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Adiabaticity when raising a uniform 3D optical lattice in a bimodal Bose-Einstein condensate

Using the time-dependent Bogoliubov approach, we study adiabaticity for a two-component Bose-Einstein condensate in a 3D time-dependent optical lattice with unit filling, in the superfluid and weakly interacting regime. We show that raising the lattice potential height can couple the ground state of the Bogoliubov Hamiltonian to excited states with two quasiparticles of opposite quasimomenta. In the symmetric case for interactions and density in the two components these represent sound waves where the two components oscillate out of phase. We find an analytic expression of the adiabatic time, its dependence on the fraction of atoms in each component and its scaling with the system size.

I. INTRODUCTION

Spinor bosonic or fermionic atoms in optical lattices are playing an increasingly important role at the crossing of different fields such as statistical physics, condensed matter, atomic physics and quantum technologies. Actively investigated in present experiments, these systems display non trivial phase transitions and ground states stemming from the interplay between the spin and the external degrees of freedom of the atoms [1], and can be used to investigate novel superfluidity mechanisms [2]. Furthermore, they constitute a powerful platform for quantum computation [3,4], and offer fascinating perspectives for entangled state preparation and quantum metrology [5,6]. Among the different proposals using cold atoms in an optical lattice, several protocols require the possibility to adiabatically ramp up the optical lattice in the multi-component cold atoms system.

In close relation with the first experimental realizations, adiabaticity has been mainly studied, both experimentally [7] and theoretically [8,9] for a single species and in the presence of an external harmonic potential that brakes the translational symmetry of the lattice. In this paper we concentrate on the case of a uniform optical lattice, that is now possible to prepare in the laboratory thanks to the development of flat-bottom potentials [10,11]. We shall consider a single-component or a two-component condensate in the superfluid regime and study the adiabaticity condition when raising the lattice within the time-dependent Bogoliubov approach. For a quantum system with a discrete spectrum ĤΨ k = E k Ψ k , initially in its ground state Ψ 0 , the adiabaticity condition when a parameter of the Hamiltonian is varied in time starting from t = 0 takes the form [START_REF] Messiah | Mécanique quantique[END_REF] 

Ψ k (t)| d dt Ψ 0 (t) |E k (t) -E 0 (t)| 1 ∀k = 0, ∀t > 0 (1) 
Ψ k (t)| d dt Ψ 0 (t) is the coupling between the instantaneous ground state and other eigenstates, and E k (t) -E 0 (t) is the energy difference. The condition (1) can be equivalently rewritten as

Ψ k (t)|i d Ĥ dt |Ψ 0 (t) |E k (0) -E 0 (t)| 2 1 ∀k = 0, ∀t > 0 (2)
We will use this last formulation to interpret our result. Our paper is structured as follows: after recalling the Bose-Hubbard model and introducing all notations, the adiabaticity criterion for a single component Bose-Einstein condensate is derived in section II. The analysis is extended to the case of a two-components system in section III. While in this section we keep our formalism general, allowing to address the case where the atoms in the two components might have different masses, in the following we concentrate on the case of equal masses corresponding to different hyperfine states of the same atomic species. For this case, in section IV, we derive the adiabatic time for a linear ramp and we investigate the influence of a density imbalance between the two components. Conclusions are drown in section V.

II. ADIABATICITY CRITERION FOR A SINGLE COMPONENT

In the adiabatic evolution, when an external parameter of the Hamiltonian is changed in time, the quantum state remains an instantaneous eigenstate of the timedependent Hamiltonian at all times. On the contrary, if the change is too fast, the state will contain an admixture of excited states. For a Bose-Einstein condensate in an optical lattice in the weakly interacting regime, when the system is superfluid, the excitations are well described as Bogoliubov quasi-particles. We will regard the evolution as adiabatic as long as the total density of excited quasiparticles remains much less than one at all times.

A. Single component Bose-Hubbard model

We describe a system of N ultra-cold atoms, all in the same internal state and subject to an optical lattice potential, by the Bose-Hubbard Hamiltonian [START_REF] Jaksch | [END_REF] 

Ĥ(t) = -J(t) i,j â † i (t)â j (t) + U (t) 2 i ni (t)[n i (t) -1],
(3) where â † i (t) creates a particle in the single-particle Wannier state w i (r, t) of the lowest energy band (l = 1) localized on the i-th site. The Bose-Hubbard model (3) considers only states in the lowest energy band, which is justified as long as the excitations energies to the higher bands are much larger than the energies involved in the system dynamics. The Wannier states w i (r, t) are conveniently constructed from the lowest band Bloch states ψ l=1,q (r, t) in the following way

w i (r, t) = 1 √ M q∈BZ e -iqR i ψ l=1,q (r, t), (4) 
with

R i = d(i x u x + i y u y + i z u z )
, where d = λ/2 is the lattice spacing that we assume identical in the three spatial directions (λ is the optical lattice wavelength), u α are unit vectors and i x , i y , i z are integers. Summation in Eq. ( 4) extends over wave vectors belonging to the 1st Brillouin zone and M is the number of lattice sites. The Bloch states ψ l,q (r, t), labeled by the band index l and the quasi-momentum q, are eigenstates of the singleparticle Hamiltonian ĥ(t) = -

2 2m ∇ 2 + V 0 (t) α=x,y,z sin 2 (kα), (5) 
where k = 2π/λ and V 0 (t) is the lattice potential height. If V 0 (t) is varied in time, the Wannier states and hence the creation and annihilation operators in the Bose-Hubbard Hamiltonian (3), as well as the hoping J(t) and interaction U (t) parameters, depend on time

