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MULTIPLE SETS EXPONENTIAL CONCENTRATION AND HIGHER

ORDER EIGENVALUES

NATHAËL GOZLAN & RONAN HERRY

Abstract. On a generic metric measured space, we introduce a notion of improved
concentration of measure that takes into account the parallel enlargement of k distinct
sets. We show that the k-th eigenvalues of the metric Laplacian gives exponential
improved concentration with k sets. On compact Riemannian manifolds, this allows
us to recover estimates on the eigenvalues of the Laplace-Beltrami operator in the
spirit of an inequality of [11].
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Introduction

Let (M,g) be a smooth compact connected Riemannian manifold with its normalized
volume measure µ and its geodesic distance d. The Laplace-Beltrami operator ∆ is
then a non-positive operator whose spectrum is discrete. Let us denote by λ(k), k =
0, 1, 2 . . ., the eigenvalues of −∆ written in increasing order. With these notations
λ(0) = 0 (achieved for constant functions) and (by connectedness) λ(1) > 0 is the so-
called spectral gap of M .

The study of the spectral gap of Riemannian manifolds is, by now, a very classical
topic which has found important connections with numerous geometrical and analyti-
cal questions and properties. The spectral gap constant λ(1) is for instance related to
Poincaré type inequalities and governs the speed of convergence of the heat flow to equi-
librium. It is also related to Ricci curvature via the classical Lichnerowicz theorem [20]
and to Cheeger isoperimetric constant via Buser’s theorem [7]. We refer to [5, 8] and
the references therein for a complete picture.
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2 NATHAËL GOZLAN & RONAN HERRY

Another important property of the spectral gap constant, first observed by Gromov
and Milman [16], is that it controls exponential concentration of measure phenomenon
for the reference measure µ. The result states as follows. Define for all Borel sets A ⊂ M ,
its r-enlargement Ar as the (open) set of all x ∈ E such that there exists y ∈ A with
d(x, y) < r. Then, for any A ⊂ M such that µ(A) ≥ 1/2 it holds

µ(Ar) ≥ 1 − be−a
√

λ(1)r, ∀r > 0,

where a, b > 0 are some universal constants (according to [19, Theorem 3.1], one can take
b = 1 and a = 1/3). Note that this implication is very general and holds on any metric
space supporting a Poincaré inequality (see [19, Corollary 3.2]). See also [6, 26, 1, 15]
for alternative derivations, generalizations or refinements of this result.

This note is devoted to a multiple sets extension of the above result. Roughly speak-
ing, we will see that if A1, . . . , Ak are sets which are pairwise separated in the sense
that d(Ai, Aj) := inf{d(x, y) : x ∈ Ai, y ∈ Aj} > 0 for any i 6= j and A is their union

then the probability of Ar goes exponentially fast to 1 at a rate given by
√
λ(k) as soon

as r is such that the sets Ai,r, i = 1, . . . , k remain separated. More precisely, it follows
from Theorem 1.1 (whose setting is actually more general) that, if A1, . . . , Ak are such
that µ(Ai) ≥ 1

k+1 and d(Ai,r, Aj,r) > 0 for all i 6= j, then, denoting A = A1 ∪ . . . ∪ Ak,
it holds

(0.1) µ(Ar) ≥ 1 − 1

k + 1
exp

(

−cmin(r2λ(k); r
√

λ(k))
)

,

for some universal constant c. This kind of probability estimates first appeared, in a
slightly different but essentially equivalent formulation in the work of Chung, Grigor’yan
and Yau [11, 10] (see also the related paper [12] by Friedman and Tillich). Nevertheless,
the method of proof we use to arrive at (0.1) (based on the Courant-Fischer min-max for-
mula for the λ(k)’s) is quite different from the one of [11, 10] and seems more elementary
and general. This is discussed in details in Section 1.5.

The paper is organized as follows. In Section 1, we prove (0.1) in an abstract metric
space framework. This framework contains, in particular, the compact Riemannian case
equipped with the Laplace operator presented above. The Section 1.5 contains a detailed
discussion of our result with the one of Chung, Grigor’yan & Yau. In Section 2, we recall
various bounds on eigenvalues on several non-negatively curved manifolds. Section 3
gives an extension of (0.1) to discrete Markov chains on graphs. In Section 4, we give a
functional formulation of the results of Sections 1 and 3. As a corollary of this functional
formulation, we obtain a deviation inequality as well as an estimate for difference of
two Lipschitz extensions of a Lipschitz function given on k subsets. Finally, Section 5
discusses open questions related to this type of concentration of measure phenomenon.

1. Multiple sets exponential concentration in abstract spaces

1.1. Courant-Fischer formula and generalized eigenvalues in metric spaces.

Let us recall the classical Courant-Fischer min-max formula for the k-th eigenvalue
(k ∈ N) of −∆, noted λ(k), on a compact Riemannian manifold (M,g) equipped with
its (normalized) volume measure µ:

(1.1) λ(k) = inf
V ⊂C∞(M)
dim V =k+1

sup
f∈V \{0}

´

|∇f |2 dµ
´

f2 dµ
,

where ∇f is the Riemannian gradient, defined through the Riemannian metric g (see
e.g [8]) and |∇f |2 = g(∇f,∇f). The formula (1.1) above does not make explicitly
reference to the differential operator ∆. It can be therefore easily generalized to a more
abstract setting, as we shall see below.
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In all what follows, (E, d) is a complete, separable metric space and µ a reference
Borel probability measure on E. Following [9], for any function f : E → R and x ∈ E,
we denote by |∇f |(x) the local Lipschitz constant of f at x, defined by

|∇f |(x) =

{

0 if x is isolated

lim supy→x
|f(x)−f(y)|

d(x,y) otherwise.

Note that when E is a smooth Riemannian manifold, equipped with its geodesic distance
d, then, the local Lipschitz constant of a differentiable function f at x coincides with
the norm of ∇f(x) in the tangent space TxE. With this notion in hand, a natural
generalization of (1.1) is as follows (we follow [23, Definition 3.1]):

(1.2) λ
(k)
d,µ := inf

V ⊂H1(µ)
dim V =k+1

sup
f∈V \{0}

´

|∇f |2 dµ
´

f2 dµ
, k ≥ 0,

where H1(µ) denotes the space of functions f ∈ L2(µ) such that
´

|∇f |2 dµ < +∞. In

order to avoid heavy notations, we drop the subscript and we simply write λ(k) instead

of λ
(k)
d,µ within this section.

