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Abstract: For adequate crop and soil management, rapid and accurate techniques for monitoring soil
properties are particularly important when a farmer starts up his activities and needs a diagnosis of
his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on
146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean
wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction
with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from
Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve
the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO3,
iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca2+ with cross-validation
RPD ≥ 2 and R2 ≥ 0.75, while exchangeable K+, Na+, Mg2+, coarse silt and coarse sand contents were
fairly predicted (1.42≤ RPD < 2 and 0.54≤ R2 < 0.75). Predictions of SOC, Ntot, CaCO3, iron contents,
and pH were still good (RPD ≥ 1.8, R2 ≥ 0.68) when using a single fluorescence signal or index such
as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived
from plant studies. The predictive ability of single fluorescence indices or original signals was very
significant for topsoil: this is very important for a farmer who wishes to update information on soil
nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results
open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation
coupled with red or far-red fluorescence emissions directly in the field.

Keywords: UV-Vis fluorescence; multiple excitation fluorescence sensor; Vis-NIR-SWIR reflectance
spectroscopy; soil properties; partial least squares regression; Mediterranean vineyard soils; fertility
assessment; model averaging

1. Introduction

In order to enable adequate crop and soil management, rapid, accurate techniques are needed
for the quantification and monitoring of soil properties. This is particularly important when a farmer
starts up his activities and needs a diagnosis of the soil properties that characterize the cultivated fields.
Soil properties may be accurately predicted from laboratory reflectance spectroscopy in the visible
(Vis, 400–700 nm), near-infrared (NIR, 700–1100 nm), and short-wave infrared (SWIR, 1100–2500 nm)
ranges [1–3]. Fluorescence spectroscopy may be either an alternative to or complementary to
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reflectance spectroscopy. As a matter of fact, fluorescence spectroscopy consists of measuring
the photoluminescence of molecules that emit light after having absorbed ultraviolet, visible, or infrared
light [4–6]. The emission spectrum is expected to overlap with the absorption spectrum at a wavelength
corresponding to the lowest vibrational transition level and the rest of the emission spectrum is
expected to be of lower energy, or longer wavelength. Among soil components, organic matter
components such as humic and fulvic acids have fluorescent properties [7,8]. Such fluorescent
behavior relies on the aromaticity, aliphatic character, degree of polycondensation, content of carboxylic
groups or organic free radicals, or presence of amide groups or polysaccharidic structures [9–11]. In
particular, emission spectra shift towards longer wavelengths with increasing humification [11–13].
Most studies involving fluorescence spectroscopy of soils have been carried out on liquid extracts of soil
samples and were devoted to soil organic compounds [11,14–16]. Few studies relied on fluorescence
measurements performed on solid soil samples or “whole soil samples,” with the exception of Van
Vliet-Lanöe [17], for the purpose of applying fluorescence observations to soil micromorphology,
or McMurtrey et al. [18] and Daughtry et al. [19], for the purpose of discriminating crop residues from
soils. McMurtrey et al. [18] and Daughtry et al. [19] illuminated solid samples of soil and crop residues
placed in dishes with a 20-cm diameter with ultraviolet radiation: as a matter of fact, crop residues
younger than two years old contain lignin and riboflavin, and fluoresce more than soils, specifically in
the blue-green range centered between 420 nm to 520 nm induced by excitation wavelengths centered
between 350 nm to 400 nm [19]. Using laser-induced fluorescence (LIF), Milori et al. [13] also excited
topsoil solid samples of Brazilian oxisols with 351-nm ultraviolet radiation and recorded emitted
signals in the visible region. They found a correlation between C content and the area of the LIF
spectra (R2 = 0.66). Until now however, fluorescence spectroscopy has seldom been used for detecting
soil compounds other than fresh or humified organic matter. Yet, some minerals present in soils,
such as calcite, gypsum, halite, and quartz, also have fluorescent properties [20,21]; in particular, clay
coatings associated with weakly evolved polymers of aluminum will strongly fluoresce in blue and
UV lights [17]. Moreover, secondary calcite in or around root channels might be related to organic
inclusions [17,22]. Using liquid extracts, Brunetti et al. [16] isolated humic acids from clay-size and
silt-size fractions of fersiallitic soils and found that the presence of highly polycondensated humic acids
macromolecules less susceptible to degradation occurred in the silt-size fraction. Because humified
organic matter is tightly bound to clay or either iron or aluminum oxides, particularly in fersiallitic
Mediterranean soil, as observed by these authors, it might be hypothesized that the clay, Fe, or Al
oxides content might be predictable via fluorescence spectroscopy.

For the purpose of rapidly scanning sample series, a LED-based multiple excitation fluorescence
sensor instrument [23] was used. This hand-held proxy sensor fluorometer was originally developed
for in-field measurements of vegetation, in order to measure for each leaf or fruit the content of
epidermal UV absorbers [24] and other leaf or fruit compounds. It was successfully used on grape
berries and bunches to predict anthocyanins, flavonols and chlorophyll content at the within-vineyard
scale [25]. Versions of the instrument were also used to measure blue-green autofluorescence of wheat
leaves [26] and violet-blue autofluorescence of induced grapevine phytoalexins [27]. This study intends
to evaluate the potential of fluorescence sensing performed on whole soil solid samples for predicting
key soil properties at the scale of a Mediterranean wine estate, the varied soils of which were surveyed
in a previous study [28]. Fluorescence measurements were carried out in conjunction with reflectance
measurements in the Vis-NIR-SWIR range.

