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RUITENBURG’S THEOREM

VIA DUALITY AND BOUNDED BISIMULATIONS

SILVIO GHILARDI AND LUIGI SANTOCANALE

Abstract. For a given intuitionistic propositional formula A and a
propositional variable x occurring in it, define the infinite sequence of
formulae {Ai }i≥1 by letting A1 be A and Ai+1 be A(Ai/x). Ruiten-
burg’s Theorem [8] says that the sequence {Ai }i≥1 (modulo logical
equivalence) is ultimately periodic with period 2, i.e. there is N ≥ 0
such that AN+2 ↔ AN is provable in intuitionistic propositional calcu-
lus. We give a semantic proof of this theorem, using duality techniques
and bounded bisimulations ranks.

Keywords. Ruitenburg’s Theorem, Sheaf Duality, Bounded Bisimula-
tions.

1. Introduction

Let us call an infinite sequence

a1, a2, . . . , ai, . . .

ultimately periodic iff there are N and k such that for all s1, s2 ≥ N , we
have that s1 ≡ s2 mod k implies as1 = as2 . If (N, k) is the smallest (in
the lexicographic sense) pair for which this happens, we say that N is an
index and k a period for the ultimately periodic sequence { ai }i. Thus, for
instance, an ultimately periodic sequence with index N and period 2 looks
as follows

a1, . . . , aN , aN+1, aN , aN+1, . . .

A typical example of an ultimately periodic sequence is the sequence of the
iterations { f i }i of an endo-function f of a finite set. Whenever infinitary
data are involved, ultimate periodicity comes often as a surprise.

Ruitenburg’s Theorem is in fact a surprising result stating the following:
take a formula A(x, y) of intuitionistic propositional calculus (IPC) (by the
notation A(x, y) we mean that the only propositional letters occurring in A
are among x, y - with y being, say, the tuple y1, . . . , yn) and consider the

sequence {Ai(x, y) }i≥1 so defined:

A1 :≡ A, . . . , Ai+1 :≡ A(Ai/x, y) (1)
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2 GHILARDI AND SANTOCANALE

where the slash means substitution; then, taking equivalence classes under
provable bi-implication in (IPC), the sequence { [Ai(x, y)] }i≥1 is ultimately
periodic with period 2. The latter means that there is N such that

⊢IPC AN+2 ↔ AN . (2)

An interesting consequence of this result is that least (and greatest) fix-
points of monotonic formulae are definable in (IPC) [7, 6, 4]: this is be-
cause the sequence (1) becomes increasing when evaluated on ⊥/x (if A is
monotonic in x), so that the period is decreased to 1. Thus the index of
the sequence becomes a finite upper bound for the fixpoints approximation
convergence.

Ruitenburg’s Theorem was shown in [8] via a, rather involved, purely syn-
tactic proof. The proof has been recently formalized inside the proof assis-
tant coq by T. Litak (see https://git8.cs.fau.de/redmine/projects/

ruitenburg1984). In this paper we supply a semantic proof, using duality
and bounded bisimulation machinery.

Bounded bisimulations are a standard tool in non classical logics [2] which
is used in order to characterize satisfiability of bounded depth formulae and
hence definable classes of models: examples of the use of bounded bisimu-
lations include for instance [9], [5], [10], [3].

Duality has a long tradition in algebraic logic (see e.g. [1] for the Heyting
algebras case): many phenomena look more transparent whenever they are
analyzed in the dual categories, especially whenever dualities can convert
coproducts and colimits constructions into more familiar ‘honest’ products
and limits constructions. The duality we use here is taken from [5] and has a
mixed geometric/combinatorial nature. In fact, the geometric environment
shows how to find relevant mathematical structures (products, equalizers,
images,...) using their standard definitions in sheaves and presheaves; on
the other hand, the combinatorial aspects show that such constructions are
definable, thus meaningful from the logical side. In this sense, notice that
we work with finitely presented algebras, and our combinatoric ingredients
(Ehrenfeucht-Fraissé games, etc.) replace the topological ingredients which
are common in the algebraic logic literature (working with arbitrary algebras
instead).