1.2. Statement of the main results. To state our first main result, we need further

notations: for any k ≥ 1, we denote by ∆k the set of vectors (a1, . . . , ak) ∈ [0, 1]k

satisfying the following linear constraints

k
∑

j=1

aj ≤ 1 and ai +
k
∑

j=1

aj ≥ 1, ∀i ∈ {1, . . . , k}.

Recall the classical notation d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} of the distance
between two sets A,B ⊂ E.

The following theorem is the main result of the paper and is proved in Section 1.3.

Theorem 1.1. There exists a universal constant c > 0 such that, for any k ≥ 1 and for
all sets A1, . . . , Ak ⊂ E such that mini6=j d(Ai, Aj) > 0 and (µ(A1), . . . , µ(Ak)) ∈ ∆k,
the set A = A1 ∪A2 ∪ · · · ∪Ak satisfies

µ(Ar) ≥ 1 − (1 − µ(A)) exp
(

−cmin(r2λ(k); r
√

λ(k))
)

,

for all 0 < r ≤ 1
2 mini6=j d(Ai, Aj), where λ(k) ≥ 0 is defined by (1.2).

Note that, since (1/(k + 1), . . . , 1/(k + 1)) ∈ ∆k, Theorem 1.1 immediately implies
Inequality (0.1).

Inverting our concentration estimate, we obtain the following statement that provides
a bound on the λ(k)’s.

Proposition 1.2. Let (E, d, µ) be a metric measured space and λ(k) be defined as
in (1.2). Let A1, . . . , Ak be measurable sets such that (µ(A1), . . . , µ(Ak)) ∈ ∆k, then,
with r = 1

2 mini6=j d(Ai, Aj) and A0 = E \ (∪Ai)r,

λ(k) ≤ 1

r2
ψ

(

1

c
min

i
ln
µ(Ai)

µ(A0)

)

,

where ψ(x) = max(x, x2).

Proof. Let A = ∪iAi. Inverting the formula in Theorem 1.1, we obtain

λ(k) ≤ 1

r2
ψ

(

1

c
ln

1 − µ(A)

1 − µ(Ar)

)

,
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where ψ(x) = max(x, x2). By definition of ∆k,

1 − µ(A) = 1 −
∑

i

µ(Ai) ≤ min
i
µ(Ai).

Therefore, letting A0 = E \ Ar, we obtain the announced inequality by non-decreasing
monotonicity of ψ and ln. �

The collection of sets ∆k, k ≥ 1 has the following useful stability property:

Lemma 1.3. Let I1, I2, . . . , In be a partition of {1, . . . , k}, k ≥ 1. Let a = (a1, . . . , ak) ∈
R

k and define b = (b1, . . . , bn) ∈ R
n by setting bi =

∑

j∈Ii
aj, i ∈ {1, . . . , n}. If a ∈ ∆k

then b ∈ ∆n.

Proof. The proof is obvious and left to the reader. �

Thanks to this lemma it is possible to iterate Theorem 1.1 and to obtain a general
bound for µ(Ar) for all values of r > 0. This bound will depend on the way the sets
A1,r, . . . , Ak,r coalesce as r increases. This is made precise in the following definition.

Definition 1.1 (Coalescence graph of a family of sets). Let A1, . . . , Ak be subsets of
E. The coalescence graph of this family of sets is the family of graphs Gr = (V,Er),
r > 0, where V = {1, 2, . . . , k} and the set of edges Er is defined as follows: {i, j} ∈ Er

if d(Ai,r, Aj,r) = 0.

Corollary 1.4. Let A1, . . . , Ak be subsets of E such that mini6=j d(Ai, Aj) > 0 and
(µ(A1), . . . , µ(Ak)) ∈ ∆k. For any r > 0, let N(r) be the number of connected com-
ponents in the coalescence graph Gr associated to A1, . . . , Ak. The function (0,∞) →
{1, . . . , k} : r 7→ N(r) is non-increasing and right-continuous. Define ri = sup{r > 0 :
N(r) ≥ k − i+ 1}, i = 1, . . . , k and r0 = 0 then it holds

(1.3) µ(Ar) ≥ 1 − (1 − µ(A)) exp

(

−c
k
∑

i=1

φ
(

[r ∧ ri − ri−1]+

√

λ(k−i+1)
)

)

, ∀r > 0,

where φ(x) = min(x;x2), x ≥ 0 and c is the universal constant appearing in Theorem 1.1.

Observe that, contrary to usual concentration results, the bound given above depends
on the geometry of the set A.

1.3. Proofs. First, we prove Corollary 1.4. The main argument is to repeatedly ap-
ply Theorem 1.1 until two sets or more coalesce.

Proof of Corollary 1.4. We proceed by induction over the number of components k. For
k = 1, (1.3) follows immediately from Theorem 1.1. Let k > 1 and let us assume
that (1.3) is true for any collection of subsets B1, . . . , Bl satisfying the assumptions
of Corollary 1.4 for all l ∈ {1, . . . , k − 1}. Let A1, A2, . . . , Ak be a collection of sets
satisfying the assumptions of Corollary 1.4. According to Theorem 1.1, it holds

µ(Ar) ≥ 1 − (1 − µ(A)) exp
(

−cφ(r
√

λ(k))
)

,

for all 0 < r ≤ 1
2 mini6=j d(Ai, Aj).

Let k1 = N(1
2 mini6=j d(Ai, Aj)) and let i1 = k − k1. Then, for all i ∈ {1, . . . , i1},

ri = 1
2 mini6=j d(Ai, Aj). So that, for all 0 < r ≤ ri1 , the preceding bound can be
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rewritten as follows (note that only the term of index i = 1 gives a non zero contribution)

µ(Ar) ≥ 1 − (1 − µ(A)) exp

(

−c
i1
∑

i=1

φ
(

[r ∧ ri − ri−1]+

√

λ(k−i+1)
)

)

= 1 − (1 − µ(A)) exp

(

−c
k
∑

i=1

φ
(

[r ∧ ri − ri−1]+

√

λ(k−i+1)
)

)
(1.4)

which shows that (1.3) is true for 0 < r ≤ ri1. Now let I1, . . . , Ik1 be the connected
components of Gr1 and define, for all i ∈ {1, . . . , k1}, Bi = ∪j∈Ii

Aj,r1. It follows eas-
ily from Lemma 1.3 that (µ(B1), . . . , µ(Bk1)) ∈ ∆k1. Since mini6=j d(Bi, Bj) > 0, the
induction hypothesis implies that