The aims of this work were to (i) compare the performance of prediction models from either
fluorescence signals and indices or reflectance bands; (ii) evaluate the increase in model performance
when coupling both types of information; and (iii) evaluate the performance of either single
fluorescence signals or single fluorescence indices.
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2. Materials and Methods

2.1. Study Area

The study zone is a 6 ha viticultural farm of the Vinsobres wine appellation (Côtes-du-Rhône,
Southern Rhone Valley, France), the “Domaine des Chauvets” estate (44◦19′06′ ′–44◦19′44′ ′ N;
5◦0′46′ ′–5◦1′22′ ′ E, WGS, 1984). It is characterized by a diversity of soils including Red Mediterranean
soils (chromic luvisols), colluvic calcisols, arenosols, fluvisols, and regosols (WRB, 2014), which develop
from top to bottom of a Neogene molassic and conglomeratic plateau [28–30].

2.2. Soil Samples

A total of 146 samples originating from a field survey were collected in January 2015. The field
survey consisted of 14 soil pits, from which 48 horizons were sampled, plus 98 additional soil surface
samples evenly spread over the farm [28].

All soil profile horizons and soil surface samples went through physico-chemical analyses for
conventional parameters [28]: particle size fractions (NF X31-107), soil organic carbon (SOC) content,
calcium carbonate content (NF ISO 10693), iron content after Mehra and Jackson [31] extraction, total
N (NF ISO 13878), and C/N ratio. The SOC content of these soil samples was determined by dry
combustion at 900 ◦C according to the French norm NF ISO 10694. This technique provides the total
C content, so that for calcareous samples a correction was applied from the determination of total
carbonate (NF ISO 10693). The SOC content of calcareous samples was determined by subtracting
carbon content from carbonates to find the net organic carbon content.

For the 48 horizons sampled in pits, analyses of pH in water (NF ISO 10390), cation exchange
capacity, and exchangeable cations (Ca, Mg, Na, K, Fe, Mn, Al) by cobaltihexammine chloride dosing
(NF ISO 23470) of assimilable P by the Olsen method (NF ISO 11263) were carried out.

In total, there were 19 soil properties, 10 of which described the topsoil dataset.

2.3. Reflectance Measurements

The reflectance spectra of the 146 air-dried and 2 mm-sieved soil samples were measured with
the FieldSpec®three portable spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA)
equipped with a contact probe that contains its own illumination source, a quartz-halogen bulb.
The spectral range is 350–2500 nm, the spectral resolution being 3 nm in the 350–1000 nm region and
10 nm in the 1000–2500 nm region. The samples were placed in quartz dishes with dimensions of
5 cm in diameter × 0.5 cm in height. The quartz dishes were put on the vertically disposed contact
probe and measurements were previously calibrated towards a round Spectralon® reference panel
of 9 cm diameter. Five spectra were recorded per sample. The mean reflectance spectrum was used
for representing each site in calculations. The laboratory spectra were handled with a 1-nm sampling
interval over the entire spectral range (2151 bands).

2.4. Fluorescence Measurements

Fluorescence measurements were carried out on the 146 air-dried and 2 mm-sieved soil samples
with a non-contact hand-held multiple excitation fluorescence Multiplex® sensor (FORCE-A, Orsay,
France). Two versions of Multiplex were used: the prototype version of the Multiplex 330 with
a violet-blue emission channel [27], and the Multiplex 3 (Mx3) [25] version with a blue emission
channel. The signals and indices recorded by the two instruments were assigned the suffixes _flp and
_mx, respectively (Table 1). The Multiplex 330 had two types of multichip LED-matrix light sources:
six at 335 nm (UV) and three at 455 nm (B) from a RGB LED. It had three synchronized photodiode
detectors for fluorescence recording: violet-blue 417 ± 30 nm (VBF), green 550 ± 50 nm (GF) and far
red 750 ± 30 nm (FRF). The Mx3 had also three synchronized photodiode detectors for fluorescence
and reflectance recording: blue 447 ± 30 nm (BGF), red 688 ± 11 nm (RF) and far red 750 ± 30 nm
(FRF). It had two types of LED light sources: six at 373 nm (UV-A), and three RGB LEDs, from which
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only light at 516 nm (G) and 635 nm (R) was used. The blue excitation light was turned off to avoid
saturation of the BGF detector. The blue emission channel of Mx3 (protected by the filter 447 ± 30 nm
FWHM) yielded a BGF_UV fluorescence signal when synchronized to UV excitation, but recorded
reflectance signals GR_G and RR_R that leaked through the emission filter when synchronized to G
and R excitations, respectively.

Table 1. Description of the Multiplex signals used in this study (measurement unit: mV).

Signals Excitation
Wavelength (nm)

Emission Wavelength
(nm) ± Bandwidth Sensor Version

VBF_UV_flp 335 417 ± 30 Multiplex 330
GF_UV_flp 335 550 ± 50 Multiplex 330

FRF_UV_flp 335 750 ± 30 Multiplex 330
GF_B_flp 455 550 ± 50 Multiplex 330

FRF_B_flp 455 750 ± 30 Multiplex 330
BGF_UV_mx 373 447 ± 30 Multiplex 3
RF_UV_mx 373 688 ± 11 Multiplex 3

FRF_UV_mx 373 750 ± 30 Multiplex 3
GR_G_mx 516 516 leak Multiplex 3
RF_G_mx 516 688 ± 11 Multiplex 3

FRF_G_mx 516 750 ± 30 Multiplex 3
RR_R_mx 635 635 leak Multiplex 3
RF_R_mx 635 688 ± 11 Multiplex 3

FRF_R_mx 635 750 ± 30 Multiplex 3

VBF, violet-blue fluorescence; GF, green fluorescence; BGF, blue-green fluorescence; GR, green reflectance; RR, red
reflectance; RF, red fluorescence; FRF, far red fluorescence; UV, ultra-violet excitation; B, blue excitation; G, green
excitation, R, red excitation.

