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Minimizers of the W1,1-energy of S1-valued maps
with prescribed singularities. Do they exist?

Haïm Brezis(1),(2), Petru Mironescu(3),(4)

April 16, 2018

Abstract

The paper is concerned with the least W1,1-energy required to produce maps from a
domain Ω⊂R2 with values into S1 having prescribed singularities (ai)1≤i≤k. The value
of the infimum has been known for a long time and corresponds to the length of minimal
configurations connecting the points (ai) between themselves and/or to the boundary.
We tackle here the question whether the infimum of this W1,1-energy is achieved. This
natural topic turns out to be delicate and we have a complete answer only when k = 1.
The bottom line for k ≥ 1 is that the infimum is “rarely” achieved. As a “substitute”, we
give a full description of the asymptotic behavior of all minimizing sequences and show
that they “concentrate” along “convex combinations” of minimal configurations.

1 Introduction
Throughout this paper, the domainΩ⊂R2 is smooth, bounded and simply connected. Given
u ∈ W1,1(Ω;S1), we write u = (u1,u2). To such u, we may associate various objects and
quantities which play a fundamental role in the study of W1,1(Ω;S1) (see e.g. [5], [7], [9]).

One of these objects is the Jacobian of u, Ju. This distribution is defined by

Ju := 1
2

[
∂

∂x1

(
u1
∂u2

∂x2
−u2

∂u1

∂x2

)
− ∂

∂x2

(
u1
∂u2

∂x1
−u2

∂u1

∂x1

)]
. (1.1)

It is well-known (see e.g. [5], [8] and [7]) that

J(uv)= Ju+ Jv, ∀u,v ∈W1,1(Ω;S1), (1.2)

J u =−Ju, ∀u ∈W1,1(Ω;S1), (1.3)

and

Ju = 0 if and only if u = eıϕ for some ϕ ∈W1,1(Ω;R). (1.4)

If, in addition,

u ∈W1,1(Ω;S1)∩C(Ω\{a1, . . . ,ak};S1),
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where a1, . . . ,ak ∈Ω, then (see e.g. [6], [5], [8] and [7])

Ju =π
k∑

j=1
M jδa j in D′(Ω). (1.5)

Here, the integer M j := deg(u,a j) is the degree of u restricted to any small circle cen-
tered at a j. (This integer does not depend on the small circle.) Roughly speaking, when u
has a finite number of singularities, the Jacobian Ju detects the location and the topological
strength of the singularities of u.

Given k points a1, . . . ,ak in Ω and k integers M1, . . . , Mk ∈ Z, we will use the notation
a := (a1, . . . ,ak) and M := (M1, . . . , Mk). When k = 1, we let a := a1, M := M1 and write a, M
instead of a and M.

The quantity L(a,M) defined below appears in many questions involving maps in W1,1(Ω;S1)
(see e.g. [6], [5], [8] and [7]).

L(a,M) :=min


n∑
`=1

|P`−N`|

∣∣∣∣∣∣∣
P`, N` ∈ {a1, . . . ,ak}

⋃
∂Ω,`= 1, . . . ,n,

and
n∑
`=1

(δP`
−δN`

)=
n∑

j=1
M jδa j in D′(Ω)

 . (1.6)

Here, the points P`, N` need not be all distinct. With no loss of generality we may
assume that P` 6= N`, ∀`, and then the integer n satisfies n ≤ ∑k

j=1 |M j|. Note that the
measure

∑n
`=1(δP`

−δN`
) does not “see” points in ∂Ω, since equality in (1.6) holds in the

sense of D′(Ω). However, even in cases where the equality
∑n
`=1(δP`

−δN`
) = ∑n

j=1 M jδa j

can be achieved using only points P`, N` ∈ {a1, . . . ,ak}, it is sometimes advantageous to
introduce artificial boundary points because they may lower the quantity

∑n
`=1 |P` − N`|

(see Example 3 below). If (P`, N`)n
`=1 is a minimizer in (1.6), we say that the collection of

segments (P`, N`), `= 1, . . . ,n, is a minimal configuration associated with (a,M).

Here are a few examples.

Example 1. When a ∈Ω and M = 1, we have L(a, M) = dist(a,∂Ω). For any N ∈ ∂Ω such
that |a−N| = dist(a,∂Ω), the segment (a, N) is a minimal configuration.

Example 2. Let a = (a1,a2) and M = (+1,+1). Then L(a,M) = dist(a1,∂Ω)+dist(a2,∂Ω). If
N` ∈ ∂Ω satisfy |a`−N`| = dist(a`,∂Ω), `= 1,2, then ((a1, N1), (a2, N2)) is a minimal config-
uration.

Example 3. Let a = (a1,a2) and M = (+1,−1). Then L(a,M) = min{|a1 − a2|,dist(a1,∂Ω)+
dist(a2,∂Ω)}. When |a1−a2| ≤ dist(a1,∂Ω)+dist(a2,∂Ω), a minimal configuration is (a1,a2).
When |a1−a2| ≥ dist(a1,∂Ω)+dist(a2,∂Ω), a minimal configuration is ((a1, N1), (P2,a2)), with
N1,P2 ∈ ∂Ω satisfying |a1 −N1| = dist(a1,∂Ω), respectively |P2 −a2| = dist(a2,∂Ω).

To each u ∈W1,1(Ω;S1) we associate the number Σ(u)≥ 0 defined by

Σ(u)= inf
{ˆ

Ω
|∇v|; v ∈W1,1(Ω;S1), Jv = Ju in D′(Ω)

}
. (1.7)

Roughly speaking, Σ(u) measures the least W1,1-energy required to produce S1- valued
maps having the same singularities as u. The quantity Σ(u) is ubiquitous in the analysis
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of the space W1,1(Ω;S1) (see e.g. [5], [7], [8], [9]). It is well-known (see [6] and [7]) that if
u ∈W1,1(Ω;S1) satisfies

Ju =π
k∑

j=1
M jδa j in D′(Ω) (1.8)

for some pair (a,D), then

Σ(u)= 2πL(a,M). (1.9)

Here are some natural questions related to (1.7):
Question 1. Is the infimum in (1.7) achieved?
Question 2. Characterize the minimizers if they exist.
Question 3. Analyze the asymptotic behavior of minimizing sequences for (1.7).

Questions 1 and 2 turn out to be much more delicate than expected. We have a full
answer only in the case where u admits one singularity. In the case of multiple singular-
ities, our results are incomplete. The bottom line is that the infimum in (1.7) is “rarely”
achieved. On the other hand, we have a satisfactory answer to Question 3 in the most
general situation.

Remark 1. Another natural approach consists of minimizing Σ(u) in the space BV (Ω;S1),
which is larger than W1,1(Ω;S1). The main advantage of BV is that minimization problems
are more likely to have solutions in BV than in W1,1. Concerning our specific minimiza-
tion problem, a first difficulty to overcome is the definition of Ju when u is merely BV .
Clearly, the right-hand side of (1.1) is meaningless for such u. In [14], Ignat proposed sev-
eral definitions of Ju with u ∈BV (Ω;S1). They all coincide with (1.1) when u ∈W1,1, but do
not preserve the algebraic properties (1.2)–(1.3), and in addition they are not stable under
strong BV convergence. More significant for our problem, relaxing the functional setting
to BV is not of much help: the analogous infimum in (1.7) is still not achieved, in general.
We will illustrate this in Appendix B. We therefore restrict ourselves to the W1,1 setting,
technically simpler.

We first present our main results for one singularity, say a = 0 ∈Ω with degree M ≥ 1,
so that Ju = πMδ0. In Theorems 1 and 2, we assume that dist(0,∂Ω) = 1 and denote by D
the open unit disc centered at 0. Set

X := {x ∈ ∂Ω; |x| = 1}, Y := {θ ∈ [0,2π]; eıθ ∈ X }. (1.10)

Theorem 1. The infimum is attained in (1.7) if and only if |X | > 0.
If |X | > 0, then v is a minimizer in (1.7) if and only if v is locally constant in Ω\D and,

in D, we have v(reıθ)= eıh(θ). Here, h ∈W1,1((0,2π);R) satisfies

h is nondecreasing, (1.11)
h(2π)= h(0)+2πM, (1.12)

and

supph′ ⊂Y . (1.13)
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In the next result we discuss the asymptotic behavior of minimizing sequences in (1.7).

Theorem 2. Let (vn) be a minimizing sequence in (1.7). Then, up to a subsequence, we have,
for some probability measure µ on S1 supported in X ,

ˆ
Ω
|∇vn|ζ→ 2πM

ˆ
S1

(ˆ 1

0
ζ(rx)dr

)
dµ(x), ∀ζ ∈ C(Ω). (1.14)

And conversely.

Remark 2. Let us assume, for simplicity, that M = 1 and that X contains only two points,
b and c. Let (vn) be a minimizing sequence in (1.7). Then, up to a subsequence,

|∇vn|dx* 2πλH 1x [0,b]+2π (1−λ)H 1x [0, c],

where λ could be any number in [0,1]. This is in sharp contrast with the situation analyzed
by Brezis, Coron and Lieb in [6]. The minimization problem studied there is

inf
{ˆ

Ω
|∇v|2; v :Ω→S2

}
,

with Ω⊂R3. The inf is taken over all maps v which are smooth outside the origin and have
degree one around the origin. Assuming that the set

X = {x ∈ ∂Ω; |x| = dist(0,∂Ω)}

is finite, it is proved in [6] that, along a minimizing subsequence (vn), we have |∇vn|2 dx*
8πH 1x [0,b], for some b ∈ X . The lack of quantization phenomenon for the W1,1-norm was
originally pointed out in [6] (see the comments following Theorem 8.2 and at the end of
Appendix E).

The proofs of Theorems 1 and 2 are presented in Section 2.

We now turn to multiple singularities. We start with a simple case of non-existence.

Theorem 3. Assume that there are only finitely or countably many minimal configurations
associated with (a,M). Then the infimum in (1.7)–(1.8) is not attained.

More generally, assume that there exists a null set (for the Lebesgue measure) Z ⊂Ω such
that for every minimal configuration (P`, N`), `= 1, . . . ,n, associated with (a,M) we have
∪n
`=1(P`, N`)⊂ Z. Then the infimum in (1.7)–(1.8) is not attained.