µ(Bs) ≥ 1 − (1 − µ(B)) exp



−c
k1
∑

i=1

φ
(

[s ∧ si − si−1]+

√

λ(k1−i+1)
)



 , ∀s > 0,

where B = B1 ∪· · · ∪Bk1 = Ar1 and si = sup{s > 0 : N ′(s) ≥ k1 − i+1}, i ∈ {1, . . . , k1}
(s0 = 0) with N ′(s) the number of connected components in the graph G′

s associated
to B1, . . . , Bk1 . It is easily seen that ri1+i = ri1 + si, for all i ∈ {0, 1 . . . , k1}. Therefore,
we have that, for r > ri1,

µ(Ar) ≥ µ(Br−ri1
)

≥ 1 − (1 − µ(Ari1
)) exp



−c
k
∑

i=i1+1

φ
(

[r ∧ ri − ri−1]+

√

λ(k−i+1)
)





≥ 1 − (1 − µ(A)) exp

(

−c
k
∑

i=1

φ
(

[r ∧ ri − ri−1]+

√

λ(k−i+1)
)

)

,

where the last line is true by (1.4). �

To prove Theorem 1.1, we need some preparatory lemmas. Given a subset A ⊂ E,
and x ∈ E, the minimal distance from x to A is denoted by

d(x,A) = inf
y∈A

d(x, y).

Lemma 1.5. Let A ⊂ E and ǫ > 0, then (E \Aǫ)ǫ ⊂ E \ A.

Proof. Let x ∈ (E \Aǫ)ǫ. Then, there exists y ∈ E \Aǫ (in particular d(y,A) ≥ ǫ) such
that d(x, y) < ǫ. Since the function z 7→ d(z,A) is 1-Lipschitz, one has

d(x,A) ≥ d(y,A) − d(x, y) > 0

and so x ∈ E \ A. �

Remark 1. In fact, we proved that (E \Aǫ)ǫ ⊂ E \ Ā. The converse is, in general, not
true.

Lemma 1.6. Let A1, . . . , Ak be a family of sets such that (µ(A1), . . . , µ(Ak)) ∈ ∆k and
r := 1

2 mini6=j d(Ai, Aj) > 0. Let 0 < ǫ ≤ r and set A = ∪1≤i≤kAi and A0 = E \ (Aǫ).
Then,

(1.5) max
i=0,...,k

µ(Ai,ǫ)

µ(Ai)
≤ 1 − µ(A)

1 − µ(Aǫ)
.

Proof. First, this is true for i = 0. Indeed, by definition A0 = E \ (Aǫ) and, according
to Lemma 1.5, (A0)ǫ ⊂ Ac (the equality is not always true), which proves (1.5) in this
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case. Now, let us show (1.5) for the other values of i. Since ǫ ≤ r, the Aj,ǫ’s are disjoint
sets. Thence, (1.5) is equivalent to



1 −
k
∑

j=1

µ(Aj,ǫ)



µ(Ai,ǫ) ≤


1 −
k
∑

j=1

µ(Aj)



µ(Ai).

This inequality is true as soon as

(1 − µ(Ai,ǫ) −mi)µ(Ai,ǫ) ≤ (1 − µ(Ai) −mi)µ(Ai),

denoting mi =
∑k

j 6=i µ(Aj). The function fi(u) = (1 − u−mi)u, u ∈ [0, 1], is decreasing
on the interval [(1 − mi)/2, 1]. We conclude from this that (1.5) is true for all i ∈
{1, . . . , k}, as soon as µ(Ai) ≥ (1 − mi)/2 for all i ∈ {1, . . . , k} which amounts to
(µ(A1), . . . , µ(Ak)) ∈ ∆k. �

For p > 1, we define the function χp : [0,∞[→ [0, 1] by

χp(x) = (1 − xp)p, for x ∈ [0, 1] and χp(x) = 0 for x > 1.

It is easily seen that χp(0) = 1, χ′
p(0) = χp(1) = χ′

p(1) = 0, that χp takes values in [0, 1]
and that χp is continuously differentiable on [0,∞[. We use the function χp to construct
smooth approximations of indicator functions on E, as explained in the next statement.

Lemma 1.7. Let A ⊂ E and consider the function f(x) = χp(d(x,A)/ǫ), x ∈ E, where
ǫ > 0 and p > 1. For all x ∈ E, it holds

|∇f |(x) ≤ p2ǫ−11Aǫ\A

Proof. Thanks to the chain rule for the local Lipschitz constant (see e.g. [2, Proposition
2.1]),

∣

∣

∣

∣

∇χp

(

d(·, A)

ǫ

)∣

∣

∣

∣

(x) ≤ ǫ−1χ′
p

(

d(·, A)

ǫ

)

|∇d(·, A)|(x).

The function d(·, A) being Lipschitz, its local Lipschitz constant is ≤ 1 and, thereby,

|∇f |(x) ≤ χ′
p

(

d(x,A)

ǫ

)

.

In particular, thanks to the aforementioned properties of χ, |∇f | vanishes on A (and
even on A) and on {x ∈ E : d(x,A) ≥ ǫ} = E \ Aǫ. On the other hand, a simple
calculation shows that |χ′

p| ≤ p2 which proves the claim. �

Proof of Theorem 1.1. Take Borel sets A1, . . . , Ak with 1
2 mini6=j d(Ai, Aj) ≥ r > 0 and

(µ(A1), . . . , µ(Ak)) ∈ ∆k and consider A = A1 ∪ · · · ∪ Ak. Let us show that, for any
0 < ǫ ≤ r, it holds

(1.6)
(

1 + λ(k)ǫ2
)

(1 − µ(Aǫ)) ≤ (1 − µ(A)).

Let A0 = E \ (Aǫ) and set fi(x) = χp(d(x,Ai)/ǫ), x ∈ E, i ∈ {0, . . . , k}, where p > 1.
According to Lemma 1.7 and the fact that fi = 1 on Ai, we obtain

(1.7)

ˆ

|∇fi|2 dµ =
p4

ǫ2
µ(Ai,ǫ \ Ai) and

ˆ

f2
i dµ ≥ µ(Ai).