Each measurement consisted of an average of 250 individual excitation flashes. In addition
to the 14 original Multiplex signals available (five fluorescence signals from Multiplex 330, seven
fluorescence and two reflectance signals from Mx3) (Table 1), nine available fluorescence-based indices,
which were previously used in the literature for other purposes, such as simple chlorophyll fluorescence
ratios, indices of phenolic maturity, and nitrogen balance indices, were also tested for predicting soil
properties (Table 2).

Table 2. Description of the fluorescence indices used in this study.

Fluorescence Index Description Reference Formula Sensor Version

BRR_flp Blue-to-red emission ratio [32] VBF_UV_flp/FRF_UV_flp Multiplex 330

SFR_G_mx Simple chlorophyll
fluorescence ratio [32,33] FRF_G_mx/RF_G_mx Multiplex 3

SFR_R_mx Simple chlorophyll
fluorescence ratio [32,33] FRF_R_mx/RF_R_mx Multiplex 3

FLAV_mx Flavonols index [34,35] Log(FRF_R_mx/FRF_UV_mx) Multiplex 3
FER_RG_mx Fluorescence Excitation Ratio [36] FRF_R_mx/FRF_G_mx Multiplex 3

ANTH_RG_mx Anthocyanins index [37] Log(FRF_R_mx/FRF_G_mx) Multiplex 3
NBI_G_mx Nitrogen Balance Index [38] FRF_UV_mx/RF_G_mx Multiplex 3
NBI_R_mx Nitrogen Balance Index [38] FRF_UV_mx RF_R_mx Multiplex 3

FERARI Anthocyanin Relative Index [25] Log(1/FRF_R_mx) Multiplex 3

A quantity of about 100 g of soil with ~0.3 cm layer depth was spread over a 10 cm × 25 cm
black tray having a non-fluorescent coating. The sensor was laid vertically on the tray rim, and each
measurement took less than one second. Three measurements were taken per sample, moving
the sensor along the tray. To ensure that this sampling adequately represented the variability of
the fluorescence signal, a set of 30 measurements was carried out on a limited number of samples,
all along the tray.
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2.5. Models for Soil Properties Prediction

Models for soil properties prediction relied on a series of predictive bands and signals or indices
constructed from signal ratios.

From multiple bands, signals, and indices, partial least squares regression (PLSR) models [39,40]
were constructed from either the reflectance spectra or the fluorescence signals and indices and
combined models were constructed from both reflectance and fluorescence. Combined models
relied on the Granger–Ramanathan [41] model averaging approach, which proved efficient for
the determination of agronomic soil properties when using both reflectance and X-ray fluorescence
spectra [42]. The Granger–Ramanathan model consists of fitting a multiple linear regression model
where observed soil property values are regressed against the corresponding predictions derived from
reflectance and fluorescence PLSR models (Equation (1)):

Y = W0 + (Wrefl × Xrefl) + (Wfluo × Xfluo). (1)

In Equation (1), Y is the vector of a measured soil property, and Xrefl and Xfluo are the corresponding
predictions from reflectance and fluorescence models, respectively. Ordinary least squares are
used to solve the parameters W0 (the intercept, or a bias correction between measured values and
the two models outcomes), Wrefl (the weight of the reflectance PLSR model), and Wfluo (the weight of
the fluorescence PLSR model).

From individual fluorescence signals or indices, simple linear regression (LR) models were
constructed using standard ordinary least squares. A total of 21 fluorescence signals or indices were
considered for PLSR, setting aside the two Mx3 reflectance signals GR_G_mx and RR_R_mx, but these
reflectance signals were tested for simple LR.

All models were implemented in R version 3.2.1 [43] using the “pls” package [44] for PLSR.
For each target soil property, the optimal number of latent variables was determined using
the prediction residual error sum of squares (PRESS), being the lowest number of latent variables that
induced a significant drop in PRESS values. As the study focused on evaluating relative improvements
with different models, the leave-one-out cross-validation procedure was used [45]. For PLSR models,
reflectance data were centered and fluorescence measurements were centered and variance-scaled.
The quality of model fits was evaluated through the root mean squared error of cross-validation
(RMSEcv), the coefficient of determination of cross-validation (R2) and the residual prediction deviation
(RPD), i.e., the ratio between the standard deviation of the reference measured dataset against
the RMSEcv. The RPD is widely used in soil spectroscopic studies in order to interpret the predictive
ability of models [46]. According to Chang et al. [47], and Viscarra-Rossel et al. [48], larger values
of RPD (≥2) indicate models with very good predictive ability (excellent when RPD ≥ 2.5); values
comprised between 1.8 and 2 indicate good predictive ability; values comprised between 1.4 and 1.8
indicate models with moderate predictive ability, values between 1 and 1.4 indicate models with poor
prediction ability, whereas values < 1 indicate a very poor model the use of which is not recommended.

For LR models with a single fluorescence signal or index, models were elaborated for all available
ones before the model with the highest RPD was selected. A principal component analysis (PCA)
was performed on the limited set of selected fluorescence signals or indices in order to identify
outliers based on the Mahalonobis distance computed between PCA coordinates. The Mahalanobis
threshold was set at 5% of the total sample. PLSR and LR models were compared, including or not
the identified outliers.