Remark 3. We return to the case of a single singularity, as in Theorem 1. Assume e.g.
that a = 0, M = 1 and dist(0,∂Ω)= 1. Then the minimal configurations are (0, x), with x ∈ X
(here, X is as in (1.10)), and thus the smallest set Z containing all minimal configurations is
Z :=∪x∈X (0, x). We may then rephrase the conclusion of Theorem 1 as follows. There exists
a minimizer v in (1.7) if and only if Z has positive Lebesgue measure. In view of Theorem 3,
it is tempting to conjecture that a statement similar to Theorem 1 holds in general. Roughly
speaking, Theorem 3 asserts that, when the collection of all minimal configurations is a null
set in Ω, there is no minimizer in (1.7). However, the converse is wrong; see Remark 5.

Here are some of our results concerning Question 3, i.e., the asymptotic behavior of
minimizing sequences.
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Theorem 4. Assume that there are only finitely many minimal configurations U1, . . . ,Um
associated with (a,M). Let (vn) be a minimizing sequence in (1.7)–(1.8). Then, up to a
subsequence,

|∇vn|dx* 2π
m∑

j=1
λ jH

1xU j, with λ j ∈ [0,1] and
m∑

j=1
λ j = 1.

And conversely.

The notation H 1xU j requires an explanation. Recall that a minimal configuration is a
finite collection of segments (P`, N`). Then we define

H 1xU j :=∑
`

H 1x (P`, N`). (1.15)

The proofs of Theorem 3 and 4 are given in Section 3. In fact, we will present in Section
3 far-reaching extensions of these results. Here is a typical example. Given a minimal
configuration U associated with (a,M), we define H 1xU via (1.15). We set

Lmin := {Q =H 1xU; U is a minimal connection associated with (a,M)}. (1.16)

Clearly, Lmin ⊂M (Ω)= [C0(Ω)]∗ and ‖Q‖M = L(a,M), ∀Q ∈Lmin. Therefore, Lmin is a
bounded subset of M (Ω). A basic property is

Lemma 1. Lmin is weakly-∗ closed in M (Ω), and thus Lmin equipped with the weak-∗
topology σ(M (Ω),C0(Ω)) is a compact metrizable space.

We have the following

Theorem 5. Let (vn) be a minimizing sequence in (1.7)–(1.8). Then there exists a probability
measure µ on Lmin such that up to a subsequence we have

|∇vn|dx* 2πκ in M (Ω), (1.17)

where

〈κ,ζ〉 :=
ˆ

Lmin

〈Q,ζ〉dµ(Q), ∀ζ ∈ C0(Ω). (1.18)

Note that the right-hand side of (1.18) is well-defined, since Q 7→ 〈Q,ζ〉 is continuous on
the compact Lmin.

We call the attention of the reader to the following

Open Problem. Find a tractable necessary and sufficient condition on (a,M) and Ω for the
existence of a minimizer in (1.7)–(1.8).

In Section 4 we present some regularity results, e.g. continuity away from the points ai,
for the minimizers of (1.7)-(1.8), assuming they exist.
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2 Proofs of Theorems 1 and 2
Proof of Theorem 1. We know that Σ(u) = 2πL(0, M) = 2πM as in Example 1. The infimum
in (1.7) is still 2πM if we replace Ω by D. Assume that v is a minimizer in (1.7). Then

2πM =
ˆ
Ω
|∇v| =

ˆ
D

|∇v|+
ˆ
Ω\D

|∇v| ≥ 2πM+
ˆ
Ω\D

|∇v|.

Consequently,
ˆ
D

|∇v| = 2πM (2.1)

and ˆ
Ω\D

|∇v| = 0, (2.2)

so that ∇v = 0 in Ω\D and thus

v is locally constant in Ω\D. (2.3)

Set, in polar coordinates,

∂v
∂τ

:= 1
r
∂v
∂θ

.

Clearly, we have

ˆ
D

|∇v| =
ˆ
D

√∣∣∣∣∂v
∂r

∣∣∣∣2 + ∣∣∣∣∂v
∂τ

∣∣∣∣2 ≥ ˆ
D

∣∣∣∣∂v
∂τ

∣∣∣∣= ˆ
D

∣∣∣∣v∧ ∂v
∂τ

∣∣∣∣= ˆ 1

0

ˆ
C(0,r)

∣∣∣∣v∧ ∂v
∂τ

∣∣∣∣ d`dr. (2.4)

Here, C(0, r) denotes the circle of radius r centered at 0. On the other hand, if w ∈
W1,1(S1;S1), then we have

ˆ
S1

w∧ ∂w
∂τ

d`= 2πdegw; (2.5)

this is just another way of writing the classical Cauchy formula

degw = 1
2ıπ

ˆ
S1

1
w

(
∂w
∂τ

)
d`.

Rescaling (2.5) and returning to v we have
ˆ

C(0,r)
v∧ ∂v

∂τ
d`= 2π deg(v,C(0, r)) for a.e. r ∈ (0,1). (2.6)

Assume temporarily that v ∈ C(D\{0}). By (1.5), we find that deg(v,C(0, r))= M for every
r ∈ (0,1). If we remove the continuity assumption, then we have the following result, whose
proof is postponed to Section 4.

Lemma 2. Let v ∈W1,1(D;S1) be such that Ju =πMδ0. Then

deg(v,C(0, r))= M for a.e. r ∈ (0,1).
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Proof of Theorem 1 completed. Combining Lemma 2 with (2.4) yields

v∧ ∂v
∂τ

≥ 0 a.e. on D

and

∂v
∂r

= 0 a.e. on D,

so that, on D, v does not depend on r.
Therefore, we may write v(reıθ) = eıh(θ) on D, with h ∈ W1,1((0,2π);R) nondecreasing

and satisfying h(2π) = h(0)+2πM. Since v is locally constant in Ω\D, we deduce that h
is locally constant in (0,2π) \ Y , so that supp h′ ⊂ Y . Note that a function h with all the
required properties exists if only if |Y | > 0. Conversely, it is easy to see that any function v
locally constant in Ω\D, which can be written as v(reıθ) = eıh(θ), where h ∈ W1,1((0,2π);R)
satisfies (1.11)–(1.13), is a minimizer for (1.7).

Proof of Theorem 2. Theorem 2 is a special case of Theorems 5 and 7 (below). However,
since it requires some additional arguments to see that the three statements coincide in
the specific setting of Theorem 2, we present a direct proof.

We start with some observations. A measure µ on S1 defines a (−1)-homogeneous mea-
sure µ̃ in Ω, having in polar coordinates the form

µ̃(ζ)=
ˆ
S1

ˆ 1

0
ζ(rx)drdµ(x), ∀ζ ∈ C0(Ω).

Here, “(−1)-homogeneous” comes from the fact that, if µ has density f , then µ̃ has, in

D, density
1
|x| f (x/|x|), which is (−1)-homogenous. In the special case where µ= δb for some

point b ∈S1, we have µ̃=H 1x [0,b].
The following facts are straightforward:

Fact 1. We have µ̃= 0 in Ω\D and µ̃(D)=µ(S1).
Fact 2. If µn *µ in M (S1), then µ̃n * µ̃ in M (Ω).
Fact 3. If w ∈W1,1(D) is 0-homogeneous, then |∇w| is (−1)-homogenous in D.

The main ingredient of the proof of Theorem 2 is the following

Lemma 3. Let (vn) be a minimizing sequence in (1.7). Let ν be such that, up to a subse-
quence, |∇vn|dx* ν in M (Ω). Then ν= ξ̃ for some measure ξ on S1 with suppξ⊂ X .

Proof of Theorem 2 completed. Let (vn) be a minimizing sequence in (1.7). As in the proof
of Theorem 1, we have

´
Ω |∇vn| → 2πM, and also

´
D
|∇vn| ≥ 2πM. Therefore, we must have´

Ω\D |∇vn|→ 0 and
´
D
|∇vn|→ 2πM. It follows that any ν as in the above lemma must satisfy

ν(D)= 2πM. Using Fact 1, we thus have ν= 2πM µ̃, with µ ∈P (S1) supported in X .
Conversely, let µ ∈ P (S1) be supported in X . We may identify µ with an element in

P (X ). We want to construct a sequence such that (1.14) holds. It suffices to consider the
case where µ=∑k

j=1λ jδb j , where λ j ∈ [0,1], b j ∈ X , ∀ j = 1, . . . ,k,
∑k

j=1λ j = 1.
Indeed, assuming this achieved, the case of a general µ ∈P (X ) is settled as follows. Let

Q := {ν ∈M (Ω); ∃ a sequence (vn) minimizing in (1.7) such that |∇vn|dx* ν}.

By definition, Q is clearly weakly sequentially closed. Using Fact 2, if µn *µ in M (S1)
and 2πµ̃n ∈ Q, ∀n, then 2πµ̃ ∈ Q. The above assumption is that 2πµ̃ ∈ Q when µ is a
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discrete probability on X . Since such probabilities are weakly sequentially dense in P (X ),
we find that Q ⊃ {2πµ̃; µ ∈P (X )}, which is the desired converse.

We now return to the construction of (vn) for a discrete measure µ=∑k
j=1λ j δb j with

λ j ∈ (0,1], ∀ j = 1, . . . ,k, b j 6= b`, ∀ j 6= ` and
k∑

j=1
λ j = 1. (2.7)

We may always take M = 1; the general case follows by choosing (vM
n ). Assuming e.g.

that b1 = 1, we order the points b j in such a way that b j = eıθ j with 0= θ1 < θ2 < . . .< θk < 2π.
We will use a variant of the dipole construction (see [6], [7]). Given ε > 0 (sufficiently

small) consider the cone in R2,

Q̃ε := {(x1, x2); |x1| < 2εx2, 0< x2 < 1/2},

with height 1/2 and base of length 2ε.
Next we consider the symmetry S with respect to the line {(x1,1/2); x1 ∈ R}, and set

Qε := Q̃ε∪S(Q̃ε).
The set Qε will be used in the construction of a dipole with vertices 0 and ı, as explained

below. Given 0<λ≤ 1, consider the functions w̃ε : Q̃ε→S1, defined by

w̃ε(x1, x2) := e−ıπλx1/(2εx2)

and wε : Qε→S1 defined by

wε(x) :=
{

w̃ε(x), if x ∈ Q̃ε

wε(Sx), if x ∈ S(Q̃ε)
.

The standard dipole construction corresponds to λ= 1.
Set

∂+Qε := (∂Qε)∩ {(x1, x2) ∈R2; x1 > 0} and ∂−Qε := (∂Qε)∩ {(x1, x2) ∈R2; x1 < 0}.