The paper is organized as follows. In Section 2 we show how to formulate
Ruitenburg’s Theorem in algebraic terms and how to prove it via duality in
the easy case of classical logic (where index is always 1). This Section sup-
plies the methodology we shall follow in the whole paper. After introducing
the required duality ingredients for finitely presented Heyting algebras (this
is done in Section 3 - the material of this Section is taken from [5]), we
show how to extend the basic argument of Section 2 to finite Kripke models
in Section 4. This extension does not directly give Ruitenburg’s Theorem,
because it supplies a bound for the indexes of our sequences which is depen-
dent on the poset a given model is based on. This bound is made uniform in
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Section 6 (using the ranks machinery introduced in Section 5), thus finally
reaching our goal.

2. The Case of Classical Logic

We explain our methodology in the much easier case of classical logic. In
classical propositional calculus (CPC), Ruitenburg’s Theorem holds with
index 1 and period 2, namely given a formula A(x, y), we need to prove that

⊢CPC A3 ↔ A (3)

holds (here A3 is defined like in (1)).

2.1. The algebraic reformulation. First, we transform the above state-
ment (3) into an algebraic statement concerning free Boolean algebras. We
let FB(z) be the free Boolean algebra over the finite set z. Recall that
FB(z) is the Lindenbaum-Tarski algebra of classical propositional calculus
restricted to a language having just the z as propositional variables.

Similarly, morphisms µ : FB(x1, . . . , xn) −→ FB(z) bijectively correspond
to n-tuples of equivalence classes of formulae A1(z), . . . , An(z) in FB(z):
the map µ corresponding to the tuple A1(z), . . . , An(z) associates with the
equivalence class of B(x1, . . . , xn) in FB(x1, . . . , xn) the equivalence class of
B(A1/x1, . . . , An/xn) in FB(z).

Composition is substitution, in the sense that if µ : FB(x1, . . . , xn) −→
FB(z) is induced, as above, byA1(z), . . . , An(z) and if ν : FB(y1, . . . , ym) −→
FB(x1, . . . , xn) is induced by C1(x1, . . . , xn), . . . , Cm(x1, . . . , xn), then the
composite map µ ◦ ν : FB(y1, . . . , ym) −→ FB(z) is induced by the m-tuple
C1(A1/x1, . . . , An/xn), . . . , Cm(A1/x1, . . . , An/xn).

How to translate the statement (3) in this setting? Let y be y1, . . . , yn;
we can consider the map µA : FB(x, y1, . . . , yn) −→ FB(x, y1, . . . , yn) in-
duced by the n + 1-tuple of formulae A, y1, . . . , yn; then, taking in mind
that in Lindenbaum algebras identity is modulo provable equivalence, the
statement (3) is equivalent to

µ3A = µA . (4)

This raises the question: which endomorphisms of FB(x, y) are of the kind
µA for some A(x, y)? The answer is simple: consider the ‘inclusion’ map ι
of FB(y) into FB(x, y) (this is the map induced by the n-tuple y1, . . . , yn):
the maps µ : FB(x, y) −→ FB(x, y) that are of the kind µA are precisely the
maps µ such that µ ◦ ι = ι, i.e. those for which the triangle

FB(x, y) FB(x, y)✲
µ

FB(y)

ι
�

�
�✠

ι
❅
❅
❅❘
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commutes.
It is worth making a little step further: since the free algebra functor

preserves coproducts, we have that FB(x, y) is the coproduct of FB(y) with
FB(x) - the latter being the free algebra on one generator. In general, let us
denote by A[x] the coproduct of the Boolean algebra A with the free algebra
on one generator (let us call A[x] the algebra of polynomials over A).

A slight generalization of statement (4) now reads as follows:

• let A be a finitely presented Boolean algebra1 and let the map µ :
A[x] −→ A[x] commute with the coproduct injection ι : A −→ A[x]

A[x] A[x]✲
µ

A

ι
�

�
�✠

ι
❅
❅
❅❘

Then we have

µ3 = µ . (5)

2.2. Duality. The gain we achieved with statement (5) is that the latter
is a purely categorical statement, so that we can re-interpret it in dual
categories. In fact, a good duality may turn coproducts into products and
make our statement easier - if not trivial at all.

