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Using the time-dependent Bogoliubov approach, we study adiabaticity for a two-component Bose-
Einstein condensate in a 3D time-dependent optical lattice with unit filling, in the superfluid and
weakly interacting regime. We show that raising the lattice potential height can couple the ground
state of the Bogoliubov Hamiltonian to excited states with two quasiparticles of opposite quasi-
momenta. In the symmetric case for interactions and density in the two components these represent
sound waves where the two components oscillate out of phase. We find an analytic expression of
the adiabatic time, its dependence on the fraction of atoms in each component and its scaling with

the system size.

I. INTRODUCTION

Spinor bosonic or fermionic atoms in optical lattices
are playing an increasingly important role at the crossing
of different fields such as statistical physics, condensed
matter, atomic physics and quantum technologies. Ac-
tively investigated in present experiments, these systems
display non trivial phase transitions and ground states
stemming from the interplay between the spin and the
external degrees of freedom of the atoms [1], and can
be used to investigate novel superfluidity mechanisms
[2]. Furthermore, they constitute a powerful platform for
quantum computation [3, 4], and offer fascinating per-
spectives for entangled state preparation and quantum
metrology [5, 6]. Among the different proposals using
cold atoms in an optical lattice, several protocols require
the possibility to adiabatically ramp up the optical lattice
in the multi-component cold atoms system.

In close relation with the first experimental realiza-
tions, adiabaticity has been mainly studied, both exper-
imentally [7] and theoretically [8, 9] for a single species
and in the presence of an external harmonic potential
that brakes the translational symmetry of the lattice. In
this paper we concentrate on the case of a uniform op-
tical lattice, that is now possible to prepare in the labo-
ratory thanks to the development of flat-bottom poten-
tials [10, 11]. We shall consider a single-component or a
two-component condensate in the superfluid regime and
study the adiabaticity condition when raising the lattice
within the time-dependent Bogoliubov approach.

_For a quantum system with a discrete spectrum
HVY, = E; ¥y, initially in its ground state ¥, the adia-
baticity condition when a parameter of the Hamiltonian
is varied in time starting from ¢ = 0 takes the form [12]

RACIFALION

" E(®) - Bo(t)]

<1 Vk£0, ¥t>0 (1)

(Ur(t)|LWwy(t)) is the coupling between the instanta-
neous ground state and other eigenstates, and Ej(t) —
Ey(t) is the energy difference. The condition (1) can be

equivalently rewritten as

(U (6)|in 9 W (1))
[E(0) — Eo(t)]?

<1 VE£0, ¥t>0 (2)

We will use this last formulation to interpret our re-
sult. Our paper is structured as follows: after recalling
the Bose-Hubbard model and introducing all notations,
the adiabaticity criterion for a single component Bose-
Einstein condensate is derived in section II. The analysis
is extended to the case of a two-components system in
section ITI. While in this section we keep our formalism
general, allowing to address the case where the atoms
in the two components might have different masses, in
the following we concentrate on the case of equal masses
corresponding to different hyperfine states of the same
atomic species. For this case, in section IV, we derive the
adiabatic time for a linear ramp and we investigate the
influence of a density imbalance between the two compo-
nents. Conclusions are drown in section V.

II. ADIABATICITY CRITERION FOR A
SINGLE COMPONENT

In the adiabatic evolution, when an external parame-
ter of the Hamiltonian is changed in time, the quantum
state remains an instantaneous eigenstate of the time-
dependent Hamiltonian at all times. On the contrary, if
the change is too fast, the state will contain an admixture
of excited states. For a Bose-Einstein condensate in an
optical lattice in the weakly interacting regime, when the
system is superfluid, the excitations are well described as
Bogoliubov quasi-particles. We will regard the evolution
as adiabatic as long as the total density of excited quasi-
particles remains much less than one at all times.



A. Single component Bose-Hubbard model

We describe a system of N ultra-cold atoms, all in
the same internal state and subject to an optical lattice
potential, by the Bose-Hubbard Hamiltonian [13]

7 = a0 Y a0+ TS ol - 11

(6,3) i

3)
where a! (t) creates a particle in the single-particle Wan-
nier state w;(r,t) of the lowest energy band (I = 1) lo-
calized on the i-th site. The Bose-Hubbard model (3)
considers only states in the lowest energy band, which is
justified as long as the excitations energies to the higher
bands are much larger than the energies involved in the
system dynamics. The Wannier states w;(r,t) are con-
veniently constructed from the lowest band Bloch states
P1=1,4(r,t) in the following way