Note that

wε =
{

e−ıπλ, on ∂+Qε

eıπλ, on ∂−Qε

,

so that wε is not constant on ∂Qε unless λ= 1. This is in sharp contrast with the standard
dipole construction (where we can extend wε by a constant outside Qε). Here, wε jumps
from e−ıπλ to eıπλ when crossing Qε from ∂+Qε to π−Qε (which corresponds to the standard
orientation on a small circle centered at 0).

A straightforward calculation (see e.g. [6], [7]) yields
ˆ

Qε

|∇wε| ≤ 2πλ (1+ε). (2.8)

We place a first dipole wε on Q1,ε with vortices at 0 and b1 (instead of 0 and ı) and with
λ := λ1. We multiply the corresponding function wε by a factor ξ1 := eıπλ1 , so that the new
function w1,ε := ξ1 wε jumps from 1 to e2ıπλ1 when crossing Q1,ε. Next we place a second
dipole Q2,ε with vertices at 0 and b2 and with λ := λ2. We multiply the corresponding
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function by a factor ξ2 := eıπ (2λ1+λ2), so that we obtain a function w2,ε defined in Q2,ε and
satisfying

w2,ε|∂+Q2,ε
= w1,ε|∂−Q1,ε

= e2ıπλ1 .

We proceed in the same manner until we reach Qk,ε. Choosing ξk := eıπ (2λ1+2λ2+···+2λk−1+λk),
we see that the new function wk,ε jumps when crossing Qk,ε from e2ıπ (λ1+λ2+···+λk−1) to

e2ıπ (λ1+λ2+···+λk) = e2ıπ = 1 (by (2.7)),

which matches well with w1,ε since

wk,ε|∂−Qk,ε
= w1,ε|∂+Q1,ε

= 1.

Next, we glue the functions w j,ε by taking appropriate constants on the components of
D\({0}∪∪k

j=1Q j,ε), in order to obtain a map vε continuous on D\{0}. Clearly, this map extends
by continuity to D\ ({0}∪∪k

j=1{b j}). In addition, it satisfies vε ∈ Liploc(D\ ({0}∪∪k
j=1{b j})),

deg(vε,C(0, r))= 1 for every r < 1 and, by (2.8),
ˆ
D

|∇vε| ≤ 2π (1+ε).

Finally, we extend vε to Ω as follows. Let ω be a connected component of Ω\D. Then
(∂ω)∩S1 consists of an arc A on S1 whose interior is disjoint from X , and which connects
two points in X . (Here, we use in an essential way the assumption that Ω is simply con-
nected.) Therefore, vε is constant on A and we set vε := vε|A on ω.

Clearly, vn := v1/n, n ≥ n0, has all the required properties.

Proof of Lemma 3. We start from the following version of (2.4):

2πM+ o(1)=
ˆ
D

|∇vn| =
ˆ
D

√∣∣∣∣∂vn

∂r

∣∣∣∣2 + ∣∣∣∣∂vn

∂τ

∣∣∣∣2 ≥ ˆ
D

∣∣∣∣∂vn

∂τ

∣∣∣∣= ˆ
D

∣∣∣∣vn ∧ ∂vn

∂τ

∣∣∣∣
=
ˆ 1

0

ˆ
C(0,r)

∣∣∣∣vn ∧ ∂vn

∂τ

∣∣∣∣ d`dr ≥
ˆ 1

0

∣∣∣∣ˆ
C(0,r)

vn ∧ ∂vn

∂τ
d`

∣∣∣∣ dr ≥ 2πM.

(2.9)

We find that the following hold:
ˆ
D

∣∣∣∣∂vn

∂r

∣∣∣∣→ 0,
ˆ
Ω\D

|∇vn|→ 0 (2.10)

and ˆ
D

(
vn ∧ ∂vn

∂τ

)−
→ 0. (2.11)

Here, t− :=
{

0, if t ≥ 0
−t, if t < 0

.

In particular, up to a subsequence we have, for a.e. r ∈ (0,1),
ˆ

C(0,r)

(
vn ∧ ∂vn

∂τ

)−
→ 0. (2.12)
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On the other hand, let us note the inequality
ˆ

C(0,r)
|∇vn|d`≥ 2πM, for a.e. r ∈ (0,1); (2.13)

this follows from Lemma 2 combined with the degree formula (2.6). By (2.9) and (2.13), we
find that

lim
n→∞

ˆ 1

0

∣∣∣∣ˆ
C(0,r)

|∇vn|d`−2πM
∣∣∣∣ dr = 0. (2.14)

By (2.10) and (2.14), possibly up to a subsequence we have

(0,∞) 3 r 7→
ˆ

C(0,r)∩Ω
|∇vn| is dominated in L1((0,∞)). (2.15)

By similar calculations, we obtain
ˆ
D(0,r)

|∇vn| ≤
ˆ
Ω
|∇vn|−

ˆ
D\D(0,r)

|∇vn| ≤ 2πM r+ o(1), ∀ r ∈ (0,1), (2.16)

and ˆ
{x∈Ω; |x|≥1−ε}

|∇vn| ≤ 2πM ε+ o(1), ∀ε ∈ (0,1). (2.17)

In view of (2.16)-(2.17), it suffices to prove the existence of a measure ξ on S1 such that

ˆ
Ω

|∇vn|ζ→
ˆ
S1

(ˆ 1

0
ζ(rx)dr

)
dξ(x), ∀ζ ∈ C∞

c (D\{0}) (2.18)

and

suppξ⊂ X . (2.19)

Using a partition of unity in D\{0}, it suffices to establish (2.18) when ζ is supported in
a set of the form

A :=
{
reıθ; r1 < r < r2, θ1 < θ < θ2

}
, 0< r1 < r2 < 1, θ2 −θ1 < 2π.

Since A is simply connected and Jvn = 0 in A, we may write, in A, vn = eıϕn with ϕn ∈W1,1.
In terms of ϕn, (2.18) amounts to

ˆ
Ω

∣∣∇ϕn
∣∣ζ→ ˆ

S1

(ˆ r2

r1

ζ(rx)dr
)

dξ(x), ∀ζ ∈ C∞
c (A), (2.20)

and it suffices to define ξ on the set B := {
eıθ; θ1 < θ < θ2

}
. (Assuming that this has been

done, by covering S1 with a finite number of B’s we obtain a global object such that (2.18)
holds.)

Consider some Rn ∈ (r1, r2) such that:
1. The trace yn of vn on C(0,Rn) belongs to W1,1 and the sequence (yn(Rn·)) is bounded in
W1,1(S1).
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2. The trace ψn of ϕn on C(0,Rn)∩ A belongs to W1,1 and eıψn = yn in C(0,Rn)∩ A.
3. (2.12) holds with r = Rn.

Let ξ be a measure on B such that, possibly up to a subsequence, we have
ˆ
S1

∣∣∣∣∂yn

∂τ
(Rnω)

∣∣∣∣ g(ω)d`(ω)=
ˆ
S1

∣∣∣∣∂ψn

∂τ
(Rnω)

∣∣∣∣ g(ω)d`(ω)→
ˆ
S1

g dξ, ∀ g ∈ Cc(B;R). (2.21)

We will prove that (2.18) holds for this ξ. In terms of phases, (2.10)–(2.15) imply
ˆ

A

∣∣∣∣∂ϕn

∂r

∣∣∣∣→ 0, (2.22)
ˆ

C(0,r)∩A

(
∂ϕn

∂τ

)−
→ 0 for a.e. r ∈ (r1, r2) (2.23)

and

(r1, r2) 3 r 7→
ˆ

C(0,r)∩A
|∇ϕn| is dominated in L1((r1, r2)). (2.24)

By (2.12) and (2.21), we also have
ˆ
S1

∂ψn

∂τ
(Rnω) g(ω)d`(ω)→

ˆ
S1

g dξ, ∀ g ∈ Cc(B;R). (2.25)

Using (2.22) and (2.24), for a.e. r in (r1, r2) we have

ϕn(r·)−ψn(Rn·)→ 0 in L1(B), uniformly in r ∈ (r1, r2) as n →∞ (2.26)

and thus (using (2.25) and (2.26))

−
ˆ

A
ϕn(x)

∂ζ

∂τ
(x)dx =−

ˆ
A
ψn(Rnx/|x|)∂ζ

∂τ
(x)dx+ o(1)

→
ˆ

B

ˆ r2

r1

ζ(rx)dr dξ(x) as n →∞, ∀ζ ∈ C∞
c (A).

(2.27)

Equivalently, we have
ˆ

A

∂ϕn

∂τ
ζ→
ˆ
S1

(ˆ r2

r1

ζ(rx)dr
)

dξ(x), ∀ζ ∈ C∞
c (A), (2.28)

We obtain (2.20) from (2.22), (2.23), (2.24) and (2.28).
It remains to prove (2.19). In view of (2.28), this amounts to proving that, if the above

B satisfies B∩ X =;, then
ˆ

A

∂ϕn

∂τ
ζ→ 0, ∀ζ ∈ C∞

c (A). (2.29)

In turn, (2.29) is obtained via a slight modification of the above arguments. Let ρ > 1
be such that {rx; x ∈ B,0 ≤ r < ρ} ⊂ Ω. Existence of such ρ follows from the assumption
B ∩ X = ;. Consider now some Rn ∈ (1,ρ) (instead of Rn ∈ (r1, r2)) such that the above
properties 1–3 and (2.21) hold. Define ξ starting from these Rn’s. This ξ will satisfy (2.27).
By (2.10), we find that ξ= 0.
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3 Proofs of Theorems 3, 4 and 5
Since we will present generalizations of these theorems we need some preliminary material.
We denote by E the following class of distributions:

E :=
{
T ∈D′(Ω); T =∑

(δP j −δN j ), with P j, N j ∈Ω,
∑ |P j −N j| <∞

}
. (3.1)

Up to a factor π, the class E characterizes all possible Jacobians of maps u ∈W1,1(Ω;S1)
([1], [8], [7]) as explained below.
1. Let u ∈W1,1(Ω;S1). Then there exist points P j, N j ∈Ω such that∑ |P j −N j| <∞ (3.2)

and

Ju =π∑
(δP j −δN j ) in (W1,∞

0 (Ω))∗ (and thus in D′(Ω)). (3.3)

2. Conversely, given T ∈ E , there exists u ∈W1,1(Ω;S1) such that Ju =πT.
3. In addition, we have

Σ(u)= 2π inf
{∑ |P̃ j − Ñ j|; P̃ j, Ñ j satisfy (3.2)− (3.3)

}
. (3.4)