Finitely presented Boolean algebras are dual to finite sets; the duality
functor maps coproducts into products and the free Boolean algebra on one
generator to the two-elements set 2 = { 0, 1 } (which, by chance is also a
subobject classifier for finite sets). Thus statement (5) now becomes

• let T be a finite set and let the function f : T×2 −→ T ×2 commute
with the product projection π0 : T × 2 −→ T

T × 2 T × 2✲f

T

π0
❅
❅
❅❘

π0
�

�
�✠

Then we have

f3 = f . (6)

In this final form, statement (6) is now just a trivial exercise, which
is solved as follows. Notice first that f can be decomposed as 〈π0, χS〉
(incidentally, χS is the characteristic function of some S ⊆ T × 2). Now,
if f(a, b) = (a, b) we trivially have also f3(a, b) = f(a, b); suppose then
f(a, b) = (a, b′) 6= (a, b). If f(a, b′) = (a, b′), then f3(a, b) = f(a, b) = (a, b′),

1Recall that an algebra is finitely presented iff it is isomorphic to the quotient of a
finitely generated free algebra by a finitely generated congruence. In the case of Boolean
algebra ‘finitely presented’ is the same as ‘finite’, but it is not anymore like that in the
case of Heyting algebras.
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otherwise f(a, b′) = (a, b) (there are only two available values for b!) and
even in this case f3(a, b) = f(a, b).

Let us illustrate theses cases by thinking of the action of f on A × 2 as
one-letter deterministic automaton:

(a, b) (a, b) (a, b′) (a, b) (a, b′)

This means that on each irreducible component of the action the pairs
index/period are among (0, 1), (0, 2), (1, 1). Out of these pairs we can
compute the global index/period of f by means of a max /lcm formula:
(1, 2) = (max{ 0, 0, 1 }, lcm{ 1, 2 }).

3. Duality for Heyting Algebras

In this Section we supply definitions, notation and statements from [5]
concerning duality for finitely-presented Heyting algebras. Proofs of the
facts stated in this section can all be found in [5, Chapter 4].

A partially ordered set (poset, for short) is a set endowed with a reflexive,
transitive, antisymmetric relation (to be always denoted with ≤). A poset P
is rooted if it has a greatest element, that we shall denote by ρ(P ). If a finite
poset L is fixed, we call an L-evaluation or simply an evaluation a pair 〈P, u〉,
where P is a rooted finite poset and u : P −→ L is an order-preserving map.

Evaluations restrictions are introduced as follows. If 〈P, u〉 is an L-
evaluation and if p ∈ P , then we shall denote by up the L-evaluation,
〈↓ p, u ◦ i〉, where ↓ p = { p′ ∈ P | p′ ≤ p } and i : ↓ p ⊆ P is the in-
clusion map; briefly, up is the restriction of u to the downset generated by
p.

Evaluations have a strict relationship with finite Kripke models: we show
in detail the connection. If 〈L,≤〉 is 〈P(x),⊇〉 (where x = x1, . . . , xn is a
finite list of propositional letters), then an L-evaluation u : P −→ L is called
a Kripke model for the propositional intuitionistic language built up from
x.2 Given such a Kripke model u and an IPC formula A(x), the forcing
relation u |= A is inductively defined as follows:

u |= xi iff xi ∈ u(ρ(P ))

u 6|= ⊥

u |= A1 ∧A2 iff (u |= A1 and u |= A2)

u |= A1 ∨A2 iff (u |= A1 or u |= A2)

u |= A1 → A2 iff ∀q ≤ ρ(P ) (uq |= A1 ⇒ uq |= A2) .

We define for every n ∈ ω and for every pair of L-evaluations u and
v, the notions of being n-equivalent (written u ∼n v). We also define, for

2According to our conventions, we have that (for p, q ∈ P ) if p ≤ q then u(p) ⊇ u(q),
that is we use ≤ where standard literature uses ≥.
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two L-evaluations u, v, the notions of being infinitely equivalent (written
u ∼∞ v).