’LUZ( Z 67“1 1111 1q(r t) (4)

quZ

with Ry = d(iyu, + iyu, +4,u;), where d = \/2 is the
lattice spacing that we assume identical in the three spa-
tial directions (A is the optical lattice wavelength), u
are unit vectors and i,14,,7, are integers. Summation
in Eq. (4) extends over wave vectors belonging to the
1st Brillouin zone and M is the number of lattice sites.
The Bloch states v o(r,t), labeled by the band index [
and the quasi-momentum q, are eigenstates of the single-
particle Hamiltonian

h(t) = —LVQ + Vo(t) Z sin?(ka), (5)

a=x,y,z

where k = 27/X and Vj(t) is the lattice potential height.
If Vo(t) is varied in time, the Wannier states and hence
the creation and annihilation operators in the Bose-
Hubbard Hamiltonian (3), as well as the hoping J(¢) and
interaction U (t) parameters, depend on time

dra h?
m

ﬁ2
t) = /dST wf(r,t) |:—2rnV2

+Vo(t) Y Sin2(ka)] wj(r,1), (6b)

aA=T,Y,z

U(t) = *r Jw(r, 1), (6a)

where a, is the s-wave scattering length characterizing
binary short range interactions between cold atoms and
m is the mass of an atom. In the limit in which Vy > Eg
where Er = h?k?/(2m) is the recoil energy, the depen-
dence of U and J on the lattice height Vj can be approx-

imated by [14, 15]

U(Vo) = E

3/4
R\/ikas <2;;> , (7a)

4 (Vo \Yt
E ER | 7b
RI<ER) cVEL ()

For brevity, we shall omit in the following to mark the
band index [ = 1 for the Bloch states of the lowest band.

J(Vo) =

B. Number-conserving Bogoliubov approach

We start from the Bose-Hubbard Hamiltonian (3) writ-
ten in the quasi-momentum representation

U(t) .
2601 Y Z azu kaLﬁka%W
qi,q2,k ( )
8

contrarily to the homogeneous case, the kinetic energy in
the lattice takes the form

€q(t) = —2J(¢) Z cos(q

a=t,y,z

dug,). (9)

In Eq. (8) and further we omit the explicit time depen-
dence of the creation and annihilation operators to sim-
plify the notation, but we keep in mind that, even in the
Schrédinger picture, &Il and aq depend on time.

In the number conserving Bogoliubov approach the
amplitude of the field in the condensate mode is finally
eliminated, and the interacting system is described as an
ensemble of quasiparticles in the modes orthogonal to the
condensate mode. The small parameter of the theory is
the non-condensed fraction, and to the lowest non-zero
order, that is the Bogoliubov order, the quasiparticles do
not interact. The first step to find the Bogoliubov quasi-
particles is to quadratize the Hamiltonian with respect
to the non-condensed field. One then obtains

H(t)~ N {eo(t) + ’”n} + ) kg eq(t) — p(t)]
q#0
+ % (;) [aé aqi_q + aoaoaT ol qt 4N&qu (10)

where n = N/M is the total atom density and the chem-
ical potential is defined as

pu(t) = eolt) + Ut)n. (11)

To obtain Eq. (10), the relation dgdg = N — 6N, where
SN = Zq;ﬁo qaq, was used. We now introduce the num-
ber conserving operators

N 1 ..
Agq = —Nagaq (12)



in terms of which the Bogoliubov Hamiltonian (10) takes
its final form

Hisog(1) = Ho() + 5 3 (A A q) 02 ( Rt ) ,
q#0 -
(13)
where the ground state energy is
Hyo(t)=N {eo(t) + Uét)n] —% Z [eq(t) — p(t) +2U(¢)n]
q#0 (14)

the non-hermitian matrix L4 has the form

[ eqlt) — () + 20 (D)n
ﬁq_( ~U(t)n —[eq(®) n
15

and o is the third Pauli matrix. In the derivation of (13)
we used the following approximation

S PPN |
PEIEN akaqaoao ot a
ALAq = T ~ (J,Lam

consistent with the fact that we retain only terms that
are at most quadratic in the non-condensed field. The
Bogoliubov transformation 7q(t)

()= (o ) (i)

Ta(?)

(16)

(a7

diagonalizes the quadratlc Hamiltonian (13) in terms of
the Bogoliubov operators b and bJr that satisfy bosonic

commutation relations [bq, bc1 | = 6q7q
N 1 St 7
Hpog(t) :H0+§Zhw () + ) hwg(t)bbg,  (18)
q#0 q#0
where the Bogoliubov energy has the form
) = \/AEG(t) [AE(1) + 20(1)] . (19)
AEq( ) = €q(t) — 6o(t) ; (20)
fi(t) = pu(t) — €o(t) = U(t)n, (21)
and the Bogoliubov modes are
) . AEL(t) )1/4
1) +0q(t) = | ol , 22
al®)+ 00) = ( 447 (22)
. ) AE4(t) /4
t) —Ug(t) = | o L . 23
o)~ )= (7,5 277 =)

In the limit of a small quasi-momentum dg < 1 and
for AEq < U(t)n, the Bogoliubov energy (19) has a
phonon-like dispersion

hua(t) = he(t)g (24)
where ¢(t) = a+/2J(t)U(t)n/h is the sound velocity. The

Bogoliubov spectrum for a condensate in a uniform lat-
tice was already found in [16] within the usual symmetry-
breaking approach.