U (t) = 4πa s 2 m d 3 r |w(r, t)| 4 , (6a) 
J(t) = d 3 r w * i (r, t) - 2 2m ∇ 2 +V 0 (t) α=x,y,z sin 2 (kα) w j (r, t), (6b) 
where a s is the s-wave scattering length characterizing binary short range interactions between cold atoms and m is the mass of an atom. In the limit in which V 0 E R where E R = 2 k 2 /(2m) is the recoil energy, the dependence of U and J on the lattice height V 0 can be approx-imated by [14,15] 

U (V 0 ) = E R 8 π ka s V 0 E R 3/4 , (7a) 
J(V 0 ) = E R 4 √ π V 0 E R 3/4 e -2 V 0 E R . (7b) 
For brevity, we shall omit in the following to mark the band index l = 1 for the Bloch states of the lowest band.

B. Number-conserving Bogoliubov approach

We start from the Bose-Hubbard Hamiltonian (3) written in the quasi-momentum representation

Ĥ(t) = q q (t)â † q âq + U (t) 2M q1,q2,k â † q1-k â † q2+k âq1 âq2 , (8) 
contrarily to the homogeneous case, the kinetic energy in the lattice takes the form

q (t) = -2J(t) α=x,y,z cos(q • du α ). (9) 
In Eq. ( 8) and further we omit the explicit time dependence of the creation and annihilation operators to simplify the notation, but we keep in mind that, even in the Schrödinger picture, â † q and âq depend on time. In the number conserving Bogoliubov approach the amplitude of the field in the condensate mode is finally eliminated, and the interacting system is described as an ensemble of quasiparticles in the modes orthogonal to the condensate mode. The small parameter of the theory is the non-condensed fraction, and to the lowest non-zero order, that is the Bogoliubov order, the quasiparticles do not interact. The first step to find the Bogoliubov quasiparticles is to quadratize the Hamiltonian with respect to the non-condensed field. One then obtains

Ĥ(t) N 0 (t) + U (t) 2 n + q =0 â † q âq [ q (t) -µ(t)] + U (t) 2M q =0 â † 0 â † 0 âq â-q + â0 â0 â † q â † -q + 4N â † q âq ( 10 
)
where n = N/M is the total atom density and the chemical potential is defined as

µ(t) = 0 (t) + U (t)n. (11) 
To obtain Eq. ( 10), the relation â † 0 â0 = N -δ N , where δ N = q =0 â † q âq , was used. We now introduce the number conserving operators

Λq = 1 √ N â † 0 âq ( 12 
)
in terms of which the Bogoliubov Hamiltonian (10) takes its final form

ĤBog (t) = H 0 (t) + 1 2 q =0 Λ † q , Λ-q σ z L q Λq Λ † -q , (13) 
where the ground state energy is

H 0 (t) = N 0 (t) + U (t) 2 n - 1 2 q =0 [ q (t) -µ(t) + 2U (t)n] , (14) 
the non-hermitian matrix L q has the form

L q = q (t) -µ(t) + 2U (t)n U (t)n -U (t)n -[ q (t) -µ(t) + 2U (t)n] , (15) 
and σ z is the third Pauli matrix. In the derivation of (13) we used the following approximation

Λ † k Λq = â † k âq â0 â † 0 N ≈ â † k âq , (16) 
consistent with the fact that we retain only terms that are at most quadratic in the non-condensed field. The Bogoliubov transformation

T q (t) bq b † -q = ūq (t) -v q (t) -v q (t) ūq (t) Tq(t) Λq Λ † -q , (17) 
diagonalizes the quadratic Hamiltonian [START_REF] Jaksch | [END_REF] in terms of the Bogoliubov operators bq and b † q that satisfy bosonic commutation relations [ bq , b † q ] = δ q,q ĤBog (t) =H 0 + 1 2

q =0 ω q (t) + q =0 ω q (t) b † q bq , ( 18 
)
where the Bogoliubov energy has the form

ω q (t) = ∆E q (t) [∆E q (t) + 2μ(t)] , (19) 
∆E q (t) = q (t) -0 (t) , (20) μ 
(t) = µ(t) -0 (t) = U (t)n , (21) 
and the Bogoliubov modes are ūq (t) + vq (t) = ∆E q (t) ∆E q (t) + 2μ(t)

1/4 , (22) 
ūq (t) -vq (t) = ∆E q (t) ∆E q (t) + 2μ(t) -1/4 . ( 23 
)
In the limit of a small quasi-momentum dq 1 and for ∆E q U (t)n, the Bogoliubov energy ( 19) has a phonon-like dispersion

ω q (t) = c(t)q (24) 
where c(t) = a 2J(t)U (t)n/ is the sound velocity. The Bogoliubov spectrum for a condensate in a uniform lattice was already found in [16] within the usual symmetrybreaking approach.