Let u : P −→ L and v : Q −→ L be two L-evaluations. The game
we are interested in has two players, Player 1 and Player 2. Player 1 can
choose either a point in P or a point in Q and Player 2 must answer by
choosing a point in the other poset; the only rule of the game is that, if
〈p ∈ P, q ∈ Q〉 is the last move played so far, then in the successive move
the two players can only choose points 〈p′, q′〉 such that p′ ≤ p and q′ ≤ q.
If 〈p1, q1〉, . . . , 〈pi, qi〉, . . . are the points chosen in the game, Player 2 wins
iff for every i = 1, 2, . . . , we have that u(pi) = v(qi). We say that

- u ∼∞ v iff Player 2 has a winning strategy in the above game with
infinitely many moves;

- u ∼n v (for n > 0) iff Player 2 has a winning strategy in the above
game with n moves, i.e. he has a winning strategy provided we
stipulate that the game terminates after n moves;

- u ∼0 v iff u(ρ(P )) = v(ρ(Q)) (recall that ρ(P ), ρ(Q) denote the roots
of P,Q).

Notice that u ∼n v always implies u ∼0 v, by the fact that L-evaluations
are order-preserving. We shall use the notation [v]n for the equivalence class
of an L-valuation v via the equivalence relation ∼n.

The following Proposition states a basic fact (keeping the above definition
for ∼0 as base case for recursion, the Proposition also supplies an alternative
recursive definition for ∼n):

Proposition 1. Given two L-evaluations u : P −→ L, v : Q −→ L, and
n > 0, we have that u ∼n+1 v iff ∀p ∈ P ∃q ∈ Q (up ∼n vq) and vice versa.

It can be shown that in case L = P(x1, . . . , xn) (i.e. when L-evaluations
are just ordinary finite Kripke models over the language built up from the
propositional variables x1, . . . , xn), two evaluations are ∼∞-equivalent (resp.
∼n-equivalent) iff they force the same formulas (resp. the same formulas up
to implicational degree n). This can be explained in a formal way as follows.
For an IPC formula A(x), define the implicational degree d(A) as follows:

(i): d(⊥) = d(xi) = 0, for xi ∈ x;
(ii): d(A1 ∗ A2) = max[d(A1), d(A2)], for ∗ = ∧,∨;
(iii): d(A1 → A2) = max[d(A1), d(A2)] + 1.

Then one can prove [10] that: (1) u ∼∞ v holds precisely iff (u |= A ⇔
v |= A) holds for all formulae A(x); (2) for all n, u ∼n v holds precisely iff
(u |= A⇔ v |= A) holds for all formulae A(x) with d(A) ≤ n.3

The above discussion motivates a sort of identification of formulae with
sets of evaluations closed under restrictions and under ∼n for some n. Thus,
bounded bisimulations (this is the way the relations ∼n are sometimes called)
supply the combinatorial ingredients for our duality; for the picture to be

3For (1) to be true, it is essential our evaluations to be defined over finite posets.
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complete, however, we also need a geometric environment, which we intro-
duce using presheaves.

A map among posets is said to be open4 iff it is open in the topological
sense (posets can be viewed as topological spaces whose open subsets are the
downward closed subsets); thus f : Q −→ P is open iff it is order-preserving
and moreover satisfies the following condition forall q ∈ Q, p ∈ P

p ≤ f(q) ⇒ ∃q′ ∈ Q (q′ ≤ q & f(q′) = p) .

Let P0 be the category of finite rooted posets and open maps between them;
a presheaf over P0 is a contravariant functor from P0 to the category of
sets and function, that is, a functor H : Pop

0
−→ Set. Let us recall what

this means: a functor H : Pop
0

−→ Set associates to each finite rooted poset
P a set H(P ); if f : Q −→ P is an open map, then we are also given a
function H(f) : H(P ) −→ H(Q); moreover, identities are sent to identities,
while composition is reversed, H(g ◦ f) = H(f) ◦H(g).

Our presheaves form a category whose objects are prersheaves over P0

and whose maps are natural transformations; recall that a natural trans-
formation ψ : H −→ H ′ is a collections of maps ψP : H(P ) −→ H ′(P )
(indexed by the objects of P0) such that for every map f : Q −→ P in P0,
we have H ′(f) ◦ ψP = ψQ ◦H(f). Throughout the paper, we shall usually
omit the subscript P when referring to the P -component ψP of a natural
transformation ψ.

The basic example of presheaf we need in the paper is described as follows.
Let L be a finite poset and let hL be the contravariant functor so defined:

• for a finite poset P , hL(P ) is the set of all L-evaluations;
• for an open map f : Q −→ P , hL(f) takes v : P −→ L to v ◦ f :
Q −→ L.