Since the fi’s have disjoint supports they are orthogonal in L2(µ) and, in particular,
they span a k + 1 dimensional subspace of H1(µ). Thus, by definition of λ(k),

λ(k) ≤ sup
a∈Rk+1

´

|∇
(

∑k
i=0 aifi

)

|
2

dµ

´

(

∑k
i=0 aifi

)2
dµ

≤ sup
a∈Rk+1

´

(

∑k
i=0 |ai||∇fi|

)2
dµ

´

(

∑k
i=0 aifi

)2
dµ

,
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where the second inequality comes from the following easy to check sub-linearity property
of the local Lipschitz constant:

|∇ (af + bg) | ≤ |a||∇f | + |b||∇g|.
Since the f ′

is and the |∇fi|′s are two orthogonal families, we conclude using (1.7), that

λ(k)ǫ2

p4
≤ sup

a∈Rk+1

∑k
i=0 a

2
i (µ(Ai,ǫ) − µ(Ai))
∑k

i=0 a
2
iµ(Ai)

,

which amounts to

(1.8) 1 +
λ(k)ǫ2

p4
≤ max

i=0,...,k

µ(Ai,ǫ)

µ(Ai)
.

Applying Lemma 1.6 and sending p to 1 gives (1.6). Now, if n ∈ N and 0 < ǫ are such
that nǫ ≤ r, then iterating (1.6) immediately gives

(

1 + λ(k)ǫ2
)n

(1 − µ(Anǫ)) ≤ 1 − µ(A).

Optimizing this bound over n for a fixed ε gives

(1 − µ(Ar)) ≤ (1 − µ(A)) exp
(

− sup
{

⌊r/ǫ⌋ log
(

1 + λ(k)ǫ2
)

: ǫ ≤ r
})

.

Thus, letting

(1.9) Ψ(x) = sup

{

⌊t⌋ log

(

1 +
x

t2

)

: t ≥ 1

}

, x ≥ 0,

it holds

(1 − µ(Ar)) ≤ (1 − µ(A)) exp
(

−Ψ
(

λ(k)r2
))

.

Using Lemma 1.8 below, we deduce that Ψ
(

λ(k)r2
)

≥ cmin(r2λ(k); r
√
λ(k)), with c =

log(5)/4, which completes the proof. �

Lemma 1.8. The function Ψ defined by (1.9) satisfies

Ψ(x) ≥ log(5)

4
min(x;

√
x), ∀x ≥ 0.

Proof. Taking t = 1, one concludes that Ψ(x) ≥ log(1 + x), for all x ≥ 0. The function

x 7→ log(1 + x) being concave, the function x 7→ log(1+x)
x is non-increasing. Therefore,

log(1+x) ≥ log(5)
4 x for all x ∈ [0, 4]. Now, let us consider the case where x ≥ 4. Observe

that ⌊t⌋ ≥ t/2 for all t ≥ 1 and so, for x ≥ 4,

Ψ(x) ≥ 1

2
sup
t≥1

{

t log

(

1 +
x

t2

)}

≥ log(5)

4

√
x,

by choosing t =
√
x/2 ≥ 1. Thereby,

Ψ(x) ≥ log(5)

4

[

x1[0,4](x) +
√
x1[4,∞)(x)

]

≥ log(5)

4
min(x;

√
x),

which completes the proof. �

Remark 2. The conclusion of Lemma Lemma 1.8 can be improved. Namely, it can be
shown that

Ψ(x) = max







(

1 + ⌊
√
x

a
⌋
)

log






1 +

x
(

1 + ⌊
√

x
a ⌋
)2






;

(

⌊
√
x

a
⌋
)

log






1 +

x
(

⌊
√

x
a ⌋
)2












,



8 NATHAËL GOZLAN & RONAN HERRY

(the second term in the maximum being treated as 0 when
√
x < a) where 0 < a < 2

is the unique point where the function (0,∞) → R : u 7→ log(1 + u2)/u achieves its
supremum. Therefore,

Ψ(x) ∼ log(1 + a2)

a

√
x

when x → ∞. The reader can easily check that log(1+a2)
a ≃ 0.8. In particular, it does not

seem possible to reach the constant c = 1 in Theorem 1.1 using this method of proof.

1.4. Two more multi-set concentration bounds. The condition (µ(A1), . . . , µ(Ak)) ∈
∆k can be seen as the multi-set generalization of the condition, standard in concentra-
tion of measure, that the size of the enlarged set has to be bigger than 1/2. Indeed, the
reader can easily verify that ( 1

k+1 , . . . ,
1

k+1) ∈ ∆k. However, in practice, this condition
can be difficult to check. We provide two more multi-set concentration inequalities that
hold in full generality. The method of proof is the same as for Theorem 1.1 and is based
on (1.8).

Proposition 1.9. Let (E, d, µ) be a metric measured space and λ(k) be defined as
in (1.2). Let (A1, . . . , Ak) be k Borel sets, A = ∪iAi and A0 = E \ Ar. Then, with
a(1) = min1≤i≤k µ(Ai), the following two bounds hold:

1 − µ(Ar) ≤ (1 − µ(A))
1

∏k
i=1 µ(Ai)

exp
(

−cmin
(

r2λ(k), r
√

λ(k)
))

;

1 − µ(Ar) ≤ (1 − µ(A))
1

µ(A)µ(A)/a(1)
exp

(

−cmin
(

r2λ(k), r
√

λ(k)
))

.

Proof. Fix N ∈ N and ǫ > 0 such that Nǫ ≤ r. For i = 1, . . . , k and n ≤ N , we define

αi(n) =
µ(Ai,nǫ)

µ(Ai,(n−1)ǫ)
;

Mn = max
1≤i≤k

αi(n) ∨
1 − µ(A(n−1)ǫ)

1 − µ(Anǫ)
;

Ln = {i ∈ {1, . . . , k}|Mn = αi(n)};

Ni = ♯{n ∈ {1, . . . , N}|i = inf Ln};

N0 = N −
k
∑

i=1

Ni.

Roughly speaking, the numberNi (0 ≤ i ≤ k) counts the number of time where the set Ai

growths in iterating (1.8). Lemma 1.6 asserts that in the case where (µ(A1), . . . , µ(Ak)) ∈
∆k, then N0 = N . However, we still obtain from (1.8), for 1 ≤ i ≤ k,

(1.10)
1

µ(Ai)
≥

N
∏

n=1

αi(n) ≥
(

1 + λ(k)ǫ2
)Ni

.