C. Time evolution in the Heisenberg picture

The column vector composed of Bogoliubov quasiparticle annihilation and creation operators

Bq (t) = bq (t) b † -q (t) , (25) 
evolves according to the Heisenberg equation of motion

d dt Bq (t) = i [ ĤBog (t), Bq (t)] + ∂ Bq (t) ∂t H . ( 26 
)
The first part on the right-hand side of ( 26) represents the free evolution of the quasi-particles

[ ĤBog (t), Bq (t)] = -ω q (t)σ z Bq (t) . ( 27 
)
According to the Bogoliubov transformation ( 17), the second part on the right-hand side of ( 26) reads

∂ Bq (t) ∂t H = dT q (t) dt T -1 q (t) Bq (t)+T q (t)∂ t Λq (t) Λ † -q (t) (28 
) By using the identity ū2 q (t)-v2 q (t) = 1 one can show that

dT q (t) dt T -1 q (t) = -Ω q (t)σ x , (29) 
where

Ω q (t) = ūq (t) d dt vq (t) -vq (t) d dt ūq (t), (30) 
and σ x is the first Pauli matrix. The coupling Ω q (t) can be expressed in terms of the quasi-particles energies, and takes the form

Ω q (t) = d dt log(ū q + vq ) = 1 2 d dt log ∆E q (t) ω q (t) . (31) 
Let us now deal with the second term on the right-hand side of Eq. ( 28). The time derivative of the numberconserving operator ( 12) is

∂ t Λq (t) = 1 √ N ∂â † 0 (t) ∂t âq (t) + â † 0 (t) ∂â q (t) ∂t . (32) 
By using the definition of the creation and annihilation operators in the first Bloch band

âq (t) = d 3 r ψ * q (r, t) Ψ(r), (33) 
and expanding the field operator on the complete set of time-dependent Bloch states

Ψ(r) = k ψ k (r, t)â k (t) + l =1,k ψ l,k (r, t)â l,k (t) (34) one obtains ∂ t âq (t) = k C * k,q (t)â k (t) + l =1,k C * l,k,q (t)â l,k (t), (35) 
where

C k,q (t) = d 3 r ψ * k (r, t) ∂ ∂t ψ q (r, t), (36) 
C l,k,q (t) = d 3 r ψ * l,k (r, t) ∂ ∂t ψ q (r, t). ( 37 
)
the first sum on the right-hand side of Eq. ( 35) runs within the lowest energy band, while the second one runs over all the other bands. For ramping times that are long with respect to the inverse recoil frequency /E R , one can neglect all inter-band couplings, i.e. C l,k,q = 0. Moreover, from the conservation of quasi-momentum we know that C k,q (t) = δ q,k C q,q (t) (see Appendix A). The time derivative (32) of the number conserving operators is then

∂ t Λq (t) Λ † -q (t) = C * q,q (t) Λq (t) Λ † -q (t) , ( 38 
)
where we used the relations C -q,-q (t) = C * q,q (t) and C 0,0 (t) = 0 [START_REF]From the normalization of the Bloch states one can show that Re{Cq,q(t)} = 0. Moreover[END_REF] for the Bloch states in (36).

Gathering all the terms, the Heisenberg equation ( 26) for Bq (t) takes the form

i d dt Bq (t) = [ ω q (t)σ z -i Ω q (t)σ x ] Bq (t) + i C * q,q (t) Bq (t). ( 39 
)
Notice that the second term in the above equation gives a global time-dependent phase factor, which can be removed by a gauge transformation. Finally, the solution of the Heisenberg equation ( 26) can be cast in the simple form

Bq (t) = A q (t) B q (t) bq (0) + B * q (t) A * q (t) b † -q (0), (40) 
where

i d dt A q (t) B q (t) = ω q (t) -i Ω q (t) -i Ω q (t) -ω q (t) A q (t) B q (t) , (41) 
with the initial conditions A q (0) = 1 and B q (0) = 0.

D. The adiabaticity parameter

During time evolution some Bogoliubov quasi-particles will be excited with respect to the quasi-particle vacuum state. The number quasi-particles created in mode q is determined by the coefficient B q (t):

n ex q (t) = Ψ Bog (0)| b † q (t) bq (t)|Ψ Bog (0) = |B q (t)| 2 , ( 42 
)
where |Ψ Bog (0) is the Bogoliubov vacuum state at time t = 0. Excitations are avoided by suppressing the coupling between A q (t) and B q (t) in Eq. ( 41), which brings us to the adiabaticity condition

α q (t) = Ω q (t) 2 ω q (t) 1, ∀q, (43) 
where Ω q is the coupling (31) and ω q is the Bogoliubov energy (19). Since both | Ω q (t)| and 1/ ω q (t) are monotonically decreasing functions of q, the left-hand side of Eq. ( 43) reaches its maximum value for minimal quasimomenta |q min | = q min . We thus introduce the adiabaticity parameter α as:

α = max 0≤t≤tramp α qmin (t), (44) 
α qmin (t) ≡ 4∆E qmin d dt ∆E qmin ω qmin . ( 45 
)
1. Limit of large N By expanding Eq. ( 9), ( 19) and (31) for a small wave vector q and non-zero interactions: one obtains

α qmin (t) qmin→0 = 4J(t) d dt J(t) c(t)q min . ( 46 
)
The expression of the minimum wavenumber in the lattice

q min d = 2π N 1/3 , (47) 
gives a scaling N 1/3 to the adiabaticity parameter. In the case of a linear ramp changing between V min and V max in a time t ramp

V 0 (t) = V max -V min t ramp t + V min , (48) 
taking n = 1, and using the approximated formulas (7a)-(7b) for a deep enough lattice, we deduce the adiabatic time t adiab such that the evolution is adiabatic for t ramp t adiab ,

t adiab = E R V max -V min E R N 1/3 64( √ 2πka s ) 1/2 × max Vmin≤V0≤Vmax E R V 0 5/4 e V 0 E R . ( 49 
)
Note that the fact the formula gives a diverging time in the limit V 0 /E R → ∞ (corresponding to J → 0) is not relevant here as our analysis is restricted to the superfluid regime were a condensate is present.

Ideal gas

When interactions tends to zero, i.e. U → 0 we cannot linearize the dispersion relation of quasi-particles. One rather has ω q (t) → ∆E q (t), (50) Ω q (t) → 0 .