The presheaf hL is actually a sheaf (for the canonical Grothendieck topology
over P0); we won’t need this fact,5 but we nevertheless call hL the sheaf of
L-evaluations (presheaves of the kind hL, for some L, are called evaluation
sheaves).

Notice the following fact: if ψ : hL −→ hL′ is a natural transformation,
v ∈ hL(P ) and p ∈ P , then ψ(vp) = (ψ(v))p (this is due to the fact that the
inclusion ↓ p ⊆ P is an open map, hence an arrow in P0); thus, we shall feel
free to use the (non-ambiguous) notation ψ(v)p to denote ψ(vp) = (ψ(v))p.

The notion of bounded bisimulation index (b-index, for short)6 takes to-
gether structural and combinatorial aspects. We say that a natural trans-
formation ψ : hL −→ hL′ has b-index n iff for every v : P −→ L and
v′ : P ′ −→ L, we have that v ∼n v

′ implies ψ(v) ∼0 ψ(v
′).

4Open surjective maps are called p-morphisms in the standard non classical logics
terminology.

5The sheaf structure becomes essential for instance when one has to compute images -
images are the categorical counterparts of second order quantifiers, see [5].

6This is called ’index’ tout court in [5]; here we used the word ‘index’ for a different
notion, since Section 1.
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The following Proposition lists basic facts about b-indexes (in particular,
it ensures that natural transformations having a b-index do compose):

Proposition 2. Let ψ : hL −→ hL′ have b-index n; then it has also b-index
m for every m ≥ n. Moreover, for every k ≥ 0, for every v : P −→ L and
v′ : P ′ −→ L, we have that v ∼n+k v

′ implies ψ(v) ∼k ψ(v
′).

We are now ready to state duality theorems. As it is evident from the
discussion in Section 2, it is sufficient to state a duality for the category of
finitely generated free Heyting algebras; although it would not be difficult to
give a duality for finitely presented Heyting algebras, we just state a duality
for the intermediate category of Heyting algebras freely generated by a finite
bounded distributive lattice (this is quite simple to state and is sufficient for
proving Ruitenburg’s Theorem).

Theorem 3. The category of Heyting algebras freely generated by a finite
bounded distributive lattice is dual to the subcategory of presheaves over P0

having as objects the evaluations sheaves and as arrows the natural trans-
formations having a b-index.

It is important to notice that in the subcategory mentioned in the above
Theorem, products are computed as in the category of presheaves. This
means that they are computed pointwise, like in the category of sets: in
other words, we have that (hL × hL′)(P ) = hL(P ) × hL′(P ) and (hL ×
hL′)(f) = hL(f)×hL′(f), for all P and f . Notice moreover that hL×L′(P ) ≃
hL(P )× hL′(P ), so we have hL×L′ ≃ hL × hL′ ; in addition, the two product
projections have b-index 0. The situation strongly contrasts with other
kind of dualities, see [1] for example, for which products are difficult to
compute. The ease by which products are computed might be seen as the
principal reason for tackling a proof of Ruitenburg’s Theorem by means of
sheaf duality.

As a final information, we need to identify the dual of the free Heyting
algebra on one generator:

Proposition 4. The dual of the free Heyting algebra on one generator is
h2, where 2 is the two-element poset { 0, 1 } with 1 ≤ 0.

4. Indexes and Periods over Finite Models

Taking into consideration the algebraic reformulation from Section 2 and
the information from the previous section, we can prove Ruitenburg’s The-
orem for (IPC) by showing that all natural transformations from hL × h2
into itself, commuting over the first projection π0 and having a b-index, are
ultimately periodic with period 2. Spelling this out, this means the following.
Fix a finite poset L and a natural transformation ψ : hL × h2 −→ hL × h2
having a b-index such that the diagram
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hL × h2 hL × h2✲ψ

hL

π0
❅
❅
❅❘

π0
�

�
�✠

commutes; we have to find an N such that ψN+2 = ψN , according to the
dual reformulation of (2).

From the commutativity of the above triangle, we can decompose ψ as
ψ = 〈π0, χ〉, were both π0 : hL × h2 −→ hL and χ : hL × h2 −→ h2 have a
b-index; we assume that n ≥ 1 is a b-index for both of them. We let such
ψ = 〈π0, χ〉 and n be fixed for the rest of the paper.