U(t)n >
—u(t) +2U(t)n] )’

C. Time evolution in the Heisenberg picture

The column vector composed of Bogoliubov quasi-
particle annihilation and creation operators

2= (3110 ).

evolves according to the Heisenberg equation of motion

(25)

d . i - . DBq(t)
dtB() h[HBog(t%Bq(t)H( o )H~ (26)

The first part on the right-hand side of (26) represents
the free evolution of the quasi-particles

[ﬁBOg (t) ’ Bq (t)] =

—wq(t)o.By(t).  (27)

According to the Bogoliubov transformation (17), the
second part on the right-hand side of (26) reads

0Bq(t)\  dTg(t)
< ot >H dt Tq

080+ Ta00: (1120 )

(28)
By using the identity a2 (t) —3(t) = 1 one can show that
dTq(t
a7t = ~0q(t)e., (20)
where
_ d_ o d
(1) = a(t) 5 7a(t) ~ Talt) a(®),  (30)

and o, is the first Pauli matrix. The coupling Q4(¢) can
be expressed in terms of the quasi-particles energies, and

takes the form
1d AE(t)
1 d . 1
it ()

Let us now deal with the second term on the right-hand
side of Eq. (28). The time derivative of the number-
conserving operator (12) is

d
Qq(t) = o log(tq + 7q) =

A il a
Ohalt) = = [6 9064 (0) + a(n et

] . (32)

By using the definition of the creation and annihilation
operators in the first Bloch band

aq(t) = / d*r 7 (r, ) ¥(r), (33)

and expanding the field operator on the complete set of
time-dependent Bloch states

r)= Zwk(r

al K t) (34)

+ > Y,

1#1,k



one obtains

Drtiq(t) =Y Ci q(Dan(t) + D Ciyq(t)an(t), (35)
k

1#1,k

where
Cuoalt) = [ Er e Sunle). (36)
o
Crreq(t) = / Pr (et pale ). (37

the first sum on the right-hand side of Eq. (35) runs
within the lowest energy band, while the second one runs
over all the other bands. For ramping times that are
long with respect to the inverse recoil frequency #i/Eg,
one can neglect all inter-band couplings, i.e. Cjxq = 0.
Moreover, from the conservation of quasi-momentum we
know that Ck (t) = 6q,kCq,q(t) (see Appendix A). The
time derivative (32) of the number conserving operators

is then
o (10 ) = caao (575,). o

where we used the relations C_q () = Cg 4(t) and
Co,0(t) =0 [17] for the Bloch states in (36).
Gathering all the terms, the Heisenberg equation (26)

for Bq(t) takes the form

L By(t) = [(hq(t)o. — M2 (0] Ba()

dt
+ihC (1) Bqg(t). (39)

Notice that the second term in the above equation gives
a global time-dependent phase factor, which can be re-
moved by a gauge transformation. Finally, the solution
of the Heisenberg equation (26) can be cast in the simple
form

5alt) = (520 )ia0+ (520 )iLato) o0
where
g (el ) = ( Ly o) ().

(41)
with the initial conditions Aq(0) = 1 and Bq(0) = 0.

D. The adiabaticity parameter

During time evolution some Bogoliubov quasi-particles
will be excited with respect to the quasi-particle vacuum
state. The number quasi-particles created in mode q is
determined by the coefficient Bq(%):

nge(t) = (Uog (0) 1] (1)bq (1) Wrog (0)) = |Bq(t)]?, (42)

4

where |¥pog(0)) is the Bogoliubov vacuum state at time
t = 0. Excitations are avoided by suppressing the cou-
pling between Aq(t) and Bq(t) in Eq. (41), which brings
us to the adiabaticity condition

| (1)
oall) = ’mq(t)

’ <1, Vaq, (43)

where Qg is the coupling (31) and wq is the Bogoliubov
energy (19). Since both |Aq(¢)] and 1/hwq(t) are mono-
tonically decreasing functions of g, the left-hand side of
Eq. (43) reaches its maximum value for minimal quasi-
momenta |Qmin| = Gmin- We thus introduce the adia-
baticity parameter « as:

@= OS?SI%r}imp A gmin (t), (44)
h d (AFE, .
W () = i ik !
aqmm( ) 4AEQmin dt ( hwqmin ) ‘ ( 5)

1. Limit of large N

By expanding Eq. (9), (19) and (31) for a small wave
vector ¢ and non-zero interactions: one obtains

gm0 N |d [ (1)
a’lmin (t) - 4J(t) dt (hc(f)Qmm ' (46)

The expression of the minimum wavenumber in the lat-
tice

21

= N1/3 (47)

Qmind

gives a scaling N'/3 to the adiabaticity parameter. In the
case of a linear ramp changing between Vi, and Viax in
a time tramp

Vmax - V;nin

Vo(t) = t + Vinin, (48)

tramp

taking n = 1, and using the approximated formulas
(7a)-(7b) for a deep enough lattice, we deduce the adia-
batic time t,q4;ap such that the evolution is adiabatic for
tramp > tadiaby

N1/3
64(v2rkas)1/?

toas _i Vinax —
adiab _ER ER

A o
i SV SV <Vo) evoR. (49)

Note that the fact the formula gives a diverging time in
the limit Vp/Fr — oo (corresponding to J — 0) is not
relevant here as our analysis is restricted to the superfluid
regime were a condensate is present.

‘/Inin




2. Ideal gas

When interactions tends to zero, i.e. U — 0 we cannot
linearize the dispersion relation of quasi-particles. One
rather has

hwq(t) = AEG(1), (50)

Qq(t) = 0. (51)

In the ideal gas regime all the particles occupy the in-
stantaneous q = 0 mode during time evolution and the
evolution is always adiabatic. This effect is a consequence
of quasi-momentum conservation, deriving from the fact

the although the lattice height increases, the periodicity
of the lattice is unchanged.