The first inequality is true because µ(Ai,Nǫ) ≤ 1 and a telescoping argument. The
second inequality is true because, as n ranges from 1 to N , by definition of the number
Ni and (1.8), there are, at least Ni terms appearing in the product that can be bounded

by (1 + λ(k)ǫ2). The other terms are bounded above by 1. The case of i = 0 is handled
in a similar fashion and we obtain:

1 − µ(ANǫ) ≤ (1 − µ(A))
(

1 + λ(k)ǫ2
)−N0

= (1 − µ(A))
(

1 + λ(k)ǫ2
)−N

k
∏

i=1

(

1 + λ(k)ǫ2
)Ni

.
(1.11)
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The announced bounds will be obtain by bounding the product appearing in the right-
hand side and an argument similar to the end of the proof of Theorem 1.1. From (1.10),
we have that,

(1.12)
k
∏

i=1

(

1 + λ(k)ǫ2
)Ni ≤ 1

∏k
i=1 µ(Ai)

.

Also, from (1.10),

µ(Ai,Nǫ) ≥
(

1 + λ(k)ǫ2
)Ni

µ(Ai).

Because Nǫ ≤ r, the sets A1,Nǫ, . . . , Ak,Nǫ are pairwise disjoint and, thereby,

1 ≥
∑

µ(Ai,Nǫ) ≥
k
∑

i=1

(

1 + λ(k)ǫ2
)Ni

µ(Ai).

Fix θ > 0 to be chosen later. By convexity of exp,

1 + (1 − µ(A))
(

1 + λ(k)ǫ2
)θ

≥ exp

((

k
∑

i=1

µ(Ai)Ni + (1 − µ(A))θ

)

log
(

1 + λ(k)ǫ2
)

)

≥ exp

((

a(1)

k
∑

i=1

Ni + (1 − µ(A))θ

)

log
(

1 + λ(k)ǫ2
)

)

.

Finally, with p = 1 − µ(A) and t = θ log(1 + λ(k)ǫ2), we obtain

k
∏

i=1

(

1 + λ(k)ǫ2
)Ni ≤

(

e−pt +p e(1−p)t
)1/a(1)

.

We easily check that, the quantity in the right-hand side is minimal for t = log 1
1−p at

which it takes the value (1 − p)p−1 = µ(A)−µ(A)/a(1) . Thus,

(1.13)
k
∏

i=1

(1 + λ(k)ǫ2)
Ni ≤ 1

µ(A)µ(A)/a(1)
.

Combining (1.12) and (1.13) with (1.11) and the same argument as for (1.9), we obtain
the two announced bounds. �

From Proposition 1.9, we can derive bounds on the λ(k)’s. The proof is the same as
the one of Proposition 1.2 and is omitted.

Proposition 1.10. Let (E, d, µ) be a metric measured space and λ(k) be defined as
in (1.2). Let A1, . . . , Ak be measurable sets, then, with r = 1

2 mini6=j d(Ai, Aj) and
A0 = E \ (∪Ai)r,

λ(k) ≤ 1

r2
ψ

(

1

c
ln

a(1)

µ(A0)
+

1

c
k ln

1

a(1)

)

;

λ(k) ≤ 1

r2
ψ

(

1

c
ln

a(1)

µ(A0)
+

1

c

µ(A)

a(1)
ln

1

µ(A)

)

,

where ψ(x) = max(x, x2) and a(1) = min1≤i≤k µ(Ai).
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1.5. Comparison with the result of Chung-Grigor’yan-Yau. In [11], the authors
obtained the following result:

Theorem 1.11 (Chung-Grigoryan-Yau [11]). Let M be a compact connected smooth
Riemannian manifold equipped with its geodesic distance d and normalized Riemannian
volume µ. For any k ≥ 1 and any family of sets A0, . . . , Ak, it holds

(1.14) λ(k) ≤ 1

mini6=j d2(Ai, Aj)
max
i6=j

log (
4

µ(Ai)µ(Aj)
)
2

,

where 1 = λ(0) ≤ λ(1) ≤ · · ·λ(k) ≤ · · · denotes the discrete spectrum of −∆.

Let us translate this result in terms of concentration of measure. Let A1, . . . , Ak be sets
such that r = 1

2 min1≤i<j≤k d(Ai, Aj) > 0 and define A = A1 ∪· · ·∪Ak and A0 = M \As,
for some 0 < s ≤ r. Then, applying (1.14) to this family of k+ 1 sets gives the following
inequality

(1.15) min
(

a(2); 1 − µ(As)
)

≤ 4

a(1)
exp(−

√

λ(k)s),

with a(1) and a(2) being respectively the smallest number and the second smallest number
among (µ(A1), . . . , µ(Ak)) (counted with multiplicity). Note that the right hand side is

less than or equal to a(2) if and only if s ≥ so := 1√
λ(k)

log
(

4
a(1)a(2)

)

, so that (1.15) is

equivalent to the following statement:

(1.16) µ(As) ≥ 1 − 4

a(1)
exp(−

√

λ(k)s), ∀s ∈ [min(so, r); r].

We note that (1.16) holds for any family of sets, whereas the inequality given in Theorem 1.1
is only true when (µ(A1), . . . , µ(Ak)) ∈ ∆k. Also due to the fact that the constant c
appearing in Theorem 1.1 is less than 1, (1.16) is asymptotically better than ours (see
also Remark 2 above). On the other hand, one sees that (1.16) is only valid for s large
enough (and its domain of validity can thus be empty when so > r) whereas our inequal-
ity is true on the whole interval (0, r]. It does not seem also possible to iterate (1.16) as
we did in Corollary 1.4. Finally, observe that the method of proof used in [11] and [10]
is based on heat kernel bounds and is very different from ours.

Let us translate Theorem 1.11 in a form closer to our Proposition 1.2. Fix k sets
A1, . . . , Ak such that (µ(A1), . . . , µ(Ak)) ∈ ∆k. Let 2r = min d(Ai, Aj), where the
infimum runs on i, j = 1, . . . , k with i 6= j. We have to choose a (k + 1)-th set. In view
of Theorem 1.11, the most optimal choice is to choose A0 = E \ (∪Ai)r. Indeed, it is the
biggest set (in the sense of inclusion) such that min d(Ai, Aj) = r where this time the
infimum runs on i, j = 0, . . . , k and i 6= j. We let a(0) = µ(A0) and we remark that if
(µ(A1), . . . , µ(Ak)) ∈ ∆k then a(0) ≤ a(1). The bound (1.14) can be read: for all r > 0,

λ(k) ≤ 1

r2

(

log
4

a(1)a(0)

)2

.

Therefore, to compare it to our bound, we need to solve

φ−1

(

1

c
log

a(1)

a(0)

)2

≤
(

log
4

a(1)a(0)

)2

.