Notice that for (v, u) ∈ hL(P )× h2(P ), we have

ψk(v, u) = (v, uk)

where we put
u0 := u and uk+1 := χ(v, uk) . (7)

Since P and L are finite, it is clear that the sequence {ψk(v, u) | k ≥ 0 }
(and obviously also the sequence {uk | k ≥ 0 }) must become ultimately
periodic.

We show in this section that, for each finite set P and for each (v, u) ∈
hL(P ), the period of the sequence {ψk(v, u) | k ≥ 0 } has 2 as an upper
bound, whereas the index of {ψk(v, u) | k ≥ 0 } can be bounded by the
maximum length of the chains in the finite poset P (in the next section, we
shall bound such an index independently on P , thus proving Ruitenburg’s
Theorem).

Call (v, u) ∈ hL(P ) 2-periodic (or just periodic7) iff we have ψ2(v, u) =
(v, u); a point q ∈ P is similarly said periodic in (v, u) iff (v, u)q is periodic.
We shall only say that p is periodic if an evaluation is given and understood
from the context. We call a point non-periodic if it is not periodic (w.r.t. a
given evaluation).

Lemma 5. Let (v, u) ∈ hL(P ) and p ∈ P be such that all q ∈ P , q < p, are
periodic. Then either (v, u)p is periodic or ψ(v, u)p is periodic. Moreover, if
(v, u)p is non-periodic and u0(p) = u(p) = 1, then u1(p) = χ(u, v)(p) = 0.

Proof. We work by induction on the height of p (i.e. on the maximum ≤-
chain starting with p in P ). If the height of p is 1, then the argument is the
same as in the classical logic case (see Section 2).

If the height is greater than one, then we need a simple combinatorial
check about the possible cases that might arise. Recalling the above defini-
tion (7) of the 2-evaluations un, the induction hypothesis tells us that there
is M big enough so that so for all k ≥M and q < p, (uk+2)q = (uk)q.

Let ↓↓ p = { q ∈ P | q < p }. We shall represent (uk)p as a pair
(

ak
xk

)

, where

ak = uk(p) and xk is the restriction of (uk)p to ↓↓ p.

7From now on, ‘periodic’ will mean ‘2-periodic’, i.e. ‘periodic with period 2’.
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Let us start by considering a first repeat (i, j) of the sequence { aM+k }k≥0

- that is i is the smallest i such that there is j > 0 such that aM+i+j = aM+i

and j is the smallest such j. Since the aM+n can only take value 0 or 1, we
must have i + j ≤ 2. We show that the sequence { (uM+k)p }k≥0 has first
repeat taken from

(0, 1), (0, 2), (1, 1), (1, 2) .

This shall imply in the first two cases that (v, u)p is periodic or, in the last
two cases, that ψ(v, u)p is periodic. To our goal, let x = xM and y = xM+1

(recall that we do now know whether x = y).
Notice that, if j = 2, then i = 0 and a first repeat for { (uk)p }k≥M , is

(0, 2), as in the diagram below
(

a

x

)(

b

y

)(

a

x

)

.

Therefore, let us assume j = 1 (so i ∈ { 0, 1 }). Consider firstly i = 0:
(

a

x

)(

a

y

)(

c

x

)(

d

y

)

If x = y, then we have a repeat at (0, 1). Also, if a = 1, then the mappings
x and y are uniformely 1,8 so again x = y and (0, 1) is a repeat.

So let us assume x 6= y and a = 0. If c = a, then we have the repeat (0, 2)
as above. Otherwise c = 1, so x = 1. We cannot have d = 1, otherwise
1 = x = y. Thus d = 0 = a, and the repeat is (1, 2).

Finally, consider i = 1 (so a 6= b and j = 1):
(

a

x

)(

b

y

)(

b

x

)(

d

y

)

We have two subcases: b = 1 and b = 0. If b = 1, then a = 0 and x = 1 = y:
we have a repeat at (1, 1).

In the last subcase, we have b = 0, a = 1 and now if d = 0 we have a
repeat at (1, 2) and if d = 1 we have a repeat (1, 1) (because d = a = 1
implies y = 1 and x = 1).