E. Interpretation of the adiabatic parameter

In this subsection we explicit the link between Eq. (43)
and Eq. (2), gaining some physical insight into our result.
Let us take the time derivative of the Bogoliubov Hamil-

tonian (18)
dHy . d(hwg(t)) (1 45
W—*—Zh Z 7(# 5 + bqbq
q#0
[ db}, db,
+ hwq(t) lm( 7 9he, + bgd;ﬂ : (52)

The term in the first line of (52) cannot change the num-
ber of quasi-particles and will play no role. For the term
in square brackets in the second line, using Eq (39) we
find

db . dbq
i <d:'bq+bf >_ith (b-aba +B5b1 )+ (53)

od A
zhgﬂgog(t) =ih

CIdt q —q

showing that the time derivative of the Hamiltonian can
couple the Bogoliubov ground state to states with two
quasi-particles with opposite quasi-momenta

(1:q,1: —q|bibl 4]0) = 1, (54)

the energy difference being 2fiwq. Using Eq. (2), we then
obtain the condition
h|4q|
t) =
a(?) 2hwg

<1, (55)

that coincides with the adiabaticity condition (43).

III. ADIABATICITY CRITERION FOR
TWO-COMPONENTS

In this section we extend the reasoning presented in
section II to derive an adiabaticity condition for the two-
component system, including the case of different masses
in the two components, corresponding to different iso-
topes [18] or different atomic species [19, 20].

A. Two-components Bose-Hubbard model

We consider a two-component Bose-Einstein conden-
sate in an optical lattice potential. As the atoms
in the two components might have different masses, we
introduce two tunneling parameters J,(t) and Jp(t) of
the Bose-Hubbard Hamiltonian, and two kinetic energies
€q,as €q,p a0d AEq o, AEq;, defined as in equations (6b),
(9) and (20). The interactions between atoms may also
be different for different components. For convenience we
introduce the interaction parameters

with o =a,b,ab, (56)

with as—q.b.ap the s-wave scattering lengths respectively
for two atoms in the state |a), two atoms in the state |b),
or one atom in |a) and the other in |b), where U(t) is
still defined by Eq. (6a). We restrict here to the case of
repulsive interactions U, > 0 for ¢ = a,b,ab and to the
miscible regime Uy, < /U,U, [21-23]. We note N, and
Ny, the average number of atoms in each component, and
N = N, + N, the total number of atoms.

B. Bogoliubov description for two-components

The Bose-Hubbard Hamiltonian for the two-
component system in the quasi-momentum repre-
sentation takes the form

7:[20(75) = Z [fq,a(t)éj;,aéq@ + Eq,b(t)éj;,béq,b
a

3 ot
+ 2M q1 —k,a q2+kaCQI’GCQ2’

qai,q2,k
—l—Ub( )t el Cqy bC
oM q1 k,b q2+kb q1,bCaz,b

O
+ 3\4’ qufk,acqurk,bCQI;ac(M;b ’ (57)
where c]; - is the creation operator in the internal state

|o) and quasi-momentum q. Similarly as in the single-
component case, we introduce a set of number conserving
operators

~ 1 . R
A‘laa = mcg,acqyaﬂ (58)
" 1
Agp = ——¢! éqp. 59
QaQ, \/]Tb 0,079, ( )
In terms of the vector
. . T
AQC.,q = (Aq,aa A —q,a’ Aq,ba A ) ) (60)

the two-component Bogoliubov Hamiltonian (57), once
quadratized, reads

Hac Bog (1) = Hac,o(

ZAQCQ 5.L2¢.q Mac.a;
q750
(61)



where ¥, = 0, ® 0, and where the explicit form of the
ground state energy Hsco(t) and of the non-hermitian
matrix Loc,q, Which are the two component equivalents
of (14) and (15) respectively, is given in Appendix B.
Equivalently to (17), the Bogoliubov Hamiltonian (61)
can be diagonalized using a Bogoliubov transformation:

Bacq(t) = Taoq(t) Racg,

where we have introduced the vector

BQC,q(t) = (t)’ (;T—

(62)

(ba+ (1) BT g 4 (£), b, - a—(®)", (63)

bg.+ being annihilation operators of Bogoliubov quasi-
particles, and the transformation matrix

aaq,+(7(f)) _7731,-1-((7;) ub (7(5)) ,+((7;)
—Ugq+(t) ug4(t q’ t t
Trea®= | ag ) k) 0 5

) w0 ~th () @ )

(64)
As in the homogeneous case without a lattice [24-27],
there are two excitation branches labeled =+:

ﬂBog( ) H2C O Z Z hqu o
Q750 oc{+,-}
Y D wae(bl o (Dbao(t),  (65)
a#0oe{+,-}
of energies
th u + th
hwq,ﬁ: = [% D) @b
- 1/2
(hwg o — hwg)?
j:\/ q’f‘“ + 4AEq o AEq U nam,

(66)
where hwq 4p) are defined as in the single component
case (19)