Because the right-hand side is always ≥ 1, taking the square root and composing with
the non-decreasing function φ yields

1

c
log

a(1)

a(0)
≤ log

4

a(1)a(0)
.
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That is

a1+c
(1) ≤ 4ca1−c

(0) .

In other words, on some range our bound is better and in some other range their
bound is better. However, if the constant c = 1 could be attained in Theorem 1.1,
this would show that our bound is always better. Note that comparing the bounds ob-
tained in Proposition 1.10 and the one of [11] is not so clear as, without the assumption
that (µ(A1), . . . , µ(Ak)) ∈ ∆k it is not necessary that a(0) ≤ a(1) and in that case we
would have to compare different sets.

2. Eigenvalue estimates for non-negatively curved spaces

We recall the values of the λ(k)’s that appear in Theorem 1.1 in the case of two
important models of positively curved spaces in geometry. Namely:

(i) The n-dimensional sphere of radius
√

n−1
ρ , Sn,ρ endowed with the natural geo-

desic distance dn,ρ arising from its canonical Riemannian metric and its normal-
ized volume measure µn,ρ which has constant Ricci curvature equals to ρ and
dimension n.

(ii) The n-dimensional Euclidean space R
n endowed with the n-dimensional Gauss-

ian measure of covariance ρ−1Id,

γn,ρ(dx) =
ρn/2 e−ρ|x|2/2

(2π)n/2
dx.

This space has dimension ∞ and curvature bounded below by ρ in the sense
of [4].

These models arise as weighted Riemannian manifolds without boundary having a purely
discrete spectrum. In that case, it was proved in [23, Proposition 3.2] that the λk’s
of (1.2) are exactly the eigenvalues (counted with multiplicity) of a self-adjoint operator
that we give explicitly in the following. Using a comparison between eigenvalues of [23],
we obtain an estimates for eigenvalues in the case of log-concave probability measure
over the Euclidean R

n.

Example 1 (Spheres). On S
n,ρ, the eigenvalues of minus the Laplace-Beltrami operator

(see for instance [3, Chapter 3]) are of the form ρ−2(n− 1)2l(l + n − 1) for l ∈ N and
the dimension of the corresponding eigenspace Hl,n is

dimHl,n =
2l + n− 1

l

(

l + n− 2

l − 1

)

, if l > 0and dimHl,n = 1, if l = 0.

Consequently,

Dl,n := dim
l
⊕

l′=0

Hl′,n =

(

n+ l

l

)

+

(

n+ l − 1

l − 1

)

,

and λ(k) = ρ−2(n− 1)2l(l + n − 1) if and only if Dl−1,n < k ≤ Dl,n where λ(k) is the
k-th eigenvalues of −∆Sn,ρ and coincides with the variational definition given in (1.2).

Example 2 (Gaussian spaces). On the Euclidean space R
n, equipped with the Gaussian

measure γn,ρ, the corresponding weighted Laplacian is ∆γn,ρ = ∆Rn − ρx · ∇. The

eigenvalues of −∆γn,ρ are exactly of the form ρ2q and the dimension of the associated
eigenspace Hq,n is

dimHq,n =

(

n+ q − 1

q

)

.
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Consequently,

Dq,n := dim
q
⊕

q′=0

Hq′,n =

(

n+ q

q

)

,

and λ(k) = ρ−2q if and only if Dq−1,n < k ≤ Dq,n where λ(k) is the k-th eigenvalues of
−∆γn,ρ and coincides with the variational definition given in (1.2).

Example 3 (Log-concave Euclidean spaces). We study the case where E = R
n, d is the

Euclidean distance and µ is a strictly log-concave probability measure. By this we mean
that µ(dx) = e−V (x) dx, where V : Rn → R such that V is C2 and satisfying ∇2V ≥ K
for some K > 0. It is a consequence of [4, Proposition 4] that such a condition on
V implies that the semigroup generated by the solution of the stochastic differential
equation

dXt =
√

2dBt − ∇V (Xt)dt,

where B is a Brownian motion on R
n, satisfies the curvature-dimension CD(∞,K) of

Bakry-Emery and, therefore, holds the log-Sobolev inequality, for all f ∈ C∞
c (Rn),

Entµ f
2 ≤ 2

K

ˆ

|∇f(x)|2µ(dx).

Such an inequality implies the super-Poincaré of [27, Theorem 2.1] that in turns implies
that the self-adjoint operator L = −∆ + ∇V · ∇ has a purely discrete spectrum. In that
case, the λ(k) of (1.2) corresponds to these eigenvalues and [23] showed that

λ(k) ≥ λ(k)
γn,ρ

,

where λ
(k)
γn,ρ is the eigenvalues of −∆γn,ρ of the previous example.

3. Extension to Markov chains

As in the classical case (see [19, Theorem 3.3]), our continuous result admits a general-
ization on finite graphs or more broadly in the setting of Markov chains on a finite state
space. We consider a finite set E and X = (Xn)n∈N be a irreducible time-homogeneous
Markov chain with state space E. We write p(x, y) = P(X1 = y|X0 = x) and we regard
p as a matrix. We assume that p admits a reversible probability measure µ on E :
p(x, y)µ(x) = p(y, x)µ(y) for all x, y ∈ E (which implies in particular that µ is invari-
ant). The Markov kernel p induces a graph structure on E by the following procedure.
Set the elements of E as the vertex of the graph and for x, y ∈ E connect them with
an edge if p(x, y) > 0. As the chain is irreducible, this graph is connected. We equip E
with the induced graph distance d. We write L = p− I, where I stands for the identity
matrix. The operator −L is a symmetric positive operator on L2(µ). We let λ(k) be the
eigenvalues of this operator. Then, our Theorem 1.1 extends as follows:

Theorem 3.1. For any k ≥ 1 and for all sets A1, . . . , Ak ⊂ E such that mini6=j d(Ai, Aj) ≥
1 and (µ(A1), . . . , µ(Ak)) ∈ ∆k the set B = A1 ∪A2 ∪ · · · ∪Ak satisfies

µ(Bn) ≥ 1 − (1 − µ(B))
(

1 + λ(k)
)−n

,

for all 1 ≤ n ≤ 1
2 mini6=j d(Ai, Aj) where λ(k) is the k-th eigenvalue of the operator −L

acting on L2(µ).