The last statement of the Lemma is also obvious in view of the fact that
if a = b = 1, then x = y = 1, so p is periodic. �

Corollary 6. Let NP be the height of P ; then ψNP (v, u) is periodic for all
(v, u) ∈ hL(P ).

Proof. An easy induction on NP , based on the previous Lemma. �

5. Ranks

Ranks (already introduced in [2]) are a powerful tool suggested by bounded
bisimulations; in our context the useful notion of rank is given below. Recall
that ψ = 〈π0, χ〉 and that n ≥ 1 is a b-index for ψ and χ.

8Recall that our evaluations are order-preserving maps and we have 1 ≤ 0 in 2.
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Let (v, u) ∈ hL(P ) be given. The type of a periodic point p ∈ P is the
pair of equivalence classes

〈[(vp, up)]n−1, [ψ(vp, up)]n−1〉. (8)

The rank of a point p (that we shall denote by rk(p)) is the cardinality of
the set of distinct types of the periodic points q ≤ p. Since ∼n−1 is an
equivalence relation with finitely many equivalence classes, the rank cannot
exceed a positive number R(L, n) (that can be computed in function of L, n).

Clearly we have rk(p) ≥ rk(q) in case p ≥ q. Notice that an application of
ψ does not decrease the rank of a point: this is because the pairs (8) coming
from a periodic point just get swapped after applying ψ. A non-periodic
point p ∈ P has minimal rank iff we have rk(p) = rk(q) for all non-periodic
q ≤ p.

Lemma 7. Let p ∈ P be a non-periodic point of minimal rank in (v, u) ∈
hL(P ); suppose also that (v, u) is constant on the set of all non-periodic
points in ↓ p. Then we have ψm(v, u)q0 ∼n ψ

m(v, u)q1 for all m ≥ 0 and for
all non-periodic points q0, q1 ≤ p.

Proof. We let Π be the set of periodic points of (v, u) that are in ↓ p and
let Πc be (↓ p) \ Π . Let us first observe that for every r ∈ Πc, we have

{〈[(vs, us)]n−1, [ψ(vs, us)]n−1〉 | s ≤ r, s is periodic}

= {〈[(vs, us)]n−1, [ψ(vs, us)]n−1〉 | s ≤ p, s is periodic}

(indeed the inclusion ⊆ is because r ≤ p and the inclusion ⊇ is by the
minimality of the rank of p). Saying this in words, we have that “for every
periodic s ≤ p there is a periodic s′ ≤ r such that (vs, us) ∼n−1 (vs′ , us′)
and ψ(vs, us) ∼n−1 ψ(vs′ , us′)”; also (by the definition of 2-periodicity), “for
all m ≥ 0, for every periodic s ≤ p there is a periodic s′ ≤ r such that
ψm(vs, us) ∼n−1 ψ

m(vs′ , us′)”. By letting both q0, q1 playing the role of r,
we get:

Fact. For every m ≥ 0, for every q0, q1 ∈ Πc, for every periodic s ≤ q0
there is a periodic s′ ≤ q0 such that ψm(vs, us) ∼n−1 ψ

m(vs′ , us′) (and vice
versa).

We now prove the statement of the theorem by induction on m; take two
points q0, q1 ∈ Πc.

For m = 0, (v, u)q0 ∼n (v, u)q1 is established as follows: as long as Player
1 plays in Πc, we know (v, u) is constant so that Player 2 can answer with
an identical move still staying within Πc; as soon as it plays in Π, Player 2
uses the above Fact to win the game.

The inductive case ψm+1(v, u)q0 ∼n ψ
m+1(v, u)q1 is proved in the same

way, using the Fact (which holds for the integer m+ 1) and observing that
ψm+1 is constant on Πc. The latter statement can be verified as follows:
by the induction hypothesis we have ψm(v, u)q ∼n ψ

m(v, u)q′ , so we derive

from Proposition 2 ψm+1(v, u)q ∼0 ψ
m+1(v, u)q′ , for all q, q′ ∈ Πc; that is,

ψm+1 is constant on Πc. �
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6. Ruitenburg’s Theorem

We can finally prove:

Theorem 8 (Ruitenburg’s Theorem for IPC). There is N ≥ 1 such that we
have ψN+2 = ψN .