4. An equivalent formulation of (3.4) is the following. Define, for T ∈ E , the Wasserstein
norm

‖T‖W := sup
{
〈T,ζ〉; ζ ∈W1,∞

0 (Ω;R),‖∇ζ‖L∞ ≤ 1
}
<∞. (3.5)

(Alternatively, we could take, in (3.5), the sup over functions ζ ∈ C∞
c (Ω;R).) Then

Σ(u)= 2π‖T‖W . (3.6)

For such a general T, (generalized) minimal configurations need not exist ([16]), i.e.,
the inf in (3.4) need not be achieved. In this context, it is convenient to work with vector-
valued measures. Following [7], we will consider connections and minimal connections. A
connection C associated with T ∈ E is an R2-valued measure C on Ω satisfying:

C :=∑
νiH

1x (Si ∩Ω), (3.7)

where (Si) is a countable collection of Borel subsets Si of C1 oriented curves γi ⊂ R2 with
normals νi, such that

∑
H 1(Si ∩Ω)<∞, and

curlC = T in D′(Ω). (3.8)

5. It turns out that Σ(u) can also be computed starting from connections. More specifically,

let u ∈W1,1(Ω;S1) and set T := 1
π

Ju. Then we have ([7])

inf {‖C ‖M ; C is a connection associated with T}= ‖T‖W = 1
2π
Σ(u). (3.9)

6. The infimum in (3.9) is always achieved. A minimal connection is a minimizer in (3.9).

7. Let us return to the situation considered in the previous sections, where T := 1
π

Ju is a
finite sum of Dirac masses. Then ‖T‖W = L(a,M) (by (1.9) and (3.5)). Consider a minimal
configuration ((P`, N`))n

`=1 associated with (a,M). Then C :=∑
ν`H

1x (N`,P`) (with (N`,P`)
the oriented segment from N` to P`) is a minimal connection ([7]). And conversely.

In view of these considerations, Theorem 3 is an immediate consequence of the following.
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Theorem 6. Let T ∈ E \{0}. Assume that there are only finitely or countably many minimal
connections associated with T.

Then the infimum

inf
{ˆ

Ω
|∇v|; v ∈W1,1(Ω;S1), Jv =πT

}
(3.10)

is not attained.
More generally, the same conclusion holds if we assume that there exists a null set (for

the Lebesgue measure) Z ⊂Ω such that suppC ⊂ Z H 1-a.e., for every minimal connection
C .

The proof of Theorem 6 relies on the coarea formula for Sobolev maps (see e.g. [12], [15])
and a consequence of this formula. This key ingredient, Lemma 4 below, is a delicate result
due to Alberti, Baldo and Orlandi ([1, Theorem 3.8], with roots in [2, Appendices A.5-A.8]
and [11, 4.3]).

We first recall the Sobolev version of the coarea formula, following the presentation in
[1, Sections 7.4, 7.5]. Let v :Ω→S1 be a Borel function such that v ∈W1,1. Let E be the set
of points where v is not approximatively differentiable (for the definition of the approximate
differential, see e.g. [3, Definition 3.70]). Then E is a null set (for the Lebesgue measure).
For α ∈S1, we set

Dα = [v =α] := {x ∈Ω\ E; v(x)=α}.

Then there exists a full measure set A ⊂S1 such that

Dα is H 1-rectifiable, and v∧∇v 6= 0 H 1-a.e. on Dα, ∀α ∈ A. (3.11)

In addition, the following “coarea formula” holds
ˆ
Ω
|∇v| =

ˆ
S1

H 1(Dα)dα. (3.12)

More generally, we have the following
ˆ
Ω

g|∇v| =
ˆ
S1

(ˆ
Dα

g dH 1xDα

)
dα. (3.13)

Here, equality is valid for any non-negative Borel function g or for any Borel function g
such that g|∇v| ∈ L1(Ω).

The next result is a reformulation of [1, Theorem 3.8]. (The latter is stated in terms
of rectifiable currents. One “translates” it in terms of connections using the “dictionary”
(3.18)–(3.20) below.)

Lemma 4. Let v ∈W1,1(Ω;S1). Set T := 1
π

Ju and Dα := [v =α], ∀α ∈S1. Then, for a.e. α,

Cα := v∧∇v
|v∧∇v|H

1xDα

is a connection associated with T.

Note that, in view of (3.11), the definition of Cα makes sense for a.e. α ∈S1.
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Proof of Theorem 6. We may assume that Z is a Borel set. Argue by contradiction and
assume that v is a minimizer in (3.10), so that

ˆ
Ω
|∇v| = 2π‖T‖W . (3.14)

By Lemma 4 and (3.9), we have

H 1(Dα)= ‖Cα‖M ≥ ‖T‖W , for a.e. α ∈S1. (3.15)

By (3.14), (3.15) and the coarea formula (3.12), we find that Cα is a minimal connection,
for a.e. α ∈S1. For any such α, we have

Dα = supp Cα ⊂ Z H 1 −a.e. (3.16)

Let now g := 1Z , so that

for a.e. α ∈S1, g = 1 H 1-a.e. on Dα. (3.17)

Since g = 0 a.e., we find, using (3.17) and the coarea formula (3.13), that

0=
ˆ
Ω

g |∇v| =
ˆ
S1

(ˆ
Dα

g dH 1xDα

)
dα=

ˆ
S1

H 1(Dα)dα= 2π‖T‖W > 0.

This contradiction completes the proof of Theorem 6.

Remark 4. The idea of using the coarea formula to prove the inequality
´
Ω |∇v| ≥ 2π‖T‖W

when v is smooth except at a finite number of singularities goes back to Almgren, Browder
and Lieb [2].

Remark 5. The converse to Theorem 6 is wrong, even when T is a finite sum of Dirac
masses. Actually, while the converse is true for one singularity (see Theorem 1), it is already
wrong for two singularities. Indeed, consider a domain Ω and points a1,a2 ∈Ω such that
the following hold:
1. The set X1 := {x ∈ ∂Ω; |a1 − x| = dist(a1,∂Ω)} has positive length.
2. The set X2 := {x ∈ ∂Ω; |a2 − x| = dist(a2,∂Ω)} consists of a single point, say N2.

Let a := (a1,a2) and M := (+1,+1), so that we have T = δa1 +δa2 . Then the minimal
configurations are ((a1, N1), (a2, N2)), with N1 ∈ X1. Therefore, any set Z as in Theorem 6
must contain ∪N1∈X1(a1, N1), and thus has positive Lebesgue measure.

We claim that, for the above T, there exists no minimizer v in (3.10). Indeed, argue
by contradiction. As in the proof of Theorem 6, for a.e. α ∈ S1 the set Dα is the support
of a minimal connection. In our case, this means that, for such α, Dα equals, H 1-a.e., a
set of the form SN1 := (a1, N1)∪ (a2, N2). However, this is impossible since by definition
Dα∩Dβ =;, for a.e. α,β ∈S1 such that α 6=β, while H 1(SN1 ∩SÑ1

)> 0, ∀N1, Ñ1 ∈ X1.

Some preliminaries are needed in order to extend Theorems 4 and 5 to the case of a gen-
eral T. These considerations may also be understood using tools from geometric measure
theory. This would require working with rectifiable currents instead of connections. The
two are related through the following straightforward equivalence:

C is a connection associated with T ⇐⇒C :=C ⊥ satisfies (3.19) below: (3.18)
C is a finite mass integer multiplicity 1-rectifiable current such that ∂C= T. (3.19)
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(If C = (Cx,C y), then C ⊥ := (−C y,Cx).)
In addition, we have

|C | = |C|. (3.20)

We will take advantage of our specific situation and work only with connections and BV
functions. This is reminiscent of the well-known observation of Hardt and Pitts [13] that in
codimension one the theory of rectifiable currents is essentially equivalent to the theory of
BV functions.

Fix some T ∈ E , and define

K := {C ; C is a connection associated with T}. (3.21)

Given m ≥ 0, set

K m := {C ∈K ; ‖C ‖M ≤ m}. (3.22)

(In view of (3.9), K m is non-empty if and only if m ≥ ‖T‖W .)
By definition, K m is a subset of the closed ball B(0,m) of M (Ω;R2) = [C0(Ω;R2)]∗, and

thus has a metrizable topology inherited from the weak-∗ topology σ(M (Ω;R2),C0(Ω;R2))
on B(0,m). We have the following vectorial analogue of Lemma 1 mentioned in the intro-
duction.

Lemma 5. K m equipped with the weak-∗ σ(M (Ω;R2),C0(Ω;R2)) topology is a compact
metrizable space.

Although it is possible to give a direct proof of Lemma 5 (see Remark 7 below), it will
be more pleasant to work with a distance, δ, defined globally on K , such that the following
holds.

Lemma 6. The metric δ induces on K m the σ(M (Ω;R2),C0(Ω;R2)) topology, ∀m ≥ 0.

The definition of δ we present below is reminiscent of the one of the flat norm [11,
Section 4.1.19, p. 377]. Let C1, C2 ∈K . Then curl(C2 −C1) = 0, and therefore there exists
some ψ ∈BV (Ω) such that C2 =C1 +Dψ. We define the distance

δ(C1,C2) := inf
{‖ψ‖L1 ;ψ ∈BV (Ω), C2 =C1 +Dψ

}
. (3.23)

To start with, let us note the following simple

Lemma 7. We have∣∣〈C2,χ〉−〈C1,χ〉∣∣≤ δ(C1,C2)‖divχ‖L∞ , ∀C1, C2 ∈K , ∀χ ∈ C1
c(Ω;R2).

Proof. This follows from the fact that, if C2 =C1 +Dψ, then

∣∣〈C2,χ〉−〈C1,χ〉∣∣= |〈Dψ,χ〉| =
∣∣∣∣ˆ
Ω
ψ divχ

∣∣∣∣≤ ‖ψ‖L1‖divχ‖L∞ .
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Proof of Lemma 6. We have to prove that, for Cn,C ∈K m, we have

Cn *C in M (Ω;R2)⇐⇒ δ(Cn,C )→ 0. (3.24)

Implication “ ⇐= ” is clear, in view of Lemma 7. Conversely, write Cn = C +Dψn, with´
Ωψn = 0. Then ψn is bounded in BV (Ω). Let ψ ∈BV (Ω) be such that

´
Ωψ= 0 and, possibly

up to a subsequence, ψn →ψ in L1(Ω). Then
ˆ
Ω
ψ divχ= lim

n→∞

ˆ
Ω
ψn divχ= lim

n→∞〈Cn −C ,χ〉 = 0, ∀χ ∈ C1
c(Ω;R2). (3.25)

It follows that Dψ= 0, and thus ψ= 0. Therefore, for the full original sequence (ψn), we
have ψn → 0 in L1(Ω), so that δ(Cn,C )→ 0.