3. Results

3.1. Description of the Dataset

Consistent with the high variability of soil types within the farm [28], the dataset is characterized
by large variance for most soil properties (Table 3).
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Table 3. Dataset used in the modeling and statistics on soil properties for either all depth horizons or topsoil horizons.

Soil Property Description Unit
All Horizons Topsoil Horizons

Sample Size Min Mean Max sd Sample Size Min Mean Max sd

SOC soil organic C g·Kg−1 146 1.27 10.7 25.8 5.1 112 2.6 12.1 25.8 4.73
CaCO3 total CaCO3 g·Kg−1 146 27 398.6 767 146.0 112 53 396 689 126.7

Iron free iron g/100 g 146 0.32 1.00 1.92 0.36 112 0.39 1.02 1.92 0.35
Clay gr. fr. < 2 µm g·Kg−1 146 124 274 477 84.9 112 148 280 477 78.6

Fine silt gr. fr. 2–20 µm g·Kg−1 146 33 93.6 188 30.4 112 43 93.4 188 27.5
Coarse silt gr. fr. 20–50 µm g·Kg−1 146 2 45 96 14.6 112 2 45.5 79 11.3
Fine sand gr. fr. 50–200 µm g·Kg−1 146 13 101.8 387 55.1 112 42 99 229 43.4

Coarse sand gr. fr. 200 µm–2 mm g·Kg−1 146 2 80.7 202 38.8 112 9 78.9 166 32.8
CN C/N ratio - 146 3.9 13.7 21.6 2.44 112 3.9 13.6 20.9 2.03
Ntot total nitrogen g·Kg−1 146 0.09 0.79 1.85 0.35 112 0.30 0.89 1.85 0.31
pH water pH - 48 8.35 8.62 8.99 0.19

CEC cation exchange capacity cmol+.Kg−1 48 7.44 18.1 33.5 6.8
Ca ex calcium cmol+.Kg−1 48 9.11 18.9 33.2 6.48
Mg ex magnesium cmol+.Kg−1 48 0.05 0.42 1.42 0.26

Fe_cobalti ex iron cmol+.Kg−1 48 0 0.009 0.022 0.006
Al ex aluminum cmol+.Kg−1 48 0 0.041 0.103 0.028
Na ex sodium cmol+.Kg−1 48 0.010 0.024 0.042 0.009
P assimilable phosphorus g·Kg−1 48 0 0.007 0.05 0.011
K ex potassium cmol+.Kg−1 48 0.118 0.307 0.700 0.131

gr. fr., granulometric fraction; ex, exchangeable; sd, standard deviation.

Table 4. Pearson correlation table of the common soil properties of all horizons (146 samples).

Variables CN Ntot SOC CaCO3 Fe Clay Fine Silt Coarse Silt Fine Sand Coarse Sand

CN 1.00
Ntot −0.14 1.00
SOC 0.12 0.96 * 1.00

CaCO3 0.15 −0.55 * −0.53 * 1.00
Fe −0.07 0.63 * 0.64 * −0.87 * 1.00

Clay −0.06 0.63 * 0.62 * −0.78 * 0.90 * 1.00
Fine silt −0.14 0.49 * 0.47 * −0.85 * 0.78 * 0.71 * 1.00

Coarse silt −0.21 * 0.29 * 0.27 * −0.68 * 0.49 * 0.38 * 0.54 * 1.00
Fine sand −0.21 * −0.03 −0.07 −0.41 * 0.00 −0.15 0.19 * 0.57 * 1.00

Coarse sand 0.06 0.24 * 0.26 * −0.57 * 0.52 * 0.28 * 0.41 * 0.14 0.13 1.00

* Values different from 0 at a significance level of alpha = 0.05.
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Variability is still large for the topsoil, and particularly for those soil components that are expected
to fluoresce: SOC, CaCO3, and Ntot. These components are correlated (very highly between Ntot and
SOC; negatively between CaCO3 content and SOC); they show significant correlation coefficients
with other soil properties, particularly SOC and Ntot with clay content and Fe content (Table 4),
which increase in topsoil (Table 5).

Both fine silt and coarse sand in topsoil display a higher correlation with SOC and Ntot contents
than for all horizons. CEC is highly correlated to CaCO3 and highly negatively correlated with SOC
and Ntot contents, the opposite of pH (Table 6). Exchangeable Ca2+ is highly correlated with SOC
and Ntot, followed by Mg2+ and then K content. There is no correlation for P content with any of
the potentially fluorescent components, nor for fine sand, which is not correlated to SOC and Ntot,
and is weakly negatively correlated with CaCO3 content.



Sensors 2018, 18, 1157 8 of 22

Table 5. Pearson correlation table of the topsoil properties (112 samples).

Variables CN Ntot SOC CaCO3 Fe Clay Fine Silt Coarse Silt Fine Sand Coarse Sand

CN 1.00
Ntot −0.01 1.00
SOC 0.30 * 0.94 * 1.00

CaCO3 −0.15 −0.62 * −0.65 * 1.00
Fe 0.17 0.66 * 0.69 * −0.89 * 1.00

Clay 0.18 0.63 * 0.65 * −0.80 * 0.89 * 1.00
Fine silt 0.16 0.54 * 0.56 * −0.87 * 0.80 * 0.75 * 1.00

Coarse silt 0.15 0.26 * 0.31 * −0.56 * 0.47 * 0.31 * 0.41 1.00
Fine sand −0.08 −0.02 −0.03 −0.22 * −0.13 −0.34 * 0.03 0.38 * 1.00

Coarse sand 0.07 0.39 * 0.41 * −0.75 * 0.66 * 0.42 * 0.59 0.28 * 0.23 * 1.00

* Values different from 0 at a significance level of alpha = 0.05.
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Table 6. Pearson correlation table of the nutrient properties of the pits’ horizons (48 samples).