Mqa = \/ABqa(AEqq +2Uan,), (67)
Mg =\ AEqp(AEq ) + 2Uym,). (68)

with n, = N, /M. For single-particle unit filling M = N,
ng and ny represent the fraction of atoms in component
a and b respectively. The corresponding Bogoliubov am-
plitudes which appear in the transformation (62) are [26]

2Uup /ety AEq p(AEq o + hwq +)

q,*
1_187i 2Uab1/nanbAEq,b(AEq,a - h,wq’:t)
—b - 2 2 Xa, £
Uq,+ (hwq,i - hwq,a)(AE%b + hwcbi)
ﬁg,i (hwa,j: - hw?;,a)(AEq,b - hwq,:t)
(69)

with the normalization coefficient xq,+ given by
Xa,+ = [4AEqphwq +
X (4AEqaAEqusUzynans + (hwg 4 —

is chosen to have 5 _ , |ag L[> — 05 +|* =

C. Heisenberg equation of motion

Following the procedure and arguments presented for
the single component case in section II, the Heisenberg
equation of motion for the operator Bac q(t), defined in
Eq. (63) takes the form

Zh uy; BQC q(t)
[ +(1)(02 ® 0252) + hwg,— (8) (0ax2 @ 02)] Bac q(t)
+ mT“'Cq( )7'2Cq( )Bacq(t) +ihCl (Bocg(t).  (71)

The last term on the right-hand side of Eq. (71) gives
a global time-dependent phase factor, which can be re-
moved by a suitable gauge transformation. In general,
the coupling term in the Eq. (71) is

Tecallga 1) =
0 —Qq+(t) —Qqu(t) —Qqp2(t)
Q q,+ (t) 0 Qq, () _Qq,l(t) 72
“Qauilt) ~Qqalt) 0 —Qq-(t) | (T
Q (t> Qq,l(t) Qq’ () 0
with the following couplings
Y d o d_,
Qa(t) = 3 054 () 2064 (1) — 0, (1) 505 . (1)
o=a,b
(73)
Y d_, 5 d_,
Qailt) = 3 05 ()55, (1) — 05, () 515, (1),
o=a,b
(74)
Y d_, 5 d_,
Qqa(t)= Y G- (D 0G4 (1) = 15 (1) 1, (8),
o=a,b
(75)

that are explicitly calculated in appendix C, in equa-
tions (C7-C9). In the general case, the amplitudes bq - (£)
and l;_q,i(t) are coupled in the time dependent optical
lattice. In particular one has:

lfq,Jr(t) bq,+(t)

d | bq-(t) | _ bq,— (%)

M | g | MO b |
b () bl g, (1)



with the evolution matrix M (t)

hwas —ihQq1 —ihQq. —ihQqs
M) = | ar hwqo =Mz —ifQq
—ihQqy —ihQqs —hwqs —ihQqq
—ihQqn —ihQq_ —iQq1 —hwe.

(77)
By using the symplectic symmetry of the matrix M, that

is of the form M(t) = :é* 761* ) we can write
ba+(t) Aq+ (1) Cq, (1) B; (1) Dy (1)
ba—() | _ [ Cq+(t) |3 Agq-(t) |5 a+(®) |t Bg_(t) |+
ZA)Jf_q7+(t) - qu (t) bq,+(0) + Dq7_(t) bq,—(o) + q,i (t) bfq,+(0) + C;_(t) bfq 7(0) (78)
o)) \Dasl) Ba (1) N0 A

where the evolution equation for each column vector in
the right hand side of equation (76) is governed by the
matrix M(t)

J é‘q +((t)) vélq,+((t))

_ q.+(t _ q,+ (1

"t | Bartt) | TMON Baiy |
Dq,+(t) Dq,+(t)

etc., with and initial conditions Aq+(0) = 1 and

Bq,i(o) = Cq,i(o) = qu:(()) =0.

D. Two components adiabaticity parameter
1. General case

According to the expansion (76), and assuming that
no excitations were initially present, the number of Bo-
goliubov quasi-particle in mode q created by the ramp
is

ngi(t) = (B 1+ ()ba,+ (1)) + (Bh—(£)bq,— (1)) (80)
= Z B (DI + [Dq.o (1) (81)

In order to minimize the total amount of excitations
during the time evolution, one needs to reduce the off-
diagonal couplings in the evolution equation of the am-
plitudes (79). This leads to the adiabaticity conditions :

th,Jr(t) ) th’,(t)
‘2hwq,+<t>‘<<1 ’ ‘mq,_(t) <l @)
Qq,l(t)
‘mq7+<t>—mq,<t> <1l &y
Qq72(t)
‘mq,+<t>+qu,<t> <l @&y

2.  Equal masses

Let us now concentrate on the case of equal masses,
corresponding to two internal states of the same atomic
species. In this case, with AEq, = AEq, = AFEg,
Jo(t) = Jp(t) = J(t), the couplings Qq12(t) vanish as
Ua(t), Up(t) and U,y (t) share the same time dependence.
It follows that the Bogoliubov modes of the “+” and “-
” branch evolve independently and we are left with the
adiabaticity conditions in equation (82), with

1d ABq(t)
Qq(t) = 57 log (w) . (85)

The adiabatic conditions are most stringent at the min-
imal quasi-momenta |Qmin| = ¢min (47), and one intro-
duces the two adiabaticity parameters o

Ok = o JUAX  Qgin, (), (86)

h AE,. .