Proof. We let Π(x, y) = p(x, y)µ(x) and

E (f, g) =
1

2

∑

(f(y) − f(x))(g(y) − g(x))Π(x, y) = 〈f,−Lg〉µ.

For any set A, we define the discrete boundary of A as ∂A = A1 \ A ∪ (AC)1 \ AC .
Let (Xn) be the Markov chain with transition kernel p and initial distribution µ. By
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reversibility of µ, (X0,X1) is an exchangeable pair of law Π whose the marginals are
given by µ. Then, for a set U , we have

E (1U ) = E1U (X0)(1U (X0) − 1U (X1)) = P(X0 ∈ U,X1 6∈ U) ≤ P(X1 ∈ ∂U) = µ(∂U).

Observe that if d(U, V ) ≥ 1, U and V are disjoint and U × V 6∈ supp Π so that
E (1U , 1V ) = 0. By Courant-Fischer’s min-max theorem

λ(k) = min
dim V =k+1

max
f∈V

E (f, f)

µ(f2)
.

Choose sets A1, . . . , Ak with d(Ai, Aj) ≥ 2n (i 6= j) and (µ(A1), . . . , µ(Ak)) ∈ ∆k. Set
fi = 1Ai

. The fi’s have disjoint support and so they are orthogonal in L2(µ). By the

previous variational representation of λ(k), we have

λ(k) ≤ sup
ai

E

(

∑k
i=0 aifi

)

´

(

∑k
i=0 aifi

)2
dµ

= sup
ai

∑

aiai′E (fi, fi′)
∑

aiai′

´

fifi′dµ
= sup

ai

∑k
i=0 a

2
i E (fi)

∑k
i=0 ai

´

f2
i dµ

.

In other words,

λ(k) ≤ max
i=0,...,k

µ((Ai)1) + µ((AC
i )1) − 1

µ(Ai)
≤ µ((Ai)1) − µ(Ai)

µ(Ai)
,

where the last inequality comes from the fact that, by Lemma 1.5, µ(E \ (E \ A)1) ≥
µ(A). Consider the set B = ∪k

i=1Ai and choose A0 = E\B1. In that case, by Lemma 1.6
with ǫ = 1, we have

max
i=0,...,k

µ((Ai)1)

µ(Ai)
≤ 1 − µ(B)

1 − µ(B1)
.

Thus, we proved that

(1 + λ(k))(1 − µ(B1)) ≤ (1 − µ(B)).

We derive the announced result by an immediate recursion. �

4. Functional forms of the multiple sets concentration property

We investigate the functional form of the multi-sets concentration of measure phe-
nomenon results obtained in Sections 1 and 3.

Proposition 4.1. Let (E, d) be a metric space equipped with a Borel probability measure
µ. Let αk : [0,∞) → [0,∞). The following properties are equivalent:

(1) For all Borel sets A1, . . . , Ak ⊂ E such that (µ(A1), . . . , µ(Ak)) ∈ ∆k, the set
A = A1 ∪ · · · ∪Ak satisfies

(4.1) µ(Ar) ≥ 1 − (1 − µ(A))αk(r), ∀0 < r ≤ 1

2
min
i6=j

d(Ai, Aj).

(2) For all 1-Lipschitz functions f1, . . . , fk : E → R such that the sublevel sets
Ai = {fi ≤ 0} are such that (µ(A1), . . . , µ(Ak)) ∈ ∆k, the function f∗ =
min(f1, . . . , fk) satisfies

µ(f∗ < r) ≥ 1 − µ(f∗ ≤ 0)αk(r), ∀0 < r ≤ 1

2
min
i6=j

d(Ai, Aj).

Together with Theorem 1.1 or Theorem 3.1, one thus sees that the presence of multiple
wells can improve the concentration properties of a Lipschitz function.
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Proof. It is clear that (2) implies (1) when applied to fi(x) = d(x,Ai), in which case
Ai = {fi ≤ 0} and f∗(x) = d(x,A). The converse is also very classical. First, observe
that {f∗ < r} = ∪k

i=1{fi < r}. Then, since fi is 1-Lipschitz, it holds Ai,r ⊂ {fi < r}
with Ai = {fi ≤ 0} and so letting A = A1 ∪ · · · ∪Ak, it holds Ar ⊂ {f∗ < r}. Therefore,
applying (1) to this set A gives (2). �

When (4.1) holds, we will say that the probability metric space (E, d, µ) satisfies the
multi-set concentration of measure property of order k with the concentration profile
αk.

In the usual setting (k = 1), the concentration of measure phenomenon implies devia-
tion inequalities for Lipschitz functions around their median. The next result generalizes
this well known fact to k > 1.

Proposition 4.2. Let (E, d, µ) be a probability metric space satisfying the multi-set
concentration of measure property of order k with the concentration profile αk and f :
E → R be a 1-Lipschitz function. If I1, . . . , Ik ⊂ R are k disjoint Borel sets such that
(µ(f ∈ I1), . . . , µ(f ∈ Ik)) ∈ ∆k, then it holds

µ
(

f ∈ ∪k
i=1Ii,r

)

≥ 1 − (1 − µ(f ∈ ∪k
i=1Ii))αk(r), ∀0 < r ≤ 1

2
min
i6=j

d(Ii, Ij)

Proof. Let ν be the image of µ under the map f . Since f is 1-Lipschitz, the metric space
(R, | · |, ν) satisfies the multi-set concentration of measure property of order k with the
same concentration profile αk as µ. Details are left to the reader. �

Let us conclude this section by detailing an application of potential interest in approxi-
mation theory.

Suppose that f : E → R is some 1-Lipschitz function and A1, . . . , Ak are (pairwise
disjoint) subsets of E such that (µ(A1), . . . , µ(Ak)) ∈ ∆k. Let us assume that the
restrictions f|Ai

, i ∈ {1, . . . , k} are known and that one wishes to estimate or reconstruct

f outside A = ∪k
i=1Ai. To that aim, one can consider an explicit 1-Lipschitz extension

of f|A, that is to say a 1-Lipschitz function g : E → R (constructed based on our
knowledge of f on A exclusively) such that f = g on A. There are several canonical
ways to perform the extension of a Lipschitz function defined on a sub domain (known
as Kirszbraun-McShane-Whitney extensions [18, 22, 28]). One can consider for instance
the functions

g+(x) = inf
y∈A

{f(y) + d(x, y)} or g−(x) = sup
y∈A

{f(y) − d(x, y)}, x ∈ E.