Variables CN Ntot SOC CaCO3 Fe Clay Fine Silt Coarse Silt Fine Sand Coarse Sand pH CEC Fe–CobaltiCa Mg Na Al P K

CN 1.00
Ntot −0.37 * 1.00
SOC −0.14 0.96 * 1.00

CaCO3 0.51 * −0.65 * −0.56 * 1.00
Fe −0.44 * 0.75 * 0.70 * −0.87 * 1.00

Clay −0.39 * 0.75 * 0.71 * −0.78 * 0.93 * 1.00
Fine silt −0.53 * 0.68 * 0.58 * −0.84 * 0.80 * 0.72 * 1.00

Coarse silt −0.57 * 0.39 * 0.27 −0.78 * 0.52 * 0.44 * 0.69 * 1.00
Fine sand −0.34 * 0.02 −0.08 −0.58 * 0.16 0.05 0.35 * 0.74 * 1.00

Coarse sand −0.02 * 0.22 0.22 −0.40 * 0.37 * 0.15 0.21 0.04 0.04 1.00
pH 0.46 * −0.87 * −0.81 * 0.87 * −0.82 * −0.78 * −0.81 * −0.69 * −0.37 * −0.27 1.00

CEC −0.41 * 0.80 * 0.75 * −0.83 * 0.93 * 0.96 * 0.81 * 0.50 * 0.12 0.20 −0.84 * 1.00
Fe–cobalti −0.30 * 0.55 * 0.53 * −0.68 * 0.64 * 0.56 * 0.65 * 0.56 * 0.34 * 0.23 −0.70 * 0.59 * 1.00

Ca −0.40 * 0.79 * 0.75 * −0.82 * 0.93 * 0.95 * 0.80 * 0.50 * 0.12 0.20 −0.84 * 1.00 * 0.61 * 1.00
Mg −0.31 * 0.76 * 0.73 * −0.53 * 0.60 * 0.68 * 0.47 * 0.25 0.02 0.15 −0.71 * 0.67 * 0.51 * 0.66 * 1.00
Na −0.19 * 0.35 * 0.32 * −0.57 * 0.68 * 0.70 * 0.61 * 0.37 * 0.05 0.09 −0.47 * 0.77 * 0.34 * 0.77 * 0.21 1.00
Al −0.25 * 0.55 * 0.54 * −0.63 * 0.60 * 0.53 * 0.61 * 0.52 * 0.29 * 0.21 −0.68 * 0.56 * 0.99 * 0.58 * 0.53 * 0.29 * 1.00
P −0.04 0.26 0.27 0.02 0.02 0.01 −0.07 −0.02 −0.06 0.03 −0.16 −0.06 0.02 −0.08 0.32 * −0.39 * 0.04 1.00
K −0.43 * 0.68 * 0.60 * −0.48 * 0.41 * 0.43 * 0.46 * 0.43 * 0.21 0.09 −0.68 * 0.40 * 0.40 * 0.38 * 0.68 * −0.12 0.40 * 0.65 * 1.00

* Values different from 0 at a significance level of alpha = 0.05.
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3.2. Performance of PLSR Models

For 12 out of the 19 soil properties considered, PLSR models constructed from the reflectance
spectra yielded RPD values higher than 1.4, predictable models, and outperformed the PLSR models
constructed from the 21 fluorescence signals and indices (Table 7). As expected for leave-one-out
cross-validated models, the bias was null or close to zero. Only reflectance predicted K content and
Na+ content with fair accuracy (RPD 1.4), while it was poor with fluorescence. Reflectance-based RPD
values were higher than 2 for exchangeable Ca2+, CEC, clay content, and SOC content and were higher
than 2.5, that is, excellent, for CaCO3, pH, Fe and Ntot contents (in increasing order). Using the set
of 21 fluorescence signals and indices, RPD values were lower than for reflectance-based models,
but remained important for six of these properties, except for clay (1.65). Despite the lower accuracy
for most properties in comparison with reflectance, only fluorescence could predict coarse silt with
moderate ability (RPD 1.40), but this with only a slight improvement in RMSE compared to reflectance.

Table 7. Cross-validation performance statistics of PLSR algorithm for soil properties prediction (NLv,
number of latent variables) from either laboratory reflectance (left) or Multiplex fluorescence (right) for
all horizons.