In what follows, we endow K with the distance δ. Lemma 6 implies the following

Corollary 1. The map K 3C 7→ ‖C ‖M is lower semi-continuous.

The next statement is a variant of Federer’s compactness theorem [11, Theorem 4.2.17,
p. 414].

Lemma 8. (K m,δ) is compact.

The proof of Lemma 8 relies on the following

Lemma 9. Fix some C0 ∈K . For any vector-valued distribution F ∈D′(Ω;R2), we have

F ∈K ⇐⇒ [F =C0 +Dψ for some ψ ∈BV (Ω;Z)]. (3.26)

Before proceeding to the proof of Lemma 9, let us recall a few facts concerning the fine
structure of the distributional gradient Dψ with ψ ∈ BV (Ω); see e.g. [3, Chapter 3]. If
ψ ∈ BV (Ω;R), then the measure Dψ can be (uniquely) written as a sum of an absolutely
continuous part with respect to the Lebesgue measure, Daψ, whose density is denoted ∇ψ,
a Cantor part Dcψ and a jump part D jψ ([3, Definition 3.91]). With an abuse of notation,
we write this decomposition as:

Dψ=∇ψ+Dcψ+D jψ. (3.27)

Assuming that ψ equals, outside its jump set ([3, Definition 3.67]), its approximate limit
([3, Definition 3.63]), we may write

D jψ=
∞∑

i=0
(ψ+−ψ−)νi H

1xSi. (3.28)

Here, Si are disjoint Borel subsets of C1 curves γi, νi is a normal vector orienting γi, u±

are the approximate side limits of ψ on γi ([3, Definition 3.67]) – the “+” and “−” sides are
determined by νi – and

∑
i
´

Si
|ψ+−ψ−|dH 1 <∞. With a more compact notation, if we set

S :=∪iSi and ν := νi on Si, then D jψ= (ψ+−ψ−)νH 1xS, and S is the jump set of ψ.
We next recall Volpert’s chain rule. If f is C1 and Lipschitz and ψ is BV , then we have

D( f ◦ψ)= f ′(ψ)∇ψ+ f ′(ψ)Dcψ+ f (ψ+)− f (ψ−)
ψ+−ψ− D jψ. (3.29)

16



Proof of Lemma 9. “ =⇒ ” Let F ∈ K and ψ0 ∈ BV (Ω;R) such that F = C0 + Dψ0. Then
∇ψ0 = 0, Dcψ0 = 0 and D jψ0 = F −C0. Taking the specific form of the elements in K into
account, we have ψ+

0 −ψ−
0 ∈ Z H 1-a.e. on the jump set of ψ0. Volpert’s chain rule implies

that D [sin(2πψ0)]= 0 and D [cos(2πψ0)]= 0, and thus eı2πψ0 is constant. It follows that, for
some appropriate C ∈R, ψ :=ψ0+C satisfies eı2πψ = 1, and this ψ satisfies the requirements
of (3.26).
“ ⇐= ” Let ψ ∈ BV (Ω;Z) be such that S = C0 +Dψ. Since sin(2πψ) = 0, we have ∇ψ = 0
and Dcψ = 0 (by (3.29)). On the other hand, we have (possibly after performing a suit-
able decomposition of the Si ’s and by changing, if necessary their orientations) D jψ =∑∞

i=1 iνi H
1xSi, with

∑∞
i=1 iH 1(Si) < ∞. By repeating i times each Si, we may rewrite

this as D jψ=∑∞
`=1ν`H 1xΣ`, with

∑∞
`=1 H 1(Σ`)<∞. In view of the specific form of C0, we

find that F = Dψ−C0 ∈K .

Proof of Lemma 8. We may assume that K m is non-empty. Let (Cn) ⊂ K m. Fix some
C0 ∈ K , and write (using Lemma 9) Cn = C0 +Dψn for some ψn ∈ BV (Ω;Z). Without loss
of generality, we may assume that

ffl
Ωψn ∈ [0,1). Thus (ψn) is bounded in BV (Ω). Let

ψ ∈ BV (Ω) be such that an appropriate subsequence satisfies ψnk → ψ in L1(Ω) and a.e.
Then ψ is Z-valued. Set C :=C0+Dψ, so that (again by Lemma 9) C ∈K . By construction,
we have δ(Cnk ,C )→ 0 as k →∞. The fact that C ∈K m follows from Corollary 1.

Corollary 2. Set

Kmin := {C ∈K ; ‖C ‖M = ‖T‖W }. (3.30)

Then Kmin is a non-empty set, and (Kmin,δ) is compact.

Proof. Compactness follows from Lemma 8, non-emptiness from (3.9) and Corollary 1.

Consider next a finite Borel measure µ on K m. By Lemma 6, the integral

ν(χ) :=
ˆ

K m
〈C ,χ〉dµ (3.31)

makes sense for any χ ∈ C0(Ω;R2).
With a slight abuse of notation, we still denote B(0,m) a closed ball of M (Ω;R). We have

the following

Lemma 10. Set m0 := ‖T‖W . Then the map

(Kmin,δ) 3C 7→ |C | ∈ (B(0,m0),σ(M (Ω;R),C0(Ω;R))

is continuous.

The proof of Lemma 10 uses the following standard result.

Lemma 11. Let νn,ν be RN-valued finite Borel measures on a locally compact separable
metric space X . If νn * ν and limsupn→∞ ‖νn‖M ≤ ‖ν‖M , then |νn|* |ν|.

Proof of Lemma 11. Let µ be such that, possibly up to a subsequence still denoted (νn),
we have |νn| * µ. Then µ ≥ |ν| ([3, Proposition 1.62 (b)]. Combining this with µ(X ) =
limn→∞ |νn|(X )≤ |ν|(X ), we find that µ= |ν|.
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Proof of Lemma 10. Let Cn,C ∈ Kmin be such that Cn * C . Let κ be such that, possibly
up to a subsequence, we have |Cn|* κ. We want prove that κ = |C |. As in the proof of
Lemma 11, we have κ≥ |C |. On the other hand, we clearly have ‖Cn‖M = ‖T‖W , and thus
‖κ‖M = ‖T‖W = ‖C ‖M . We conclude via Lemma 11.

In view of Lemma 10, if µ is a finite Borel measure on Kmin, then
´

Kmin
〈|C |,ζ〉dµ makes

sense for any ζ ∈ C0(Ω;R). This allows us to give a meaning to (3.34) below.
Theorem 4 is a consequence of the following

Theorem 7. Let T ∈ E . Let (vn) be a minimizing sequence in

inf
{ˆ

Ω
|∇v|; v ∈W1,1(Ω;S1), Jv =πT

}
. (3.32)

Then there exists a probability measure µ on Kmin such that, up to a subsequence, we
have ˆ

Ω
(vn ∧∇vn) ·χ→ 2π

ˆ
Kmin

〈C ,χ〉dµ, ∀χ ∈ C0(Ω;R2). (3.33)

In addition, if we set

〈κ,ζ〉 :=
ˆ

Kmin

〈|C |,ζ〉dµ, ∀ζ ∈ C0(Ω;R), (3.34)

then

|∇vn|dx* 2πκ. (3.35)

And conversely.

Remark 6. As we will see in the proof below, in the special case where there are only
finitely many minimal connections, C1, . . . , Cm, (3.33) and (3.35) become

vn ∧∇vn dx* 2π
m∑

j=1
λ jC j (3.36)

and

|∇vn|dx* 2π
m∑

j=1
λ j|C j| (3.37)

for some λ1, . . . ,λm ∈ [0,1] such that
∑m

j=1λ j = 1.
Therefore, Theorem 4 is a special case of Theorem 7.

Proof of Theorem 7 and Remark 6. “=⇒ ” Given any minimizing sequence (vn) in (3.32) and
any ε > 0, we will construct a subsequence (vnk ) and a discrete probability measure µ on
Kmin, depending on the sequence (vn) and on ε, such that∣∣∣∣ˆ

Ω
(vnk ∧∇vnk ) ·χ−2π

ˆ
Kmin

〈C ,χ〉dµ
∣∣∣∣≤ ε‖χ‖W1,∞ , ∀χ ∈ C1

c(Ω;R2). (3.38)
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Assuming this achieved, by a diagonal process we may construct probability measures
µ j,µ on Kmin and a subsequence (vnk ) such that

∣∣∣∣ˆ
Ω

(vnk ∧∇vnk ) ·χ−2π
ˆ

Kmin

〈C ,χ〉dµ j

∣∣∣∣≤ 1
j
‖χ‖W1,∞ , ∀k ≥ j ≥ 1, ∀χ ∈ C1

c(Ω;R2) (3.39)

and µ j *µ. We find that this µ satisfies (3.33).
It remains to construct (vnk ) and µ as in (3.38). Let (vn) be a minimizing sequence in

(3.32). We let Cα,n (respectively Dα,n) denote the connections (respectively the level sets)
associated with vn as in Lemma 4.

By (3.9) and Lemma 4, for every n there exists a full measure set An ⊂S1 such that

H 1(Dα,n)= ‖Cα,n‖M ≥ ‖T‖W , ∀α ∈ An. (3.40)

On the other hand, using the coarea formula (3.12) and the fact that (vn) is a minimizing
sequence in (3.32), we find that

ˆ
Ω
|∇vn| =

ˆ
S1

H 1(Dα,n)dα→ 2π‖T‖W . (3.41)

By (3.40) and (3.41), possibly up to a subsequence there exists some f ∈ L1(S1; [0,∞))
and a full measure set A ⊂S1 such that

H 1(Dα,n)≤ f (α), ∀n, and H 1(Dα,n)→‖T‖W , ∀α ∈ A. (3.42)

By (3.40) and (3.42), we have

‖Cα,n‖M ≤ f (α) and ‖Cα,n‖M →‖T‖W , ∀α ∈ A. (3.43)

Consider a finite family (C i)i∈I ⊂ Kmin, depending on ε, such that the family of balls
(B(C i,ε/(2π)))i∈I (for the distance δ) covers Kmin. Such a family exists, by Corollary 2. By
Corollary 1, there exists some t > 0 such that

‖C ‖M ≥ ‖T‖W + t, ∀C ∈K \∪i∈IB(C i,ε/(2π)). (3.44)

Set, for i ∈ I,

An,i,ε := {α ∈S1; δ(Cα,n,C i)< ε/(2π)}.