(51)

In the ideal gas regime all the particles occupy the instantaneous q = 0 mode during time evolution and the evolution is always adiabatic. This effect is a consequence of quasi-momentum conservation, deriving from the fact the although the lattice height increases, the periodicity of the lattice is unchanged.

E. Interpretation of the adiabatic parameter

In this subsection we explicit the link between Eq. (43) and Eq. ( 2), gaining some physical insight into our result. Let us take the time derivative of the Bogoliubov Hamiltonian ( 18)

i d dt ĤBog (t) = i dH 0 dt +i q =0 d( ω q (t)) dt 1 2 + b † q bq + ω q (t) i d b † q dt bq + b † q d bq dt . (52) 
The term in the first line of (52) cannot change the number of quasi-particles and will play no role. For the term in square brackets in the second line, using Eq (39) we find

i d b † q dt bq + b † q d bq dt = -i Ω q b-q bq + b † q b † -q , ( 53 
)
showing that the time derivative of the Hamiltonian can couple the Bogoliubov ground state to states with two quasi-particles with opposite quasi-momenta

1 : q, 1 : -q| b † q b † -q |0 = 1, (54) 
the energy difference being 2 ω q . Using Eq. ( 2), we then obtain the condition

α q (t) = |Ω q | 2 ω q 1, (55) 
that coincides with the adiabaticity condition (43).

III. ADIABATICITY CRITERION FOR TWO-COMPONENTS

In this section we extend the reasoning presented in section II to derive an adiabaticity condition for the twocomponent system, including the case of different masses in the two components, corresponding to different isotopes [START_REF] Papp | [END_REF] or different atomic species [19,20].

A. Two-components Bose-Hubbard model

We consider a two-component Bose-Einstein condensate in an optical lattice potential.

As the atoms in the two components might have different masses, we introduce two tunneling parameters J a (t) and J b (t) of the Bose-Hubbard Hamiltonian, and two kinetic energies q,a , q,b and ∆E q,a , ∆E q,b defined as in equations (6b), (9) and (20). The interactions between atoms may also be different for different components. For convenience we introduce the interaction parameters

U σ (t) = a σ a s U (t), with σ = a, b, ab, (56) 
with a σ=a,b,ab the s-wave scattering lengths respectively for two atoms in the state |a , two atoms in the state |b , or one atom in |a and the other in |b , where U (t) is still defined by Eq. (6a). We restrict here to the case of repulsive interactions U σ > 0 for σ = a, b, ab and to the miscible regime U ab < √ U a U b [21][22][23]. We note N a and N b the average number of atoms in each component, and N = N a + N b the total number of atoms.

B. Bogoliubov description for two-components

The Bose-Hubbard Hamiltonian for the twocomponent system in the quasi-momentum representation takes the form

Ĥ2C (t) = q q,a (t)ĉ † q,a ĉq,a + q,b (t)ĉ † q,b ĉq,b + q1,q2,k U a (t) 2M ĉ † q1-k,a ĉ † q2+k,a ĉq1,a ĉq2,a + U b (t) 2M ĉ † q1-k,b ĉ † q2+k,b ĉq1,b ĉq2,b + U ab (t) M ĉ † q1-k,a ĉ † q2+k,b ĉq1,a ĉq2,b , (57) 
where ĉ † q,σ is the creation operator in the internal state |σ and quasi-momentum q. Similarly as in the singlecomponent case, we introduce a set of number conserving operators

Λq,a = 1 √ N a ĉ † 0,a ĉq,a , (58) 
Λq,b = 1 √ N b ĉ † 0,b ĉq,b . (59) 
In terms of the vector

Λ2C,q = Λq,a , Λ † -q,a , Λq,b , Λ † -q,b T , (60) 
the two-component Bogoliubov Hamiltonian (57), once quadratized, reads Ĥ2C,Bog (t) = H 2C,0 (t) + 1 2

q =0 Λ † 2C,q Σ z L 2C,q Λ2C,q , (61) 
where Σ z = σ z ⊕ σ z , and where the explicit form of the ground state energy H 2C,0 (t) and of the non-hermitian matrix L 2C,q , which are the two component equivalents of ( 14) and ( 15) respectively, is given in Appendix B. Equivalently to [START_REF]From the normalization of the Bloch states one can show that Re{Cq,q(t)} = 0. Moreover[END_REF], the Bogoliubov Hamiltonian (61) can be diagonalized using a Bogoliubov transformation: B2C,q (t) = T 2C,q (t) Λ2C,q ,

where we have introduced the vector B2C,q (t) = ( bq,+ (t), b † -q,+ (t), bq,-(t), b † -q,-(t)) T , (63) bq,± being annihilation operators of Bogoliubov quasiparticles, and the transformation matrix

T 2C,q (t) =     ūa q,+ (t) -v a q,+ (t) ūb q,+ (t) -v b q,+ (t) -v a q,+ (t) ūa q,+ (t) -v b q,+ (t) ūb q,+ (t) ūa q,-(t) -v a q,-(t) ūb q,-(t) -v b q,-(t) -v a q,-(t) ūa q,-(t) -v b q,-(t) ūb q,-(t)     .
(64) As in the homogeneous case without a lattice [START_REF] Castin | Les Houches LXXII:Coherent atomic matter waves[END_REF][START_REF] Tommasini | [END_REF][26][27], there are two excitation branches labeled ±:

ĤBog (t) = H 2C,0 (t) + 1 2 q =0 σ∈{+,-} ω q,σ (t) + q =0 σ∈{+,-} ω q,σ (t) b † q,σ (t) bq,σ (t), (65) 
of energies

ω q,± = ω 2 q,a + ω 2 q,b 2 
± ( ω 2 q,a -ω 2 q,b ) 2 4 + 4∆E q,a ∆E q,b U 2 ab n a n b   1/2 (66) 
where ω q,a(b) are defined as in the single component case (19) ω q,a = ∆E q,a (∆E q,a + 2U a n a ), ( 67)

ω q,b = ∆E q,b (∆E q,b + 2U b n b ), (68) 
with n σ = N σ /M . For single-particle unit filling M = N , n a and n b represent the fraction of atoms in component a and b respectively. The corresponding Bogoliubov amplitudes which appear in the transformation (62) are [26] 

        ūa q,± va q,± ūb q,± vb q,±         =         2U ab √ n a n b ∆E q,b (∆E q,a + ω q,± ) 2U ab √ n a n b ∆E q,b (∆E q,a -ω q,± ) ( ω 2 q,± -ω 2 q,a )(∆E q,b + ω q,± ) ( ω 2 q,± -ω 2 q,a )(∆E q,b -ω q,± )         χ q,± , (69) 
with the normalization coefficient χ q,± given by

χ q,± = [4∆E q,b ω q,± × 4∆E q,a ∆E q,b U 2 ab n a n b + ( ω 2 q,± -ω 2 q,a ) 2 -1/2 (70) is chosen to have σ=a,b |ū σ q,± | 2 -|v σ q,± | 2 = 1.

C. Heisenberg equation of motion

Following the procedure and arguments presented for the single component case in section II, the Heisenberg equation of motion for the operator B2C,q (t), defined in Eq. ( 63) takes the form

i d dt B2C,q (t) = [ ω q,+ (t)(σ z ⊕ 0 2×2 ) + ω q,-(t)(0 2×2 ⊕ σ z )] B2C,q (t) + i T 2C,q (t) dt T -1
2C,q (t) B2C,q (t) + i C * q,q B2C,q (t). ( 71)

The last term on the right-hand side of Eq. ( 71) gives a global time-dependent phase factor, which can be removed by a suitable gauge transformation. In general, the coupling term in the Eq. ( 71) is

T 2C,q (t) dt T -1 2C,q (t) =    0 -Ω q,+ (t) -Ω q,1 (t) -Ω q,2 (t) -Ω q,+ (t) 0 -Ω q,2 (t) -Ω q,1 (t) -Ω q,1 (t) -Ω q,2 (t) 0 -Ω q,-(t) -Ω q,2 (t) -Ω q,1 (t) -Ω q,-(t) 0    , ( 72 
)
with the following couplings

Ω q,± (t) = σ=a,b ūσ q,± (t) d dt vσ q,± (t) -vσ q,± (t) d dt ūσ q,± (t) (73) Ω q,1 (t) = σ=a,b vσ q,- (t) 
d dt vσ q,+ (t) -ūσ q,- (t) 
d dt ūσ q,+ (t), ( 74 
) Ω q,2 (t) = σ=a,b ūσ q,- (t) 
d dt vσ q,+ (t) -vσ q,- (t) 
d dt ūσ q,+ (t), (75) 
that are explicitly calculated in appendix C, in equations (C7-C9). In the general case, the amplitudes bq,± (t) and b-q,± (t) are coupled in the time dependent optical lattice. In particular one has:

i d dt      bq,+ (t) bq,-(t) b † -q,+ (t) b † -q,-(t)      = M(t)      bq,+ (t) bq,-(t) b † -q,+ (t) b † -q,-(t)      (76)
with the evolution matrix M(t)

M(t) =    ω q,+ -i Ω q,1 -i Ω q,+ -i Ω q,2 -i Ω q,1 ω q,--i Ω q,2 -i Ω q,- -i Ω q,+ -i Ω q,2 -ω q,+ -i Ω q,1 -i Ω q,2 -i Ω q,--i Ω q,1 -ω q,-   
(77) By using the symplectic symmetry of the matrix M, that is of the form

M(t) = A B -B * -A * we can write      bq,+ (t) bq,-(t) b † -q,+ (t) b † -q,-(t)      =    A q,+ (t) C q,+ (t) B q,+ (t) D q,+ (t)    bq,+ (0) +    C q,-(t) A q,-(t) D q,-(t) B q,-(t)    bq,-(0) +     B * q,+ (t) D * q,+ (t) A * q,+ (t) C * q,+ (t)     b † -q,+ (0) +     D * q,-(t) B * q,-(t) C * q,-(t) A * q,-(t)     b † -q,-(0) (78)
where the evolution equation for each column vector in the right hand side of equation ( 76) is governed by the matrix M(t)

i d dt    A q,+ (t) C q,+ (t) B q,+ (t) D q,+ (t)    = M(t)    A q,+ (t) C q,+ (t) B q,+ (t) D q,+ (t)    (79) 
etc., with and initial conditions A q,± (0) = 1 and B q,± (0) = C q,± (0) = D q,± (0) = 0.

D. Two components adiabaticity parameter

General case

According to the expansion (76), and assuming that no excitations were initially present, the number of Bogoliubov quasi-particle in mode q created by the ramp is

n ex q (t) = b † q,+ (t) bq,+ (t) + b † q,-(t) bq,-(t) (80) = σ=± |B q,σ (t)| 2 + |D q,σ (t)| 2 . ( 81 
)
In order to minimize the total amount of excitations during the time evolution, one needs to reduce the offdiagonal couplings in the evolution equation of the amplitudes (79). This leads to the adiabaticity conditions :

Ω q,+ (t) 2 ω q,+ (t) 1 ; Ω q,-(t) 2 ω q,-(t) 1 (82) Ω q,1 (t) ω q,+ (t) -ω q,-(t) 1 (83) Ω q,2 (t) ω q,+ (t) + ω q,-(t)
1 .