Soil Property
Reflectance (2151 Bands) Multiplex (21 Signals & Indices)

R2cv RMSEcv RPD NLV R2cv RMSEcv RPD NLV

CN −0.05 2.5 0.98 9 0.01 2.42 1.01 1
Ntot 0.92 0.099 3.57 13 0.76 0.174 2.03 4
SOC 0.81 2.21 2.31 9 0.72 2.68 1.90 7

CaCO3 0.88 50.0 2.92 6 0.84 58.7 2.49 7
Iron 0.90 0.114 3.17 12 0.82 0.153 2.36 7
Clay 0.78 40.0 2.12 7 0.63 51.4 1.65 8

Fine silt 0.69 16.8 1.81 9 0.49 21.7 1.40 4
Coarse silt 0.47 10.6 1.38 11 0.49 10.4 1.40 10
Fine sand 0.66 31.9 1.73 13 0.54 37.4 1.47 14

Coarse sand 0.53 26.6 1.46 13 0.41 29.7 1.31 9
pH 0.90 0.062 3.11 8 0.87 0.07 2.83 10

CEC 0.79 3.04 2.24 8 0.78 3.15 2.15 6
Fe–cobalti 0.46 0.004 1.37 2 0.47 0.005 1.38 2

ex Ca 0.78 2.98 2.18 8 0.76 3.17 2.04 3
ex Mg 0.32 0.213 1.22 3 0.32 0.21 1.23 1
ex Na 0.49 0.006 1.42 4 0.47 0.006 1.26 3
ex Al 0.42 0.0215 1.32 2 0.44 0.0211 1.35 2

P 0.12 0.011 1.08 3 -0.07 0.0117 0.97 4
ex K 0.42 0.098 1.33 8 0.32 0.107 1.22 1

ex, exchangeable.

The averaged model constructed from both reflectance and fluorescence PLSR predictions brought
improvement for all properties that were already correctly predicted from either reflectance or
fluorescence, and particularly for those predicted with medium performance such as exchangeable
Na+, fine silt, coarse silt, coarse sand, and fine sand (Table 8). In addition, the averaged model made
fairly good predictions for properties that were previously poorly predicted, such as exchangeable Fe
(named ‘Fe–cobalt’), Mg2+, and exchangeable K+. In total, model averaging enabled us to correctly
predict 16 out of the 19 targeted properties, and resulted in a relative improvement of RMSE whatever
the property.

It must be mentioned that, as an initial approach, simple concatenation of the reflectance
spectra and the fluorescence signals and indices was attempted and tested, but was not found to
be suitable. As a matter of fact, it resulted in either equal or even slightly lower performances than
the reflectance spectra alone, suggesting that the specific information discovered by fluorescence
signals and indices (not in wavelength units) was not accounted for.
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Table 8. Cross-validation performance statistics of averaged model for all horizons.

Soil
Property

Performance Statistics

Weights Assigned to
Reflectance (Wrefl) and
Fluorescence (Wfluo) in

Model Averaging

% Relative Improvement of
RMSE Compared to Best

Model from Either
Reflectance or FluorescenceR2cv RMSEcv RPD Wrefl Wfluo

CN 0.21 2.17 1.13 0.96 0.14 10.3
Ntot 0.95 0.08 4.44 0.83 0.08 19.2
SOC 0.87 1.84 2.77 0.94 0.06 16.7

CaCO3 0.92 41.3 3.54 0.68 0.35 17.4
Iron 0.94 0.087 4.15 0.76 0.27 23.7
Clay 0.84 34.1 2.49 0.75 0.32 14.8

Fine silt 0.75 15.1 2.01 0.97 0.04 10.1
Coarse silt 0.67 8.37 1.74 0.58 0.52 19.5
Fine sand 0.85 21.1 2.61 0.73 0.41 33.9

Coarse sand 0.74 19.8 1.96 0.76 0.35 25.6
pH 0.96 0.04 4.82 0.73 0.28 35.5

CEC 0.91 1.96 3.45 0.76 0.26 35.5
Fe–cobalt 0.50 0.0043 1.42 0.43 0.59 14.0

Ca 0.90 1.99 3.26 0.84 1.18 33.2
Mg 0.54 0.0175 1.49 0.49 0.66 17.8
Na 0.59 0.0056 1.59 0.57 0.51 6.7
Al 0.46 0.0207 1.38 0.31 0.71 1.9
P 0.14 0.0105 1.09 0.79 0.32 4.5
K 0.65 0.0766 1.71 1.06 –0.11 21.8

The most accurate predictions (RPD ≥ 1.4) are shown in Figures 1–4.

Figure 1. Scatterplots of predicted vs. observed Ntot, SOC, CaCO3, and Fe contents from
model averaging.
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Figure 2. Scatterplots of predicted vs. observed clay, fine silt, coarse, and fine sand contents from
model averaging.

Figure 3. Scatterplots of predicted vs. observed pH, CEC, exchangeable Ca2+, and coarse silt contents
from model averaging.
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Figure 4. Scatterplots of predicted vs. observed exchangeable K+, Mg2+, Na+, and Fe (Fe_cobalti)
contents from model averaging.

3.3. Performance of Single LR Models

The single LR models constructed from either a single fluorescence original signal or a single
fluorescence index (Tables 9 and 10, Figures 5–8) displayed a drop in performance compared to
the averaged model (Table 8). However, single LR models could predict nine soil properties out
of 19 with RPD higher than 1.4, including one with excellent and one with good performance:
pH (RPD 2.5) and CaCO3 content (RPD 1.94), respectively. Performances for clay content and
exchangeable Al3+ content prediction were just below the 1.4 threshold (RPD 1.37). The set of
best individual predictors was composed of two fluorescence indices (FERARI_mx and SFR_R_mx),
one original fluorescence signal (RF_R_mx), and two Mx3 reflectance signals (RR_R_mx, GR_G_mx).
When considering the topsoil dataset (only 10 variables described), the single LR models yielded good
performance for both CaCO3 (RPD 1.80) and Fe (RPD 1.82) and excellent performance for both Ntot

(RPD 2.07) and SOC (RPD 2.12) contents (Table 10, Figure 8). Topsoil coarse sand prediction yielded
moderate but significant accuracy.