; t) = Qmin
Oéqmm,:l:( ) 4AAFE, Eqin dt <hwqmin,i)‘ ) (87)

corresponding to the two excitation branches in the two-
component system. In order for the evolution to be adi-
abatic the conditions a4+ < 1 must be satisfied.

In the limit of a large particle number N — co, quin —
0 and single-particle unit filling ng, +np = 1

(83)

Cgmin, =

gm0 d< J(t) >

hci (t)Qmm

4J(t) |dt

where ¢4 (t) are the sound velocities of the two excitation



branches defined as follows

A1) = 3 [0+
i% (@0) = A0 + 4 DA 00

calt) = S \/2TNT O, (90)
a(t) = %\/QJ(t)Ub(t)nb. (91)

IV. ADIABATIC TIME

In this section, for the case of equal masses corre-
sponding to two hyperfine states of the same atomic
species, we derive the expression of the adiabatic time
for a linear ramp and we investigate the influence of a
density imbalance between two components.

For a linear ramp (48), by changing variables from ¢ to
Vo in (86), the adiabaticity condition is tramp >> tadiab,+;
where

tadiab,+ = yomax t+(Vo), (92)
h(vmax - ‘/min) d Alzlq i (‘/0)

ty(V)) = ——m—m——— L | — [ ——22 2 ). (93

) = " | ()| 9

Let us consider a situation in which Vi, = 4ER, Vinax =
13ER and the fraction n, of atoms in component a is
varied from 0 to 1, with ny, = 1 — n,.

In Fig. 1 we plot the times ¢4 (1)) in Eq. (93) as a func-
tion of Vy/FER, for different atom numbers and fractions
ng. Within the selected range of Vj, the maximum of ¢+
is reached for Vi = Vinax. The maximum of the “minus”
branch (bottom row) is always larger than that of the
“plus” branch (top row), hence setting the minimal time
scale for adiabatic evolution.

In Fig. 2 we plot the adiabatic time t,4iab,— given by
Eq. (92) as a function of n, for different atom numbers
(colored solid lines). The black dashed line is the approx-
imation for large IV:

min—0 in
tadiabx 2 max (), (94)

VminSVOSVmax
J (Vo) )

h(Vmax - Vmin) i (
d‘/O hci (‘/O)qmin

> (95)

A. Discussion of the results

To gain physical insight in the low energy excitations
involved in the adiabaticty condition for the two compo-
nent system, let us first consider the homogeneous case

without the lattice [24, 27]. A clear physical picture is ob-
tained by linearizing the coupled Gross-Pitaevskii equa-
tions

; h2A 2 2
Zhaﬂﬁa = _% + UaW}a| =+ Uab|¢b| d’aa (96)

- A 2 2
ihOpby = *%+Ub|¢b| + Uab|al™| tu,  (97)

for the fields of the two components

Ya(r,t) = V/Nada(r,t)  tp(r,t) = /Nogy(r,t), (98)

around the uniform solutions ¢, = /ne, ¥, = /My
with chemical potentials u, = n.Us, + npUqp, pp =
nyUp + ngUqp, where ¢, = ¢p = 1/\/V are the station-
ary condensate wave functions, n, = N,/V, ny = Np/V

are the uniform atomic densities, and U, = % for
o = a,b,ab are the interaction constants. Linearization
of Eq. (96)-(97) gives

. h2A *
Zﬁ@t&% = - %51% + naUa<6'{/}a + 6"/’@)

+ VnanUas (696 + 69, (99)
- 7122%5% + npUp (695 + 01y)
+ VnanpUab(6¢a + 01)5),

One then looks for eigenmodes in the form of plane waves

51110- ug 1(q-r—uw,
<5w:;> -2 <v§>e B

q7#0

ihd 0y =
(100)
(101)

where o = a,b. Note that in the density-phase point of
view where ¢, = , /paewa and Y = , /pbeleb we obtain

(o 1 =0 =0
dpg = §(Uq+vq), (102)
1 a2 —vg
507 = — -4 a 103
T 2% Jn, (103)

The linearized equations (99)-(100) decouple when taking
the sum and difference. One then finds that
a - a

— V. = mdq
q q AEq

S

(g + vg), (104)

and similarly for b, where AE4 = h%q?/2m, is the kinetic
energy, and the sum combination satisfies the eigenvalue

problem
wg \° ul + ol
1—(h-24 I+2M s ( a' 9} =,
< AEq> + } (ag + @g)

{AEq

(105)
with T the identity matrix and
aUa a Ua
Mz( " vialth b). (106)
Va Uap npUp
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FIG. 1. (Color online) Times ¢4 (Vo) (top row) and t_(Vp) (bottom row) in equation (93) as a function of Vo /FERr, for three
atom numbers: N = 103, N = 10* and N = 10° from the left to the right. In each panel we show the result for different
fractions of atoms in component a: n, = 0.5 (black line), nq = 0.1 (red dashed line) and n, = 0.01 (blue dash-dotted line).
In each case the maximum of ¢+ is reached for the largest value of Vo/Egr. The plots where generated expanding the kinetic
energy term AEq . for a low quasi-momentum dgmin < 1 and using the approximate formulas (7a)-(7b) for J and Us, p,qp with
scattering lengths aee = apy, = 100.4r¢ and aqp = 95.0rg where 7o is the Bohr radius, corresponding to the hyperfine sates
F = 41, mp = F1 of ¥ Rb atoms with a Feshbach-tuned interspecies scattering length aq [6, 28]. The lattice wavelengths is
A = 800nm.