(84)

Equal masses

Let us now concentrate on the case of equal masses, corresponding to two internal states of the same atomic species. In this case, with ∆E q,a = ∆E q,b ≡ ∆E q , J a (t) = J b (t) ≡ J(t), the couplings Ω q,1,2 (t) vanish as U a (t), U b (t) and U ab (t) share the same time dependence. It follows that the Bogoliubov modes of the "+" and "-" branch evolve independently and we are left with the adiabaticity conditions in equation (82), with Ω q,± (t) = 1 2

d dt log ∆E q (t) ω q,± (t) . (85) 
The adiabatic conditions are most stringent at the minimal quasi-momenta |q min | = q min (47), and one introduces the two adiabaticity parameters α ±

α ± = max 0≤t≤tramp α qmin,± (t), (86) 
α qmin,± (t) ≡ 4∆E qmin d dt ∆E qmin ω qmin,± , (87) 
corresponding to the two excitation branches in the twocomponent system. In order for the evolution to be adiabatic the conditions α ± 1 must be satisfied.

In the limit of a large particle number N → ∞, q min → 0 and single-particle unit filling n a + n b = 1

α qmin,± qmin→0 = 4J(t) d dt J(t) c ± (t)q min , (88) 
where c ± (t) are the sound velocities of the two excitation branches defined as follows

c 2 ± (t) = 1 2 c 2 a (t) + c 2 b (t) ± (c 2 b (t) -c 2 a (t)) 2 + 4 U 2 ab (t) U a (t)U b (t) c 2 a (t)c 2 b (t) , (89) 
c a (t) = d 2J(t)U a (t)n a , (90) 
c b (t) = d 2J(t)U b (t)n b . (91) 
IV. ADIABATIC TIME

In this section, for the case of equal masses corresponding to two hyperfine states of the same atomic species, we derive the expression of the adiabatic time for a linear ramp and we investigate the influence of a density imbalance between two components.

For a linear ramp (48), by changing variables from t to V 0 in (86), the adiabaticity condition is t ramp t adiab,± , where

t adiab,± = max Vmin≤V0≤Vmax t ± (V 0 ), (92) 
t ± (V 0 ) = (V max -V min ) 4∆E qmin (V 0 ) d dV 0 ∆E qmin (V 0 ) ω qmin,± (V 0 ) . (93) 
Let us consider a situation in which V min = 4E R , V max = 13E R and the fraction n a of atoms in component a is varied from 0 to 1, with n b = 1 -n a .

In Fig. 1 we plot the times t ± (V 0 ) in Eq. ( 93) as a function of V 0 /E R , for different atom numbers and fractions n a . Within the selected range of V 0 , the maximum of t ± is reached for V 0 = V max . The maximum of the "minus" branch (bottom row) is always larger than that of the "plus" branch (top row), hence setting the minimal time scale for adiabatic evolution.

In Fig. 2 we plot the adiabatic time t adiab,-given by Eq. (92) as a function of n a for different atom numbers (colored solid lines). The black dashed line is the approximation for large N :

t adiab,± qmin→0 = max Vmin≤V0≤Vmax t lin ± (V 0 ), (94) 
t lin ± (V 0 ) = (V max -V min ) 4J(V 0 ) d dV 0 J(V 0 ) c ± (V 0 )q min , (95) 

A. Discussion of the results

To gain physical insight in the low energy excitations involved in the adiabaticty condition for the two component system, let us first consider the homogeneous case without the lattice [START_REF] Castin | Les Houches LXXII:Coherent atomic matter waves[END_REF]27]. A clear physical picture is obtained by linearizing the coupled Gross-Pitaevskii equations

i ∂ t ψ a = - 2 ∆ 2m + U a |ψ a | 2 + U ab |ψ b | 2 ψ a , (96) i ∂ t ψ b = - 2 ∆ 2m + U b |ψ b | 2 + U ab |ψ a | 2 ψ b , (97) 
for the fields of the two components 96)-(97) gives

ψ a (r, t) = N a φ a (r, t) ψ b (r, t) = N b φ b (r, t), (98) 
i ∂ t δψ a = - 2 ∆ 2m δψ a + n a U a (δψ a + δψ * a ) + √ n a n b U ab (δψ b + δψ * b ), ( 99 
) i ∂ t δψ b = - 2 ∆ 2m δψ b + n b U b (δψ b + δψ * b ) + √ n a n b U ab (δψ a + δψ * a ), (100) 
One then looks for eigenmodes in the form of plane waves

δψ σ δψ * σ = q =0 ūσ q vσ q e i(q•r-ωqt) . ( 101 
)
where σ = a, b. Note that in the density-phase point of view where ψ a = √ ρ a e iθa and ψ b = √ ρ b e iθ b we obtain

δρ σ q = 1 2 (ū σ q + vσ q ), (102) 
δθ σ q = 1 2i ūσ q -vσ q √ n σ . (103) 
The linearized equations ( 99)-(100) decouple when taking the sum and difference. One then finds that

ūa q -va q = ω q ∆E q (ū a q + va q ), (104) 
and similarly for b, where ∆E q = 2 q 2 /2m, is the kinetic energy, and the sum combination satisfies the eigenvalue problem ∆E q 1 -ω q ∆E q 2 I + 2M ūa q + va q ūb q + vb q = 0, (105) with I the identity matrix and In each case the maximum of t± is reached for the largest value of V0/ER. The plots where generated expanding the kinetic energy term ∆Eq min for a low quasi-momentum dqmin 1 and using the approximate formulas (7a)-(7b) for J and U a,b,ab with scattering lengths aaa = a bb = 100.4r0 and a ab = 95.0r0 where r0 is the Bohr radius, corresponding to the hyperfine sates F = ±1, mF = ∓1 of 87 Rb atoms with a Feshbach-tuned interspecies scattering length a ab [6,28]. The lattice wavelengths is λ = 800nm.