Except for topsoil coarse sand content, the best predictor of which stemmed from blue-excited
green fluorescence, all the other best predictors were those with either red or green excitation, resulting
in red or far-red fluorescence (Figures 5–7), or red and green reflectance. This was rather unexpected
as, according to the literature, organic matter, calcite, and quartz fluorescence are excited by the UV.

From the five main best predictors for all horizons (FERARI_mx, SFR_R_mx, RR_R_mx, GR_G_mx,
and RF_R_mx), the outlier search based on the 5% thresholding of Mahalanobis distance led to
highlighting seven outliers that appeared to be mainly the horizons of highest depth (4th to 6th horizons
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for 200 cm deep soil profiles), and both the highest CaCO3 content and lowest SOC content. However,
the removal of these samples did not result in improving the prediction models; on the contrary,
it lowered the performance figures. As it reduced the already limited dataset on nutrient properties
(48 samples), we decided not to discard these samples.

Table 9. Cross-validation performance statistics of simple linear regression from the best Multiplex
signals for all horizons.

Soil Property Single Multiplex Signal or Index

R2cv RMSEcv RPD Band

CN 0.02 2.42 1.01 VBF_UV_flp
Ntot 0.60 0.221 1.60 SFR_R_mx

SOC content 0.62 3.15 1.62 SFR_R_mx
CaCO3 content 0.73 75.3 1.94 RR_R_mx

Iron content 0.64 0.216 1.67 GR_G_mx
Clay content 0.36 62.1 1.37 GR_G_mx

Fine silt content 0.50 21.7 1.40 RR_R_mx
Coarse silt content 0.41 11.3 1.29 FERARI_mx
Fine sand content 0.15 52.1 1.06 FRF_R_mx

Coarse sand 0.24 34.2 1.13 GF_B_flp
pH 0.85 0.0766 2.50 FERARI_mx

CEC 0.64 4.22 1.60 RR_R_mx
Fe–cobalti 0.52 0.0040 1.40 RF_R_mx

Ca 0.64 4.01 1.62 RR_R_mx
Mg 0.37 0.213 1.23 GR_G_mx
Na 0.14 0.008 1.05 RF_R_mx
Al 0.49 0.0208 1.37 RF_R_mx
P 0.02 0.0116 0.99 RF_R_mx
K 0.35 0.108 1.21 RF_G_mx

Single signals in bold are reflectance signals.

Table 10. Cross-validation performance statistics of simple linear regression from the best Multiplex
signals for the topsoil samples.

Soil Property Single Fluorescence Signal or Index

R2cv RMSEcv RPD Band

CN 0.12 2.12 0.96 VBF_UV_flp
Ntot 0.76 0.152 2.07 SFR_R_mx

SOC content 0.78 2.22 2.12 SFR_R_mx
CaCO3 content 0.68 70.5 1.80 RR_R_mx

Iron content 0.71 0.191 1.82 GR_G_mx
Clay content 0.50 56.4 1.39 GR_G_mx

Fine silt content 0.47 20.3 1.35 RR_R_mx
Coarse silt content 0.24 9.98 1.13 FERARI_mx
Fine sand content 0.13 41.0 1.06 FRF_R_mx

Coarse sand 0.51 23.4 1.40 GF_B_flp

Signals in bold are reflectance signals.
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Figure 5. Predicted SOC content from the single SFR_R_mx index (all horizons).

Figure 6. Predicted Ntot from the single SFR_R_mx index (all horizons).
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Figure 7. Predicted pH from single FERARI index (all horizons).

Figure 8. Scatterplots of predicted vs. observed topsoil Ntot, SOC, CaCO3, and Fe contents from simple
linear regression models (Ntot and SOC: from SFR_R_mx; CaCO3 and Fe: from RR_R_mx and GR_G_mx,
respectively).
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4. Discussion

4.1. Fluorescence Is Complementary to Reflectance

In terms of performance and accuracy, reflectance spectra-based models outperformed
fluorescence-based models for most properties. However, eight key properties were still well predicted
from several single fluorescence signals: pH, CaCO3 content, Fe content, CEC, Ntot content, SOC
content, and exchangeable Ca2+. Some nutrient properties such as exchangeable K+ and Na+ contents
were fairly predicted from reflectance spectra only, but a particle size fraction (coarse silt) was better
predicted from fluorescence, suggesting the complementarity between fluorescence and reflectance
spectroscopy. Model averaging made a relative improvement in the prediction accuracy of soil
properties from both reflectance and fluorescence (Table 8). An improvement between ~7% and 34%
was achieved, mostly for properties with RPD ≥ 1.4, showing that there is a benefit to using both
reflectance and fluorescence for the prediction of each individual property.

4.2. Fluorescence Single Signals May Provide a Rough Estimate in the Field

Our approach brought rather unexpected results concerning (i) the predictive ability of single
fluorescence indices or original signals and (ii) the excitation wavelength that was best suited for
soil property prediction. The predictive ability of single fluorescence indices or original signals was
very significant for topsoil: this is important for a farmer who wishes to update information on soil
nutrients for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results
open up encouraging perspectives, not only for using laboratory fluorescence measurements, but also
for transposing this approach to the field scale, using miniaturized fluorescence devices that enable red
excitation coupled with red or far-red fluorescence emissions. Miniaturization of portable hand-held
fluorescence sensors is in progress. The future miniature ones, or the present Multiplex sensor (2.5 kg),
which includes a GPS receiver and can be used directly in the field, would provide geospatial data and
allow us to map the Ntot or SOC contents.