The eigenvalues of M are reinterprets the kinetic energy term AFEq according to
1 Eq. (20). In particular Eq. (108) for the spectrum co-
Ay = - I:Uana + Uyny + \/(Uana — Upnp)? + 4nanbU3b:| ,  incides with Eq. (66), Eq. (109) can be easily deduced

2 by the modal functions (69), and Eq. (89) for the speed

(107) of sound reduces to (110) by performing the substitution

. . .
and the two eigenenergies take the form L 72‘];;2)01 that is the low energy equivalent of the cor-

B gspondence (20) for kinetic energy. Provided Uyny, # 0,
fwq, 2 = \/AEq [AEq +2A]. (108) we can rewrite in the lattice
Looking for the eigenvectors of the 2x2 matrix M, one RI(6)Us(6)n
finds the ratio between the density perturbations in the Ci = 2b b« F, (111)
two components for the two excitation branches h
5o° =b =b Uang Uana ’ n, Uz,
P+ uq,i + Uq,i )\i - Uana F = 14+ + 1-— + 4772
a  a =a = Ubnb Ubnb Ty Ub
opt gy + 0G4 Uapr/Toanp
(112)

1/2

— sen(\y — Unia) (W) . (109)
Ax — Upnyp Note that when U,(t) and U,(t) have the same depen-

dence on Vj, the factor F'in (111) gets out of the deriva-
tive in (95), and gives the dependence of the adiabatic
time on the ratios between the atom numbers and scat-
[ At tering lengths in the two components. For the linear

m

homo __
C+ (110) ramp one indeed has

In the limit of a small wave vector q, they correspond to
sound waves with the speed of sound given by

The relations in this subsection, derived for a ho- Ain _ ANY/ 3(Vmax Vinin) 1 d J (113
mogeneous system, hold in the lattice, provided one =~ N Ya Jdvo VU’ )
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FIG. 2. (Color online) Adiabatic time tadiab,— as a function of the fraction n, of atoms in component a, for different atom
numbers, in linear scale (left panel) or in semi-log scale (right panel). The solid lines are from Eq. (92): N = 10® (black
dash-dotted line), N = 10* (red dashed line), N = 10° (blue solid line), while the black dashed line is from the approximate
expression (94) that holds in the large N limit. The plots where generated expanding the kinetic energy term AEq . for
a low quasi-momentum dgmin < 1 and using the approximate formulas (7a)-(7b) for J and Ugp,as with scattering lengths

Gaa = app = 100.47¢ and aqp = 95.0rg where 7o is the Bohr radius. The lattice wavelengths is A = 800nm.

which also shows that, for a linearized dispersion relation,
tadiab,— 18 always larger than tagiab,+-

1. Symmetric case

For U, = Uy and n, = np= 1/2, the factor v/n, F in the
denominator of the ¢ (113) is equal to (1 4+ Uap/U,)'/?
showing the divergence of t'" when U,;, — U,. Equation
(109) shows that the “minus” solution corresponds to a
situation in which the two component oscillate out-of-
phase while the “plus” solution corresponds to in-phase
oscillations

5p® = —op”,
ops = 0pf.

(114)
(115)

The out-of phase solution, whose speed of sound c¢_ tends
to zero as U, approaches U, from below, announces the
demixing instability for U 217 > U,U,.

2. Asymmetric case

In the asymmetric case, with U, = U, but n, < ny, to
the lowest order in n,, that is zero order, one has

(116)
(117)

Fwq, = AEq,
Mg+ = \/ AEa(AEq +2Uyny).

The “minus” branch hwg,— does not describe a sound
wave, but is purely quadratic for small q, see (9) [29].
Correspondingly, for n, = 0 (and symmetrically for n, =
1) Qq,— = 0 in equation (85) and the adiabatic time is
zero as shown in the right panel of figure 2. We note
however that the adiabatic time significantly increases

where 0 < n, < np. This feature can be simply explained
in the large N limit where, using equations (112) and
(113), one gets

(tlin)na<<nb nq—0 1
_— ~

. (118)
tlln n—n N
() Y 5 (1+ UT:)

V. CONCLUSIONS

We found the adiabaticity condition when an opti-
cal lattice is raised in a uniform two-components Bose-
Einstein condensate at single particle unit filling. We
concentrated our analysis in the superfluid regime and
we used the time dependent Bogoliubov approach. We
find that the excitations that can brake adiabaticity are
pairs of Bogoliubov excitations (sound waves) with op-
posite quasi-momenta, where, in the symmetric case the
two components oscillate out of phase. The scaling of
the adiabatic time with the system size is N'/3, given by
the minimal quasi momentum that can be excited in the
lattice. For large atom numbers we show that the adi-
abatic time is significantly larger in the strongly asym-
metric case n, < ny with respect to the symmetric case
ng = Ny, the ratio scaling as 1/\/7”Ta
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Appendix A: Implications of discrete translational
symmetry