M = n a U a √ n a n b U ab √ n a n b U ab n b U b . ( 106 
)
The eigenvalues of M are

λ ± = 1 2 U a n a + U b n b ± (U a n a -U b n b ) 2 + 4n a n b U 2 ab , (107) 
and the two eigenenergies take the form

ω q,± = ∆E q [∆E q + 2λ ± ]. (108) 
Looking for the eigenvectors of the 2x2 matrix M, one finds the ratio between the density perturbations in the two components for the two excitation branches

δρ b ± δρ a ± = ūb q,± + vb q,± ūa q,± + va q,± = λ ± -U a n a U ab √ n a n b = sgn(λ ± -U a n a ) λ ± -U a n a λ ± -U b n b 1/2 . ( 109 
)
In the limit of a small wave vector q, they correspond to sound waves with the speed of sound given by

c homo ± = λ ± m . (110) 
The relations in this subsection, derived for a homogeneous system, hold in the lattice, provided one reinterprets the kinetic energy term ∆E q according to Eq. (20). In particular Eq. (108) for the spectrum coincides with Eq. (66), Eq. ( 109) can be easily deduced by the modal functions (69), and Eq. (89) for the speed of sound reduces to (110) by performing the substitution

1 m → 2J(t)d 2 2
that is the low energy equivalent of the correspondence (20) for kinetic energy. Provided U b n b = 0, we can rewrite in the lattice

c 2 ± = d 2 J(t)U b (t)n b 2 × F, (111) 
F =   1 + U a n a U b n b ± 1 - U a n a U b n b 2 + 4 n a n b U 2 ab U 2 b   . (112) 
Note that when U a (t) and U b (t) have the same dependence on V 0 , the factor F in (111) gets out of the derivative in (95), and gives the dependence of the adiabatic time on the ratios between the atom numbers and scattering lengths in the two components. For the linear ramp one indeed has 92): N = 10 3 (black dash-dotted line), N = 10 4 (red dashed line), N = 10 6 (blue solid line), while the black dashed line is from the approximate expression (94) that holds in the large N limit. The plots where generated expanding the kinetic energy term ∆Eq min for a low quasi-momentum dqmin 1 and using the approximate formulas (7a)-(7b) for J and U a,b,ab with scattering lengths aaa = a bb = 100.4r0 and a ab = 95.0r0 where r0 is the Bohr radius. The lattice wavelengths is λ = 800nm.

t lin ± = N 1/3 (V max -V min ) 8π √ n b F 1 J d dV 0 J U b , (113) 
which also shows that, for a linearized dispersion relation, t adiab,-is always larger than t adiab,+ .

Symmetric case

For U a = U b and n a = n b = 1/2, the factor √ n b F in the denominator of the t lin ± (113) is equal to (1 ± U ab /U a ) 1/2 showing the divergence of t lin -when U ab → U a . Equation (109) shows that the "minus" solution corresponds to a situation in which the two component oscillate out-ofphase while the "plus" solution corresponds to in-phase oscillations

δρ a -= -δρ b -, (114) 
δρ a + = δρ b + . (115) 
The out-of phase solution, whose speed of sound c -tends to zero as U ab approaches U a from below, announces the demixing instability for U 2 ab > U a U b .

Asymmetric case

In the asymmetric case, with U a = U b but n a n b , to the lowest order in n a , that is zero order, one has ω q,-= ∆E q , (116) ω q,+ = ∆E q (∆E q + 2U b n b ).

(117)

The "minus" branch ω q,-does not describe a sound wave, but is purely quadratic for small q, see (9) [START_REF]the Hartree-Fock (HF) limit[END_REF].

Correspondingly, for n a = 0 (and symmetrically for n a = 1) Ω q,-= 0 in equation ( 85) and the adiabatic time is zero as shown in the right panel of figure 2. We note however that the adiabatic time significantly increases where 0 < n a n b . This feature can be simply explained in the large N limit where, using equations ( 112) and (113), one gets

(t lin -) na n b (t lin -) na=n b na→0 ∼ 1 2 1 + U ab U b 1 √ n a . (118) 
V. CONCLUSIONS

We found the adiabaticity condition when an optical lattice is raised in a uniform two-components Bose-Einstein condensate at single particle unit filling. We concentrated our analysis in the superfluid regime and we used the time dependent Bogoliubov approach. We find that the excitations that can brake adiabaticity are pairs of Bogoliubov excitations (sound waves) with opposite quasi-momenta, where, in the symmetric case the two components oscillate out of phase. The scaling of the adiabatic time with the system size is N 1/3 , given by the minimal quasi momentum that can be excited in the lattice. For large atom numbers we show that the adiabatic time is significantly larger in the strongly asymmetric case n a n b with respect to the symmetric case n a = n b , the ratio scaling as 1/ √ n a .
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One has s a q,± = ∆E q,a ω ± 1 1 + x 2 q,± (C3) d a q,± = ω ± ∆E q,a 1 1 + x 2 q,± (C4) s b q,± = x q,± ∆E q,b ω ± 1 1 + x 2 q,± (C5)

d b q,± = x q,± ω ± ∆E q,b 1 1 + x 2 q,± . ( C6 
)
Using equations (C3)-(C6), and equation ( 73)-( 75) we obtain