It is a very classical fact that functions g− and g+ are 1-Lipschitz extensions of f|A and
moreover that any extension g of f|A satisfies g− ≤ g ≤ g+ (see e.g [17]).

The following simple result shows that, for any 1-Lipschitz extension g of f|A, the
probability of error µ(|f −g| > r) is controlled by the multi-set concentration profile αk.
In particular, in the framework of our Theorem 1.1, this probability of error is expressed
in terms of λ(k).

Proposition 4.3. Let (E, d, µ) be a probability metric space satisfying the multi-set con-
centration of measure property of order k with the concentration profile αk and f : E → R

be a 1-Lipschitz function. Let A1, . . . Ak be subsets of E such that (µ(A1), . . . , µ(Ak)) ∈
∆k ; then for any 1-Lipschitz extension g of f|A, it holds

µ(|f − g| ≥ r) ≤ (1 − µ(A))αk(r/2), ∀0 < r ≤ min
i6=j

d(Ai, Aj).

Proof. The function h : E → R defined by h(x) = |f − g|(x), x ∈ E, is 2-Lipschitz
and vanishes on A. Therefore, for any x ∈ E and y ∈ A, it holds h(x) ≤ h(y) +
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2d(x, y) = 2d(x, y). Optimizing over y ∈ A gives that h(x) ≤ 2d(x,A). Therefore

{h ≥ r} ⊂ {x : d(x,A) ≥ r/2} =
(

Ar/2

)c
and so, if 0 < r ≤ mini6=j d(Ai, Aj), it holds

µ(|f − g| ≥ r) ≤ (1 − µ(A))αk(r/2).

�

Remark 3. Let us remark that Propositions 4.1 to 4.3 can be immediately extended
under the following more general (but notationally heavier) multi-set concentration of
measure assumption: there exists functions αk : [0,∞) → [0,∞) and βk : [0,∞)k →
[0,∞] such that for all Borel sets A1, . . . , Ak ⊂ E, the set A = A1 ∪ · · · ∪Ak satisfies

µ(Ar) ≥ 1 − βk(µ(A1), · · · , µ(Ak))αk(r), ∀0 < r ≤ 1

2
min
i6=j

d(Ai, Aj).

This framework contains the preceding one, by choosing βk(a) = 1 − ∑k
i=1 ai if a =

(a1, . . . , ak) ∈ ∆k and +∞ otherwise. It also contains the concentration bounds obtained
in Proposition 1.9, corresponding respectively to

βk(a) =
1 −∑k

i=1 ai
∏k

i=1 ai

, and βk(a) =
1 −∑k

i=1 ai

(

∑k
i=1 ai

)

∑k

i=1
ai/ min(a1,··· ,ak)

, a = (a1, . . . , ak).

5. Open questions

We list open questions related to the multi-set concentration of measure phenomenon.

5.1. Gaussian multi-set concentration. Using the terminology introduced in Section 4, Theorem 1.1
and the material exposed in Section 2 tell us that, if µ has a density of the form e−V with
respect to Lebesgue measure on R

n with a smooth function V such that HessV ≥ ρ > 0,
then the probability metric space (Rn, | · |, µ) satisfies the multi-set concentration of
measure property of order k with the concentration profile

αk(r) = exp

(

−cmin(r2λ(k)
γn,ρ; r

√

λ
(k)
γn,ρ)

)

, r ≥ 0,

where λ
(k)
γn,ρ denotes the kth eigenvalue of the n-dimensional centered Gaussian measure

with covariance matrix ρ−1Id. Since the measure µ satisfies the log-Sobolev inequality, it
is well known that it satisfies a (classical) Gaussian concentration of measure inequality.
Therefore, it is natural to conjecture that µ satisfies a multi-set concentration of measure
property of order k ≥ 1 with a profile of the form

βk(r) = exp
(

−Ck,ρ,nr
2
)

, r ≥ 0,

for some constant Ck,ρ,n depending solely on its arguments. In addition, it would be
interesting to see how usual functional inequalities (Log-Sobolev, transport-entropy, . . . )
can be modified to catch such a concentration of measure phenomenon.

5.2. Equivalence between multi-set concentration and lower bounds on eigen-

values in non-negative curvature. Let us quickly recall the main finding of E. Mil-
man [24, 25], that is, under non-negative curvature assumptions, a concentration of
measure estimate implies a bound on the spectral gap. Let µ be a probability measure
with a density of the form e−V on a smooth connected Riemannian manifold M with V
a smooth function such that

(5.1) Ric + HessV ≥ 0.

Assume that µ satisfies a concentration inequality of the form: for all A ⊂ M such that
µ(A) ≥ 1/2

µ(Ar) ≥ 1 − α(r), r ≥ 0,
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where α is a function such that α(ro) < 1/2 for at least one value ro > 0. Then,

letting λ(1) be the first non zero eigenvalue of the operator −∆ + ∇V · ∇, it holds

λ(1) ≥ 1
4

(

1−2α(ro)
ro

)2
. It would be very interesting to extend Milman’s result to a multi-

set concentration setting. More precisely, if µ satisfies the curvature condition (5.1) and
the multi-set concentration of measure property of order k with a profile of the form
αk(r) = exp(− min(ar2,

√
ar)), r ≥ 0, can we find a universal function ϕk such that

λ(k) ≥ ϕk(a)?
This question already received some attention in recent works by Funano and Sh-

ioya [13, 14]. In particular, let us mention the following improvement of the Chung-
Grigor’yan-Yau inequality obtained in [13]. There exists a universal constant c > 1 such
that if µ is a probability measure satisfying the non-negative curvature assumption (5.1),
it holds: for any family of sets A0, A1, . . . , Al with 1 ≤ l ≤ k

(5.2) λ(k) ≤ ck−l+1 1

mini6=j d2(Ai, Aj)
max
i6=j

log (
4

µ(Ai)µ(Aj)
)
2

.

Note that the difference with (1.14) is that λ(k) is estimated by a reduced number of sets.
Using (5.2) (with l = 1) together with Milman’s result recalled above, Funano showed
that there exists some constant Ck depending only on k such that under the curvature
condition (5.1), it holds λ(k) ≤ Ckλ

(1) (recovering the main result of [14]). The constant
Ck is explicit (contrary to the constant of [14]) and grows exponentially when k → ∞.
This result has been then improved by Liu [21], where a constant Ck = O(k2) has been
obtained. As observed by Funano [13], a positive answer to the open question stated

above would yield that under (5.1) the ratios λ(k+1)/λ(k) are bounded from above by a
universal constant.
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