The single particle Hamiltonian (5) is invariant under
discrete translation R along any lattice vector. It fol-
lows that translation operator Tg commutes with the
Hamiltonian i.e. [h(t),Tr] = 0, at any time. Complete
set of commuting observables theorem implies that both
operators share the same set of eigenstates. The eigen-
states of the operator Tr are labeled with discrete quasi-
momentum q values [30]

Troq(r,t) = TRy (r, 1), (A1)
with eigenvalue 'R, Equation (A1) suggests the fol-
lowing form of the eigenstate

Pq(r,t) = (A2)

Vug(r,t),
where function uq(r,?) has the same periodicity as the
lattice. Thus, single-particle Hamiltonian eigenstates are
of the form 1, 4(r,t) = €T u, 4(r,t), with additional
band index n. This is a statement of the Bloch theorem.

In a process where only the height of the potential
varies in time and the periodicity of the lattice stays con-
stant the time-evolution operator U(t) defined as

t
~ —i [ds h(s)
Ult)y=Te © ,

(A3)
where 7" denotes time-ordering operator, also commutes
with Tg. Consequently, the time-evolving state ¥ (r,t) =
U(t)4)n.q(r) will remain an eigenstate of the translation
operator with the same eigenvalue as the Bloch state
Un.q(r). In other words, quasi-momentum is conserved
during time evolution. It follows from
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Although the quasi-momentum needs to be conserved,
it does not exclude situation where other bands may be
populated. In general one can write

> e

m=1

'(/)(I', t) = (t)wmﬁl(r’ t)’ (A5)

with ¢, (0) = Iy -
Another consequence of translational invariance is the
vanishing of the coupling term

Corsemalt) = [ @1 Uil 5 tmalr.t)  (A0)

when k # . This can be shown once we consider the
identity

fd3T ¢n k r, t) ah(t)wm’q(r t)

C’VL s1, t A7
k Q( ) Em,q(t) _ En,k(t) ( )
and quasi-momentum conservation
Oh(t
O al.0) = 2D gt
Oh(t
R% ma(r,t).  (AS)
Eq. (A8) shows that
Oh(t
( )wm al (A9)

Z Cl "/)l,q
=1

This result combined with orthogonality of Bloch states
gives a non-zero coupling term only if the quasi-
momentum of both states is the same.

Appendix B: Explicit formulas for the
two-component system case

TRU (t)¢n q(r) = U()TRtn.q(r) = € VRU ()b q(x).
(A4) The non-hermitian matrix £ is defined as follows
J
AEqy . (t) + Ug(t)ng Uy (t)ng Uab () \/Traip Uab(t)y/Teamip
—U,(t)n, —[AEqo(t) + Us(t)ng]  —Uas(t)\/Tans —Uap(t) /o
Loc,q = (B1)
Uab(t) NNy Uab(t) NNy AE%b(t) + Ub(t)nb Ub(t)nb
— ab(t) NNy —Uap(t)\/Tramp —Up(t)np —[AEqJ,(t) + Ub(t)nb]
The energy introduced in Eq. (61) takes the form
U,(t)n, Up(t)n Ua
Hsco(t) =N, |€0,q(t) + (2)} + Ny |:€0’b(t)+ (s o N Ny — = Z Z [AEq - (t) + Us(t)ns) -
q#0 o=a,b
(B2)

Appendix C: Couplings among Bogoliubov modes

It is convenient to introduce the sum and differences
of the Bogoliubov modal functions (69)

g — g o . loa — (e g
Sq+ = Uq,+ T Vq+ dq,ﬂ: = Ug,+ — Vg, (Cl)

[
with ¢ = a,b, and express them using the parameters
Tq,+

th hwz
\/4AEq aAEq pUZ,namy,

; Tq4Tq- = —1

(C2)

Lq,+ =



One has
o, - AEqa /H_lxqi (3)
‘ﬁi:¢Aﬂw¢1+%i ()
ot = ot \ Ahf:b \/1 +1c§1 + ()
~ fat \/AEqb\/lJrgcqi (C6)

Using equations (C3)-
obtain

), and equation (73)-(75) we

1 d AE
Wyt = —— Lo [ 2Fan
R T (fmq,i )

2
Lq,+ d AEq,b
_tax 4 C7
T+a2, di Og(mq,i (€7)

hw
~2(2q1 +q2) = \/ - \/ 142 )( at)
i lo <AEq b ‘xq, >
AEqga |zq.+]
hw 1
q7 ) 1+ q,+)

(

£ g (2ae bl

og C9
<AEqb|$q+| ()

(C8)

—2(Qq,1 -
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with Apf the mean field energy shift and p the chemi-
cal potential, the result (116) can be interpreted as the
compensation for the minority component a between the
mean field shift due to interactions with b: AL = Uapnp
and the chemical potential pq = Ugpne, giving

hwg,— = AEq, (C11)
while in the majority component b one has A% ; = 2Uyn,,
(the factor 2 summing the Hartree and the Fock contri-
bution) and p, = Upny giving as for a single component

hwq+ = AEq+ Upne . (C12)

The discrete nature of quasi-momentum is a consequence
of Born-von Karmén boundary conditions in the finite
size system.