2Ω q,± = 1 1 + x 2 q,± d dt log ∆E q,a ω q,± + x 2 q,± 1 + x 2 q,± d dt log ∆E q,b ω q,± (C7) 
-2(Ω q,1 + Ω q,2 ) = ω q,+ ω q,- 1 (1 + x 2 q,-)(1 + x 2 q,+ )

× d dt log ∆E q,b ∆E q,a |x q,-| |x q,+ | (C8) 
-2(Ω q,1 -Ω q,2 ) = ω q,- ω q,+ 1 (1 + x 2 q,-)(1 + x 2 q,+ ) × d dt log ∆E q,a ∆E q,b |x q,-| |x q,+ | . (C9)

  around the uniform solutionsψ a = √ n a , ψ b = √ n b with chemical potentials µ a = n a U a + n b U ab , µ b = n b U b + n a U ab ,where φ a = φ b = 1/ √ V are the stationary condensate wave functions, n a = N a /V , n b = N b /V are the uniform atomic densities, and U σ = 4π 2 aσ m for σ = a, b, ab are the interaction constants. Linearization of Eq. (
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 61 FIG. 1. (Color online) Times t+(V0) (top row) and t-(V0) (bottom row) in equation (93) as a function of V0/ER, for three atom numbers: N = 10 3 , N = 10 4 and N = 10 6 from the left to the right. In each panel we show the result for different fractions of atoms in component a: na = 0.5 (black line), na = 0.1 (red dashed line) and na = 0.01 (blue dash-dotted line).In each case the maximum of t± is reached for the largest value of V0/ER. The plots where generated expanding the kinetic energy term ∆Eq min for a low quasi-momentum dqmin 1 and using the approximate formulas (7a)-(7b) for J and U a,b,ab with scattering lengths aaa = a bb = 100.4r0 and a ab = 95.0r0 where r0 is the Bohr radius, corresponding to the hyperfine sates F = ±1, mF = ∓1 of 87 Rb atoms with a Feshbach-tuned interspecies scattering length a ab[6,28]. The lattice wavelengths is λ = 800nm.
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 32 FIG. 2. (Color online) Adiabatic time t adiab,-as a function of the fraction na of atoms in component a, for different atom numbers, in linear scale (left panel) or in semi-log scale (right panel). The solid lines are from Eq. (92): N = 10 3 (black dash-dotted line), N = 10 4 (red dashed line), N = 10 6 (blue solid line), while the black dashed line is from the approximate expression (94) that holds in the large N limit. The plots where generated expanding the kinetic energy term ∆Eq min for a low quasi-momentum dqmin 1 and using the approximate formulas (7a)-(7b) for J and U a,b,ab with scattering lengths aaa = a bb = 100.4r0 and a ab = 95.0r0 where r0 is the Bohr radius. The lattice wavelengths is λ = 800nm.

Appendix A: Implications of discrete translational symmetry

The single particle Hamiltonian ( 5) is invariant under discrete translation R along any lattice vector. It follows that translation operator TR commutes with the Hamiltonian i.e. [ ĥ(t), TR ] = 0, at any time. Complete set of commuting observables theorem implies that both operators share the same set of eigenstates. The eigenstates of the operator TR are labeled with discrete quasimomentum q values [30]

with eigenvalue e iq•R . Equation (A1) suggests the following form of the eigenstate

where function u q (r, t) has the same periodicity as the lattice. Thus, single-particle Hamiltonian eigenstates are of the form ψ n,q (r, t) = e iq•r u n,q (r, t), with additional band index n. This is a statement of the Bloch theorem.

In a process where only the height of the potential varies in time and the periodicity of the lattice stays constant the time-evolution operator Û (t) defined as

where T denotes time-ordering operator, also commutes with TR . Consequently, the time-evolving state ψ(r, t) = Û (t)ψ n,q (r) will remain an eigenstate of the translation operator with the same eigenvalue as the Bloch state ψ n,q (r). In other words, quasi-momentum is conserved during time evolution. It follows from TR Û (t)ψ n,q (r) = Û (t) TR ψ n,q (r) = e iq•R Û (t)ψ n,q (r). (A4)

Although the quasi-momentum needs to be conserved, it does not exclude situation where other bands may be populated. In general one can write

Another consequence of translational invariance is the vanishing of the coupling term

when k = q. This can be shown once we consider the identity

and quasi-momentum conservation TR ∂ ĥ(t) ∂t ψ m,q (r, t) = ∂ ĥ(t) ∂t TR ψ m,q (r, t)

= e iq•R ∂ ĥ(t) ∂t ψ m,q (r, t). (A8)

Eq. (A8) shows that

This result combined with orthogonality of Bloch states gives a non-zero coupling term only if the quasimomentum of both states is the same.

Appendix B: Explicit formulas for the two-component system case

The non-hermitian matrix L is defined as follows

The energy introduced in Eq. (61) takes the form

Appendix C: Couplings among Bogoliubov modes

It is convenient to introduce the sum and differences of the Bogoliubov modal functions (69)

with σ = a, b, and express them using the parameters (C12) .

[30] The discrete nature of quasi-momentum is a consequence of Born-von Kármán boundary conditions in the finite size system.