strictly injective on objects and which
maps {X} to X and (Id, φ) ∈ �D ({X}, {Y }) to φ ∈ C (X,Y ). We now show that it is also
surjective on objects, so it is an isomorphism of categories. This amounts to show that any
arena X can be written as Πi∈I

(
∅†
)Yi , but this is immediate if one takes I to be the set of

roots of X and Yi to be the forest under root i ∈ I in X. J

Therefore C is (isomorphic to) a category of continuations �D where � 6= ι, which was our
goal. Note that this result is stronger than the one on bistable bicpos, since �D is not only a
category of continuations of arenas which has the natural interpretation of ι as an object,
but �D is isomorphic to the category C of arenas.
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We now examine the extraction technique presented at the beginning of Section 3 in the
particular case of game semantics. In order to have a realizability model, we define 〈|ι|〉 to be
the set of all strategies on [[ι]]† but {ε}, so we have 〈|ι|〉 ' [[ι]]. We write a for the strategy on
[[ι]]† corresponding to a ∈ [[ι]] (it answers a to the unique initial move), so 〈|ι|〉 = {a | a ∈ [[ι]]}.
The extraction technique for classical proofs presented at the beginning of Section 3 becomes
in this setting:

I Theorem 17 (Extraction). Suppose given a strategy ζA ∈ |A|c for each A ∈ Ax. We can
extract from a proof of Ax c̀ ∀x∃y P

(
~t
)
where FV

(
~t
)
⊆ {x; y} a strategy φ on the arena(

[[ι]]†
)[[ι]]†

such that for any a ∈ [[ι]], φa = b for some b ∈ [[ι]], and ~t∗ {a/x, b/y} ∈ {|P |}.

Let us compare now the arena where realizers of the formula ∀x∃y P
(
~t
)
live in the standard

and new interpretations. First, we have:(
∀x∃y P

(
~t
))∗c =

(
∀x¬∀y ¬P

(
~t
))∗c = ι→ (ι→ (� → �)→ �)→ �

In the standard interpretation, � = ι is [[ι]]†, the flat arena for [[ι]], so the arena of realizers is
[[ι]]† ⇒

(
[[ι]]† ⇒

(
[[ι]]† ⇒ [[ι]]†

)
⇒ [[ι]]†

)
⇒ [[ι]]†. In the new interpretation however, � is the

one-move arena ∅†, and a “ &

ι” is added, so the arena of the realizers of the same formula is(
[[ι]]† ⇒

(
[[ι]]† ⇒

(
∅† ⇒ ∅†

)
⇒ ∅†

)
⇒ ∅†

) &[[ι]]†. The two arenas are as follows:

standard interpretation: new interpretation:

•

• • ~a

~a • • ~a

~a • ~a

~a

•

• • ~a

~a • •

~a •

where ~a represents the sequence of all elements of [[ι]]. We can observe that the flat arenas for
the atomic formulas in the standard interpretation are replaced with one-move arenas in the
new interpretation, and a set of moves ~a is added, but only under the root (this corresponds
to the “ &

ι”). On the computational level, when in the standard interpretation a realizer
gives a value for an atomic formula, this value is copied to the various parts of the arena
which are in the call stack. Conversely, in the new interpretation the realizer writes the value
directly under the root and the computation stops (this corresponds to the interpretation of
µ-variables as “channels”).

4 Conclusion

We defined a method to extract strategies of game semantics from classical proofs. This
method uses peculiarities of the games model allowing the interpretation of the ⊥ formula as
an empty type while still being able to extract computational content, through the use of
an external “output channel” on which the extracted value is transmitted, without going
through all the call stack. It would be interesting to compare these results with the technique
described in [20], which also reduces the amount of recursive calls, but takes place in an
untyped, syntactic setting. Working with non-innocent games also has the advantage that
we have access to higher-order references which could be used to write efficient realizers.
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