4.3. Red or Green Excitations Are Influential

To our knowledge, the use of green or red excitation wavelengths has rarely been attempted
in previous fluorescence studies that mainly focused on UV and blue excitations for the purpose of
studying humic substances. For instance, Zsolnay et al. [49], Milori et al. [13], and Tivet et al. [50] used
an excitation of 440 nm, 351 nm, and 405 nm, respectively. However, Daughtry et al. [19] observed
the entire excitation—emission matrix, stepping the excitation monochromator over the 250 to 800 nm
wavelength range, and observed that soils had low-intensity, broad-band fluorescence emissions over
the 400 to 690 nm region for excitations of 300 to 600 nm. They also noticed that soil high in CaCO3

content (520 g Kg−1) had “fluorescence intensities nearly an order of magnitude higher than the other
soils observed.” Nevertheless, their objective was to discriminate between crop residues and soil, not to
quantitatively assess soil properties.

The influence of blue-induced green fluorescence for predicting coarse sand topsoil content might
be due to the presence of quartz, particularly in fersiallitic horizons. The reason why green or red
excitations are important in predicting most other soil properties may be due to some kind of parent
behavior with either chlorophyll degradation products or phenolic compounds. In particular, it may be
due to cyanobacteria polypeptides such as phycobiliproteins, which characterize intracellular organic
matter of dead cells and are highly fluorescent in the 550–700 nm range [51]. Cyanobacteria are present
in cultivated soils but may be very scarce in Mediterranean vineyards because of higher Cu content,
such as in Northeastern Italy calcaric cambisols [52]. Soil content of chlorophyll degradation products
coming from plant litter is also unknown [53]. Therefore, this remains to be clarified, as along with
the effects that bonding of soil constituents has on whole soil fluorescence.
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4.4. Possible Extrapolation of These Results and Further Developments

Referring to PLSR models constructed from reflectance spectra, our results are in accordance
with previous results obtained in the Vis-NIR-SWIR range overall [1,48], and for soils developed
under Mediterranean or Mediterranean-like climate in particular [42,54–58]. Most previous assessment
studies have focused on three major properties based on laboratory reflectance spectra: SOC content
(e.g., [42,54,55,57,59,60]), clay content (e.g., [42,55–57]), and total nitrogen content (e.g., [54,57,59,60]).
Other properties such as CaCO3 content (e.g., [57]), phosphorus content (e.g., [42,45,59]), and CEC [55,
57] have been less frequently targeted and particularly exchangeable cations (e.g., [42]), such as K+ and
Mg2+, which are of substantial interest for viticultural management. Our study considered a large set
of soil properties with major agronomic interest, especially K+ and Mg2+ and, overall, those related to
fertility management. As analyzed for spatial imagery at a regional scale [61], there are many reasons
why predictions from reflectance spectra can vary in their accuracy, including: the spectral behavior
of the considered property as a “chromophore” according to Ben Dor et al. [2]; the correlation of
the considered property to a spectrally influent one; the internal variance of the dataset; the number and
composition of sample sets; and specific soil surface conditions. PLSR loadings of spectrally influent
properties such as SOC, CaCO3, and Fe were in accordance with their known influent wavelengths [2].
In addition to the “chromophore” behavior of properties, their specific “fluorophore” behavior is
influent, either directly or indirectly. In the studied farm, Mg2+ and K+ were correlated to SOC and Ntot

contents (Table 6), whereas P had poor correlation with every other property and gave rise to poorly
predictive models (Tables 7–9). At the farm scale of three contrasted farms of Germany, Denmark,
and the Czech Republic, Kuang and Mouazen [59] also found that Vis-NIR-SWIR spectroscopy was
unsuccessful in predicting P content. In our study, following an eight-year shortage of chemical
manure (for economic reasons), nutrient contents were very low, particularly the P content, which was
even zero for about 60% of the samples [28].

Regarding the prediction of exchangeable Mg2+ and K+, it was poor or intermediate using either
reflectance or fluorescence, but these two properties exhibited fair performance with model averaging.
Such fair performance must be considered with caution as it is based on a rather small sample size
(48 samples).

Overall, as previously achieved when combining Vis-NIR-SWIR reflectance and total X-ray
fluorescence spectra [42,58,60], combining models improves the power of prediction with increased
RPD and R2 figures of merit. To our knowledge, the combining of UV-Vis fluorescence and
Vis-NIR-SWIR reflectance spectroscopy has never been attempted before on solid soil samples for
the purpose of soil properties assessment. For instance, Islam et al. [62] used UV-Vis-NIR-SWIR
reflectance, but not fluorescence signals for this purpose.

5. Conclusions

Except for P content, combining Vis-NIR-SWIR reflectance spectra and a set of UV-Vis fluorescence
signals enabled us to accurately predict a number of key agronomic soil properties including SOC,
Ntot, CaCO3, iron and particle-size contents, CEC, and pH, and to predict fairly well exchangeable K+,
Na+, and Mg2+.

Predictions of SOC, Ntot, CaCO3, iron contents, and pH were still good when using a single
Multiplex signal or index such as SFR_R, FERARI or GR_G, or RR_R. The predictive ability of
fluorescence indices or original signals was very significant for topsoil: this is important for a farmer
who wishes to update information on soil nutrients for the purpose of fertility diagnosis and
particularly nitrogen fertilization. These results open up encouraging perspectives for transposing
this approach to the field: for this purpose, miniaturized fluorescence devices enabling red excitation
coupled with red or far-red fluorescence emissions could be directly tested in the field.
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