In view of Lemma 8 and of (3.43)–(3.44), we have∣∣S1 \∪i∈I An,i,ε
∣∣→ 0 as n →∞.

Possibly after passing to a subsequence, for simplicity still denoted (vn), we may assume
that ˆ

S1\∪i∈I An,i,ε

‖Cα,n‖M ≤ ε

2
, ∀n, (3.45)

|An,i,ε|→ 2πλi, ∀ i ∈ I, with λi ∈ [0,1] and
∑
i∈I
λi = 1, (3.46)

and ∑
i∈I

||An,i,ε|−2πλi| ≤ ε

2‖T‖W
. (3.47)

19



Define µ :=∑
i∈I λiδC i . In view of Lemma 7 and (3.45)–(3.47), we obtain, using the coarea

formula (3.13) with g := (vn ∧∇vn) ·χ
|∇vn|

:

∣∣∣∣ˆ
Ω

(vn ∧∇vn) ·χ−2π
ˆ

Kmin

〈C ,χ〉dµ
∣∣∣∣=

∣∣∣∣∣
ˆ
Ω

(vn ∧∇vn) ·χ−2π
∑
i∈I
λi〈C i,χ〉

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
S1
〈Cα,χ〉dα−2π

∑
i∈I
λi〈C i,χ〉

∣∣∣∣∣
≤
ˆ
S1\∪i∈I An,i,ε

‖Cα,n‖M‖χ‖L∞

+∑
i∈I

ˆ
An,i,ε

|〈Cα,n −C i,χ〉|

+∑
i∈I

||An,i,ε|−2πλi|‖C i‖M‖χ‖L∞ ≤ ε‖χ‖W1,∞ .

(3.48)

This implies the validity of (3.38), and thus of (3.33).
We next derive (3.35) from (3.33) as follows. Set

〈ν,χ〉 :=
ˆ

Kmin

〈C ,χ〉, ∀χ ∈ C0(Ω;R2) (3.49)

(as in the right-hand side of (3.33)).
Since Jvn =πT and vn ∧∇vn * 2πν, we find that ν satisfies curlν= T.
We next invoke the following improvement of (3.9) ([7]):

inf{‖ξ‖M ; curlξ= T}= ‖T‖W ; (3.50)

this implies that the quantity ‖T‖W could be computed not only starting from connections,
but also from general Borel measures satisfying curlξ= T.

Using (3.50) and the fact that (vn) is a minimizing sequence in (3.32), we find that

lim
n→∞

ˆ
Ω
|vn ∧∇vn| = lim

n→∞

ˆ
Ω
|∇vn| = 2π‖T‖W ≤ 2π‖ν‖M . (3.51)

Combining (3.33), Lemma 11 and (3.51), we obtain

|∇vn|dx* 2π |ν|. (3.52)

If we compare (3.35) with (3.52), formula (3.35) is a consequence of (3.52) and of the
following

Lemma 12. Let µ be a finite positive Borel measure on Kmin. Set

〈ν,χ〉 = 〈ν(µ),χ〉 :=
ˆ

Kmin

〈C ,χ〉dµ, ∀χ ∈ C0(Ω;R2).

Then

〈|ν|,ζ〉 =
ˆ

Kmin

〈|C |,ζ〉dµ, ∀ζ ∈ C0(Ω;R). (3.53)
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Proof of Lemma 12. We may assume that µ is a probability. Let κ= κ(µ) denote the measure
defined by right-hand side of (3.53). Set

S := {µ ∈P (Kmin); |ν(µ)| = κ(µ)}. (3.54)

Then (3.53) amounts to

S =P (Kmin). (3.55)

We first prove that discrete measures belong to S . Equivalently, if C j ∈ Kmin and
λ j ∈ [0,1], ∀ j = 1, . . . ,k, with

∑
jλ j = 1, we have to prove that∣∣∣∣∣∑j

λ jC j

∣∣∣∣∣=∑
j
λ j|C j|. (3.56)

Inequality “≤” in (3.56) is clear. In order to obtain the opposite inequality, it suffices to
prove that∥∥∥∥∥∑

j
λ jC j

∥∥∥∥∥
M

≥∑
j
λ j

∥∥C j
∥∥

M . (3.57)

In turn, (3.57) follows from (3.50), since curl(
∑

jλ jC j)= T.
In order to complete the proof of (3.55), it suffices to prove that S is weakly-∗ sequen-

tially closed. Let µn,µ ∈ P (Kmin) be such that µn * µ and µn ∈ S , ∀n. We clearly have
ν(µn) * ν(µ) and κ(µn) * κ(µ). Assume that, possibly up to a subsequence, |ν(µn)|* ξ.
Then ξ ≥ κ(µ). On the other hand, we have ‖ξ‖M = ‖κ(µn)‖M = ‖T‖W = ‖κ(µ)‖M , and then
Lemma 11 implies that ξ= κ(µ) and thus µ ∈S .

Proof of Theorem 7 completed. During the proof of Lemma 12, we have established not
only (3.35), but also (3.37) (while (3.36) is clear). In particular, we have justified Remark 6.
Therefore, it remains to establish

“ ⇐= ” As explained in the proof of the “ ⇐= ” part of Theorem 2, it suffices to consider
the case where µ is discrete, that is of the form µ = ∑k

j=1λ jδC j , with λ j ≥ 0,
∑k

j=1λ j = 1,
C j ∈Kmin, ∀ j = 1, . . . ,k. We construct a sequence (vn) satisfying (3.33), (3.35),

Jvn =πT and
ˆ
Ω
|∇vn|→ 2π‖T‖W (3.58)

in the case of two minimal connections, C1 and C2. The construction is exactly the same in
case of more than two minimal connections.

Let u ∈W1,1(Ω;S1) be such that Ju =πT. Then

curlG = 0, where G := u∧∇u−2π(λ1C1 +λ2C2) ∈M (Ω;R2).

Consider ϕ ∈ BV (Ω;R) such that G = Dϕ. By Lemma 14 in Appendix A below, we may
find a sequence (ϕn)⊂ C∞(Ω)∩W1,1(Ω) such that

∇ϕn *Dϕ in M (Ω) (3.59)

and

lim
n→∞

ˆ
Ω
|u∧∇u−∇ϕn| = ‖u∧∇u−Dϕ‖M . (3.60)
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We set vn := u e−ıϕn and claim that the sequence (vn) has all the required properties.
Indeed, on the one hand we have

Jvn = J(u e−ıϕn)= Ju =πT.

By (3.60), we have
ˆ
Ω
|u∧∇u−∇ϕn|→ 2π‖λ1C1 +λ2C2‖M = 2π‖T‖W ; (3.61)

for the latter equality, see (3.56).
We obtain (3.33), (3.35), (3.58) using (3.59), (3.61) and the identity vn ∧∇vn = u∧∇u−

∇ϕn.

Remark 7. We present here a proof of Lemma 5 which does not rely on the distance δ.
What we have to prove is that, if Cn ∈ K and Cn * µ, then µ ∈ K . In order to prove this,
we rely on the following characterization of connections ([7]). Fix some u ∈W1,1(Ω;S1) such
that Ju =πT. Then

[C ∈K ]⇐⇒ [∃ψ ∈BV (Ω;R) such that u = eıψ and Dψ= u∧∇u−2πC ]. (3.62)

With Cn as above, consider ψn corresponding to Cn as in (3.62). We may assume that´
Ωψn ∈ [0,2π), and then (ψn) is bounded in BV . Up to a subsequence, there exists some
ψ ∈ BV such that ψn →ψ in L1 and a.e. Thus u = eıψ. On the other hand, we have Dψ =
u∧∇u−2πµ. In view of (3.62), we find that µ ∈C .

Proof of Lemma 1. In view of Corollary 2 and Lemma 10, it suffices to prove the following.
If U is a minimal configuration and C is the corresponding minimal connection, then

|C | =H 1xU. (3.63)

Inequality “≤” is clear. On the other hand, we have

‖H 1xU‖M = L(a,M)= ‖C ‖M ,

whence the equality in (3.63).

Proof of Theorem 5. We will actually prove that the existence of µ as in (3.34)–(3.35) is
equivalent to the existence of µ as in (1.17)–(1.18). This is obtained as follows. For ζ ∈ C(Ω),
set

ϕζ : Lmin →R, ϕζ(Q) := 〈Q,ζ〉, ∀Q ∈Lmin,

and

ψζ : Kmin →R, ψζ(C ) := 〈|C |,ζ〉,∀C ∈Kmin.

Note that

[ϕζ =ϕζ̃]⇐⇒ [ψζ =ψζ̃] (3.64)

and that

‖ϕζ‖L∞ = ‖ψζ‖L∞ . (3.65)
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We continue as follows. Given µ ∈P (Kmin) and κ= κ(µ) as in (3.34), set

T (ϕζ) := 〈κ,ζ〉 =
ˆ

Kmin

ψζdµ.

By (3.64)–(3.65), T is well-defined, and clearly

|T (ϕζ)| ≤ ‖ψζ‖L∞ = ‖ϕζ‖L∞ .

We find that T extends to a finite Borel measure µ on Lmin, with ‖µ‖M (Lmin) ≤ 1. On
the other hand, if we let ζ= 1, we see that

L(a,M)µ(Lmin)= L(a,M),

and thus µ is a probability measure on Lmin such that κ(µ)= κ(µ).
The construction of µ starting from µ follows the same lines.

4 Where continuity enters
In this section we consider two distinct directions where continuity enters.

4.1 Minimizing over continuous maps
Given a pair (a,M), we set

W(a,M)= {
v ∈W1,1(Ω;S1)∩C(Ω\{a1, . . . ,ak}); deg(v,a j)= M j, ∀ j = 1, . . . ,k

}
,

and

W∞(a,M)=
{

v ∈W1,1(Ω;S1)∩C∞(Ω\{a1, . . . ,ak}); v(z)=
( z−a j

|z−a j|
)M j

near each a j, ∀ j = 1, . . . ,k
}

.

Clearly,

W∞(a,M)⊂W(a,M)⊂
{

v ∈W1,1(Ω;S1); Jv =π
k∑

j=1
M jδa j

}
.

Set

Λ(a,M)= inf
v∈W(a,M)

ˆ
Ω
|∇v|

and

Λ∞(a,M)= inf
v∈W∞(a,M)

ˆ
Ω
|∇v|,

so that (with L(a,M) defined in (1.6))

L(a,M)≤Λ(a,M)≤Λ∞(a,M).
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Theorem 8. We have

L(a,M)=Λ(a,M)=Λ∞(a,M). (4.1)

Clearly, Theorem 8 is an immediate consequence of the following

Lemma 13. Given v ∈ W1,1(Ω;S1) satisfying Jv = π
∑k

j=1 M jδa j , there exists a sequence
(vn)⊂W∞(a,M) such that vn → v in W1,1.