Proof. Let L be a finite poset and let R := R(L, n) be the maximum rank
for n,L (see the previous section). Below, for e ∈ L, we let |e| be the height
of e in L, i.e. the maximum size of chains in L whose maximum element is e;
we let also |L| be the maximum size of a chain in L. We make an induction
on natural numbers l ≥ 1 and show the following: (for each l ≥ 1) there is
N(l) such that for every (v, u) and p ∈ dom(v, u) such that l ≥ |v(p)|, we

have that ψN(l)(vp, up) is periodic. Once this is proved, the statement of the
Theorem shall be proved with N = N(|L|).9

If l = 1, it is easily seen that we can put N(l) = 1 (this case is essentially
the classical logic case).

Pick a p with |v(p)| = l > 1; let N0 be the maximum of the values N(l0)
for l0 < l:10 we show that we can take N(l) to be N0 + 2R.

Firstly, let (v, u0) := ψN0(v, u) so all q with |v(q)| < l are periodic in
(v, u0). After such iterations, suppose that p is not yet periodic in (v, u0).
We let r be the minimum rank of points q ≤ p which are not periodic
(all such points q must be such that v(q) = v(p)); we show that after two
iterations of χ, all points p0 ≤ p having rank r become periodic or increase
their rank, thus causing the overall minimum rank below p to increase: this
means that after at most 2(R − r) ≤ 2R iterations of ψ, all points below p
(p itself included!) become periodic (otherwise said, we take R − r as the
secondary parameter of our double induction).

Pick p0 ≤ p having minimal rank r; thus we have that all q ≤ p0 in (v, u0)
are now either periodic or have the same rank and the same v-value as p0 (by
the choice of N0 above). Let us divide the points of ↓ p0 into four subsets:

Eper := { q | q is periodic }

E0 := { q | q 6∈ Eper & ∀q′ ≤ q (q′ 6∈ Eper ⇒ u0(q
′) = 0) }

E1 := { q | q 6∈ Eper & ∀q′ ≤ q (q′ 6∈ Eper ⇒ u0(q
′) = 1) }

E01 := { q | q′ 6∈ Eper ∪ E1 ∪ E0 } .

Let us define frontier point a non-periodic point f ≤ p such that all q < f
are periodic (clearly, a frontier point belongs to E0 ∪ E1); by Lemma 5,
all frontier points become periodic after applying ψ. Take a point q ∈ Ei

and a frontier point f below it; since q also has minimal rank and the
hypotheses of Lemma 7 are satisfied for (v, u)q, we have in particular that

ψm(v, u0)q′ = ψm(v, u0)f for all m ≥ 0 and all non-periodic q′ ≤ q, and
hence ψ(v, u0)q is periodic too.

9It will turn out that N(l) is 2R(l − 1) + 1.
10It is easily seen that we indeed have N0 = N(l − 1).
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Thus, if we apply ψ, we have that in (v, u1) := ψ(v, u0) all points in
Eper ∪E0 ∪E1 become periodic, together with possibly some points in E01.
The latter points get in any case u1-value equal to 0. This can be seen as
follows. If any such point gets u1-value equal to 1, then all points below
it get the same u1-value. Yet, by definition, these points are above some
frontier point in E1 and frontier points in E1 get u1-value 0 by the second
statement of Lemma 5.

If p0 ∈ E0 has become periodic, we are done; we are also done if the rank
of p0 increases, because this is precisely what we want. If p0 has not become
periodic and its rank has not increased, then now all the non-periodic points
below p0 in (v, u1) have u1-value 0 (by the previous remark) and have the
same rank as p0. Thus, they are the set E0 computed in (v, u1) (instead
of in (v, u0)) and we know by the same considerations as above that it is
sufficient to apply ψ once more to make them periodic. �

p0•

E0 E1

E01

Eper

ψ
=⇒

p0•
E′

0

E′
per

ψ
=⇒

p0•

E′′
per

Notice that some crucial arguments used in the above proof (starting from
the induction on |e| itself) make essential use of the fact that evaluations
are order-preserving, so such arguments are not suitable for modal logics.

The above proof of Theorem 8 gives a bound for N which is not optimal,
when compared with the bound obtained via syntactic means in [8] (the
syntactic computations in [4] for fixpoints convergence are also better). Thus
refining indexes of ultimate periodicity of our sequences within semantic
arguments remains as open question.
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