Proof. Consider a reference map v0 ∈W∞(a,M). Since J (vv0) = 0, we may write v = v0 eıϕ,
where ϕ ∈ W1,1(Ω;R). Consider a sequence (ϕn) ⊂ C∞(Ω;R) such that ϕn → ϕ in W1,1 and
ϕn = 0 near each a j; this is possible since a point in the plane has zero W1,1 capacity
([10, Section 4.7, Theorem 2]). Letting vn = v0 eıϕn , we have vn ∈ W∞(a,M) and vn → v
in W1,1.

Proof of Lemma 2. With Ω = D, let (vn) ⊂ W∞(0, M) be such that vn → v in W1,1. Possibly
after passing to a subsequence, we may also assume that vn(r·) → v(r·) in W1,1(S1) (and
thus uniformly on S1) for a.e. r ∈ (0,1). The conclusion of Lemma 2 follows from the stability
of the degree under uniform convergence and the fact that deg(vn,C(0, r)) = M, ∀n, ∀ r ∈
(0,1).

4.2 Continuity of minimizers
Given a pair (a,M), consider the minimization problem

inf

{ˆ
Ω
|∇v|;v ∈W1,1(Ω;S1), Jv =π∑

j
M jδa j

}
. (4.2)

Theorem 9. Assume that w is a minimizer in (4.2). (Warning: such a minimizer need not
exist; see Theorems 1 and 3.) Then w ∈ C(Ω\{a1, . . . ,ak}).

Proof. Let ω= D(b,R) be a disc in Ω\ {a1, . . . ,ak}. Since Jw = 0 in D′(ω), we may write, in
ω, w = eıϕ for some ϕ ∈ W1,1(ω;R). For a.e. r ∈ (R/2,R), we have ϕ|C(b,r) ∈ W1,1(C(b, r)), and
thus ϕ is continuous on C(b, r). On the other hand, ϕ is a minimizer of the problem

inf
{ˆ

D(b,r)
|∇ψ|;ψ ∈W1,1(D(b, r);R) and ψ=ϕ on C(b, r)

}
. (4.3)

This follows from the fact that for every ψ as in (4.3), the map

v =
{

u, in Ω\ D(b, r))
eıψ, in D(b, r)

is a competitor in (4.2).
We claim that actually ϕ is a minimizer of

inf
{‖Dψ‖M ;ψ ∈BV (D(b, r);R) and ψ=ϕ on C(b, r)

}
. (4.4)
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Indeed, by a result of Sternberg and Ziemer [18, Theorem 2.2], the minimality of ϕ in
(4.4) is equivalent to

ˆ
D(b,r)

|∇ϕ| ≤ ‖∇ϕ+Dψ‖M , ∀ψ ∈BV c(D(b, r);R), (4.5)

where the subscript c stands for compactly supported. In turn, (4.5) follows from the fact
that ϕ minimizes (4.3) combined with the fact that for every ψ as in (4.5) there exists a
sequence (ψn)⊂ C∞

c (D(b, r)) such that ψn →ψ a.e. and
ˆ

D(b,r)
|∇(ϕ+ψn)|→ ‖∇ϕ+Dψ‖M

(see the proof of Lemma 14 in Appendix A below).
We conclude by invoking the fact that, in a disc, a minimizer of (4.4) subject to a contin-

uous Dirichlet boundary condition is continuous; this follows by combining [17, Theorems
3.5 and 3.7] with [18, Theorem 3.6].

Appendix A. An approximation lemma
The main result in this appendix is standard when F = 0; see e.g. [3, Theorem 3.9].

Lemma 14. Let F ∈ L1(Ω;RN) and ϕ ∈ BV (Ω). Then there exists a sequence (ϕn) ⊂ C∞(Ω)∩
W1,1(Ω) such that

ϕn →ϕ in L1(Ω), (A.1)
∇ϕn *Dϕ in M (Ω) (A.2)

and

lim
n→∞

ˆ
Ω
|F −∇ϕn| = ‖F −Dϕ‖M . (A.3)

Proof. If (ϕn)⊂W1,1 and ϕn →ϕ in L1, then

liminf
n→∞

ˆ
|F −∇ϕn| ≥ ‖F −Dϕ‖M .

Therefore, it suffices to find, for each ε > 0, a map ψ = ψε ∈ C∞(Ω)∩W1,1(Ω) such that

‖ϕ−ψ‖L1(Ω) < ε and
ˆ

|F −∇ψ| ≤ ‖F − Dϕ‖M + ε. Then ϕn := ψ1/n has all the required

properties.
Consider an exhaustionΩ=∪ j≥0Ω j ofΩ, with eachΩ j open andΩ j bΩ j+1. Let U0 :=Ω0

and, for j ≥ 1, U j :=Ω j+1\Ω j−1. ThusΩ=∪ j≥0U j and each x ∈Ω belongs to at most two U j ’s.
Let (ξ j) be a partition of unity subordinated to the covering (U j) of Ω. Let ρ ∈ C∞

c (B1(0)) be
a mollifier. With the sequence (ε j) to be fixed later, we let ψ :=∑

j
ψ j, where ψ j := (ϕξ j)∗ρε j .

We claim that, for an appropriate choice of ε j, ψ has the required properties. To start
with, if ε j < dist(suppξ j,∂U j), then ψ j ∈ C∞

c (U j), and thus ψ ∈ C∞(Ω).

Next, if ε j is sufficiently small, then ‖ψ j −ϕξ j‖L1 < ε

2 j+1 , and thus ‖ψ−ϕ‖L1 < ε.
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We continue by noting that

∇ψ=∑∇ψ j =
∑

(D(ϕξ j))∗ρε j =
∑

(ϕ∇ξ j)∗ρε j +
∑

(ξ jDϕ)∗ρε j

=∑
[(ϕ∇ξ j)∗ρε j −ϕ∇ξ j]︸ ︷︷ ︸

R

+∑
(ξ jDϕ)∗ρε j

(since
∑∇ξ j =∇(∑

ξ j
)= 0.) We note that ‖R‖L1 < ε

2
, provided the ε j ’s are sufficiently small.

Similarly, we may write

F =∑
(ξ jF)∗ρε j +S,

where ‖S‖L1 < ε

2
, provided the ε j ’s are sufficiently small. Here, we use the fact that F

belongs to L1, and is not merely a measure.
Finally, for small ε j we have
ˆ

|F −∇ψ| ≤∑ˆ |[ξ j(F −Dϕ)]∗ρε j |+ε≤
∑‖ξ j(F −Dϕ)‖M +ε

= ∥∥∑
ξ j(F −Dϕ)

∥∥
M

+ε= ‖F −Dϕ‖M +ε;
in the above, the next to the last equality is a consequence of the following simple result.

Lemma 15. Let µ be an Rk-valued Radon measure in Ω. If ξ : Ω→ R+ is a non-negative
Borel function, then |ξµ| = ξ|µ|.

In particular, if ξ j are non-negative Borel functions, then∣∣∑ξ jµ
∣∣=∑

ξ j|µ| and
∥∥∑

ξ jµ
∥∥

M
=∑∥∥ξ jµ

∥∥
M .

Proof. Let µ= F|µ| be the polar decomposition of µ [3, Corollary 1.29]. Thus |µ| is a positive
measure, and F :Ω→Sk−1 is a Borel function. We have ξµ= ξF|µ|. Let B be a Borel subset
of Ω. Then [3, Proposition 1.23]

|ξµ|(B)=
ˆ

B
|ξF|d|µ| =

ˆ
B
ξ|F|d|µ| =

ˆ
B
ξd|µ| = (

ξ|µ|) (B).

Appendix B. Minimization in BV

When u ∈ BV (Ω;S1), there no obvious definition of Ju. We recall here the definition(s)
proposed by Ignat [14]. In [14], one considers maps in BV (S2;S1) instead of BV (Ω;S1), but
the considerations there may be easily adapted to our setting.

Let, for β ∈ R, Argβ : S1 → (β−π,β+π] be the determination of the argument given by
Argβ(eıθ) := θ, ∀θ ∈ (β−π,β+π], and set Arg :=Arg0.

Define ρβ :S1 ×S1 → [−π,π],

ρβ(z1, z2) :=
{

Arg(z1/z2), if z1 6= −z2

Argβ(z1)−Argβ(z2), if z1 =−z2
,

and set ρ := ρ0.
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Assuming that u equals its approximate limit outside its jump set, define

〈Jβu,ζ〉 :=−1
2

ˆ
Ω
∇⊥ζ ·[u∧(∇u+Dcu)]− 1

2

ˆ
S
ρβ(u+,u−)ν ·∇⊥ζdH 1, ∀ζ ∈ C1

c(Ω;R), (B.1)

and set J := J0. Here, ∇⊥ζ := (∇ζ)⊥ = (−∂ζ/∂x2,∂ζ/∂x1).
Since the definition (1.1) is equivalent to

〈Ju,ζ〉 =−1
2

ˆ
Ω
∇⊥ζ · [u∧∇u], ∀ζ ∈ C1

c(Ω;R), (B.2)

we see that Jβu coincides with Ju when u ∈W1,1(Ω;S1).
We next investigate in more details the properties of J := J0 (following [14]); the case of

an arbitrary β is similar.

1. The main result in [14] is that
1
π

Ju ∈ E , ∀u ∈ BV (Ω;S1); here, E is the class defined in
(3.1).
2. In connection with the study of J, the following “adapted energy” is natural:

u 7→
ˆ
Ω
|Du|S1 , with |Du|S1 := |∇u|+ |Dcu|+distS1(u+,u−)H 1xS. (B.3)

Here, distS1 is the geodesic distance on S1.
3. Clearly,

´
Ω |Du|S1 ≥

´
Ω |Du|, since

|Du| = |∇u|+ |Dcu|+ |u+−u−|H 1xS. (B.4)

4. The interest of this new energy stems from the straightforward inequality

|〈Ju,ζ〉| ≤ 1
2
‖∇ζ‖L∞

ˆ
Ω
|Du|S1 , ∀ζ ∈ C1

c(Ω;R); (B.5)

this uses the identity |ρ(z1, z2)| = distS1(z1, z2).

5. If we set T := 1
π

Ju, then (B.5) implies

ˆ
Ω
|Du|S1 ≥ 2π‖T‖W , ∀u ∈BV (Ω;S1) such that Ju =πT. (B.6)

By analogy with (1.7), we consider the quantity

ΣS1(u) := inf
{ˆ

Ω
|Dv|S1 ; v ∈BV (Ω;S1), Jv = Ju in D′(Ω)

}
(B.7)

and address the question of the existence of a minimizer in (B.7). In general, a minimizer
does not exist. Indeed, assume that 0 ∈Ω and that dist(0,∂Ω) = 1. Consider, as in (1.10),
the non-empty set X := {x ∈ ∂Ω; |x| = 1}. Then we have the following partial analogue of
Theorem 1.

Theorem 10. Let M ≥ 1 be an integer. Then

inf
{ˆ

Ω
|Dv|S1 ; v ∈BV (Ω;S1), Jv =πMδ0 in D′(Ω)

}
= 2πM, (B.8)

and the infimum in (B.8) is achieved if and only if #X ≥ 2M+1.
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Proof. Equality in (B.8) is clear from (B.6) and (3.6).
“ ⇐= ” Assume that #X ≥ 2M +1. Consider b1, . . . ,b2M+1 ∈ X mutually distinct points such
that b j+1 is “after” b j for the natural (counterclockwise) orientation of S1. Let R j := [0,b j],
∀ j = 1, . . . ,2M + 1, and set R2d+2 := R1. For j = 1, . . .2M + 1, let U j denote the domain

delimited by R j, R j+1 and ∂Ω. Set v := eı( j−1)p in U j, with p := 2πM
2M+1

. If we orientate R j

with the unit tangent vector to S1 at R j (for the natural orientation on S1), then the jump
of v across R j is p. Using the fact that p ∈ [0,π), we find that ρ(v+,v−)ν= pν on R j. Since
v has only pure jumps, formula (B.1) leads to

〈Jv,ζ〉 = 1
2

(2M+1) pζ(0)= 〈πMδ0,ζ〉, ∀ζ ∈ C1
c(Ω).

Thus v is a competitor in (B.8). On the other hand, clearlyˆ
Ω
|Dv|S1 = (2M+1) p = 2πM,

and thus v achieves the minimum in (B.8).

“ =⇒ ” Let ζ0(x) = (1− |x|)+, and let Υ(x) := x⊥

|x| , so that −∇⊥ζ0 = 1DΥ. We claim that the

following formula holds for any T ∈ E and v ∈BV (Ω;S1) such that Jv =πT:

π〈T,ζ0〉 = 〈Jv,ζ0〉 = 1
2

ˆ
D

v∧ (Υ ·∇v+Υ ·Dcv)+ 1
2

ˆ
S∩D

ρ(v+,v−)Υ ·νdH 1. (B.9)

Let us note that, although the quantity 〈Jv,ζ〉 was defined only for ζ ∈ C1
c(Ω), it makes

sense more generally for ζ ∈W1,∞
0 (Ω), since T ∈ E .

Equality (B.9) is obtaining by a straightforward limiting procedure starting from the
formula of 〈Jv,ζ〉, with ζ(x) := f (|x|) and f ∈ C1

c([0,1)) such that f = 1 near 0.
If, in addition v is a competitor in (B.8), then T =πMδ0, and thus (B.9) readsˆ

D

v∧ (Υ ·∇v+Υ ·Dcv)+
ˆ

S∩D
ρ(v+,v−)Υ ·νdH 1 = 2πM. (B.10)

Assume now that v is a minimizer in (B.8). Thenˆ
Ω

[|∇v|+ |Dcv|]+
ˆ

S
|ρ(v+,v−)|dH 1 = 2πM. (B.11)

Comparing (B.10) and (B.11), we find that

v is locally constant in Ω\D and H 1(S \D)= 0. (B.12)

We next invoke the following straightforward consequence of the polar decomposition
(see the proof of Lemma 15).

Lemma 16. Let µ ∈ M (Ω ; RN). If G,H : Ω→ RN are Borel vector fields such that |G| = 1
|µ|-a.e., G ·H = 0 |µ|-a.e. and if

´
ΩG ·µ= ´Ω |µ|, then H ·µ= 0.

Proof of Lemma 16. Let µ= F |µ| be the polar decomposition of µ. Then

0=
ˆ
Ω

[|µ|−G ·µ]≥
ˆ
Ω

[|µ|− |G ·µ|]=
ˆ
Ω

(1−|F ·G|) |µ| ≥ 0.

It follows that F ∥G |µ|-a.e., and thus F ⊥ H |µ|-a.e., whence the conclusion.
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Proof of Theorem 10 continued. Set

µ := v∧∇v+v∧Dcv+ρ(v+,v−)νH 1x (S∩D).

Let us note that

|µ| = |∇v|+ |Dcv|+ |ρ(v+,v−)|H 1x (S∩D). (B.13)

Applying Lemma 16 in D for this µ, with G :=Υ and H(x) := x/|x|, and using (B.13), we

find that
∂v
∂r

= 0 in D. By (B.12), this implies that

∂v
∂r

= 0 in Ω. (B.14)

Assume next that X is finite (for otherwise the implication we want to prove is clear).
Let us write, with points enumerated in the natural order on S1, X = {b1, . . . ,bk}. Set R j :=
[0,b j], bk+1 := b1 and Rk+1 := R1. Then (B.12) and(B.14) imply that v is locally constant in
the set U :=Ω\∪k

j=1Rk. Let U j be the component of U delimited by R j, R j+1 and the arc on
∂Ω from b j to b j+1, ∀ j = 1, . . . ,k. Let α j be the value of v on U j, and αk+1 :=α1. On the one
hand, we have (using (B.1))

2πMδ0 = 2Jv =
k∑

j=1
ρ(α j+1,α j)δ0. (B.15)

On the other hand, v is a minimizer in (B.8), and thus

2πM =
k∑

j=1
|ρ(α j+1,α j)|. (B.16)

Using the fact that |ρ(z1, z2)| ≤ π, we find from (B.16) that k ≥ 2M. We actually claim
that we cannot have k = 2M (whence the desired implication). Indeed, if k = 2M and (B.15)
and (B.16) hold, then ρ(α j,α j+1)=π, ∀ j = 1, . . . ,2M. This is equivalent to

α j+1 =−α j, Im α j+1 ≥ 0 and α j 6= −1. (B.17)

However, (B.17) cannot hold simultaneously for j and j+1. This contradiction completes
the proof of the theorem.

Remark 8. Let us take a closer look at what we have proved. Without any assumption on
X , we have obtained that any minimizer v (if it exists) satisfies:

v is locally constant in Ω\∪x∈X [0, x], v(x)= w(x/|x|) in D, with w ∈BV (S1;S1). (B.18)

With more work, we may prove the following exact counterpart of Theorem 1, that we
state here without proof.

Theorem 11. v is a minimizer in (B.8) if and only if v is as in (B.18), where w has the
following form: w(eıθ) = eıh(θ), ∀θ ∈ [β,β+2π], for some β ∈ R and some h ∈ BV ([β,β+2π])
such that:

1. h is continuous at its endpoints β and β+2π.

2. h(β+2π)= h(β)+2πM.
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3. h is non-decreasing.

4. h is locally constant in {θ ∈ (β,β+2π); eıθ 6∈ X }.

5. If θ is a jump point of h, then h(θ+)−h(θ−)≤π.

6. If, in addition h(θ+)−h(θ−)=π, then ρ(eıh(θ+), eıh(θ−))=π.

The situation is even worse if we consider the standard energy
´
Ω |Dv|. Indeed, with the

same assumptions on Ω as above, we have the following result.

Theorem 12. Let M ≥ 1 be an integer. Then

inf
{ˆ

Ω
|Dv|; v ∈BV (Ω;S1), Jv =πMδ0 in D′(Ω)

}
= 4 M, (B.19)

and the infimum in (B.19) is never achieved.

Proof. We first establish “≤” in (B.19). We assume, with no loss of generality, that 1 ∈ X .
For sufficiently small ε and for j = 0, . . . ,2M, let b j = b j,ε = t j eı jε be the first intersection
point with ∂Ω of the half-line {t eı jε; t > 0}. Then t0 = 1 and t j → 1 as ε→ 0. Let R j := [0,b j],
j = 0, . . . ,2M, R2M+1 := R0, b2M+1 := b0 = 1. Let U j be the domain delimited by R j, R j+1
and the arc of ∂Ω from b j to b j+1 (with the natural orientation on ∂Ω), ∀ j = 0, . . . ,2M.
Let α j = α j,ε := eı j (π−ε), j = 0, . . . ,2M, and α2M+1 := α0 = 1. Define v = vε by v := α j in U j,

j = 0, . . . ,2M. When ε< π

2 M
, we have (using (B.1))

2Jv =
2M∑
j=0

ρ(α j+1,α j)δ0 = (2 M (π−ε)+2 M ε) δ0 = 2πMδ0,

and thus v is a competitor in (B.19). On the other hand, we haveˆ
Ω
|Dv| =

2M∑
j=0

|α j+1 −α j| = 2 M |1+ e−ıε|+ |1− e−ı2 M ε|→ 4 M as ε→ 0,

whence “≤” in (B.19).
For the reverse inequality, consider an arbitrary competitor v in (B.19). Using

|z1 − z2| ≥ 2
π
ρ(z1, z2), ∀ z1, z2 ∈S1, with equality iff z1 =±z2, (B.20)

we find that

|Dv| ≥ 2
π
|Dv|S1 , with equality iff ∇v = 0, Dcv = 0 and v+ =−v− H 1-a.e. (B.21)

By (B.21), we find thatˆ
Ω
|Dv| ≥ 2

π

ˆ
Ω
|Dv|S1 ≥ 4 M, (B.22)

and equality requires that ∇v = 0, Dcv = 0 and that v is a minimizer in (B.8). In particular,
this implies “≥” in (B.19).

By the above, the proof of Theorem 10 and (B.18), we find that, if v is a minimizer in
(B.19), then in D we have v(x) = w(x/|x|), where w ∈ BV (S1;S1) has only pure jumps part
(and thus is a step function). Moreover, equality in (B.22) requires that at any jump point
x ∈S1 of w we have w(x+)=−w(x−), and therefore ρ(w(x+),w(x−))=±π . In addition, since
v is a minimizer in (B.8), we have ρ(w(x+),w(x−)) > 0 at any jump point x (see (B.15) and
(B.16)). However, this is impossible (see the argument after (B.17)). This implies that there
exists no minimizer for (B.19).
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