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In the paper, after concisely surveying some closed formulas and applications of special values of the Bell polynomials of the second kind for some special sequences and elementary functions, the authors newly establish some closed formulas for some special values of the Bell polynomials of the second kind.

(1) In the first section, we will concisely survey some closed formulas and applications of special values of the Bell polynomials of the second kind for some special sequences and elementary functions. Most of these results are formally published and applied in recent years. [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards[END_REF] In the second section, we will discover or recover some relations and closed formulas for those numbers discussed in [START_REF] Howard | A special class of Bell polynomials[END_REF] by Howard. (3) In the third section, we will establish a closed formula for a special Bell polynomial of the second kind which was mentioned in [START_REF] Howard | A special class of Bell polynomials[END_REF] by Howard. Finally, in the fourth section, we will simply compare our main results with some known results.

Survey of closed formulas for the Bell polynomials

In [START_REF] Charalambides | Enumerative Combinatorics[END_REF]Definition 11.2] and [7, p. 134, Theorem A], the Bell polynomials of the second kind, denoted by B n,k (x 1 , x 2 , . . . , x n-k+1 ) for n ≥ k ≥ 0, are defined by

B n,k (x 1 , x 2 , . . . , x n-k+1 ) = 1≤i≤n-k+1 i∈{0}∪N n-k+1 i=1 i i=n n-k+1 i=1 i=k n! n-k+1 i=1 i ! n-k+1 i=1 x i i! i .
The Faà di Bruno formula, see [START_REF] Charalambides | Enumerative Combinatorics[END_REF]Theorem 11.4] and [7, p. 139, Theorem C], can be described in terms of B n,k (x 1 , x 2 , . . . , x n-k+1 ) by

d n dx n f • h(x) = n k=0 f (k) (h(x)) B n,k h (x), h (x) 
, . . . , h (n-k+1) (x) .

(

The identity B n,k abx 1 , ab 2 x 2 , . . . , ab n-k+1 x n-k+1 = a k b n B n,k (x 1 , x 2 , . . . , x n-k+1 ) (1.2)

for n ≥ k ≥ 0 and a, b ∈ C can be found in [6, p. 412] and [7, p. 135].

There have been a number of literature, such as [START_REF] Aboud | Bell polynomials in combinatorial Hopf algebras[END_REF][START_REF] Charalambides | Enumerative Combinatorics[END_REF][START_REF] Comtet | Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition[END_REF][START_REF] Howard | A special class of Bell polynomials[END_REF][START_REF] Kataria | Correlation between Adomian and partial exponential Bell polynomials[END_REF][START_REF] Kruchinin | Derivation of Bell polynomials of the second kind[END_REF][START_REF] Natalini | Higher order Bell polynomials and the relevant integer sequences[END_REF][START_REF] Natalini | Remarks on Bell and higher order Bell polynomials and numbers[END_REF][START_REF] Withers | Moments and cumulants for the complex Wishart[END_REF][START_REF] Withers | Multivariate Bell polynomials[END_REF][START_REF] Withers | Multivariate Bell polynomials, series, chain rules, moments and inversion[END_REF][START_REF] Withers | Multivariate Bell polynomials and their applications to powers and fractionary iterates of vector power series and to partial derivatives of composite vector functions[END_REF], dedicated to the general theory of the Bell polynomials of the second kind B n,k (x 1 , x 2 , . . . , x n-k+1 ).

In mathematics, a closed form is a mathematical expression that can be evaluated in a finite number of operations. It may contain constants, variables, four arithmetic operations, and elementary functions, but usually no limit.

In this paper, we pay our main attention on closed and explicit formulas, rather than recursive identities like (1.2), of the Bell polynomials of the second kind B n,k (x 1 , x 2 , . . . , x n-k+1 ) for x 1 , x 2 , . . . , x n-k+1 to be replaced by some special sequences and elementary functions.

We now concisely survey some formulas and applications of the polynomials B n,k (x 1 , x 2 , . . . , x n-k+1 ) for x 1 , x 2 , . . . , x n-k+1 to be replaced by some special sequences and elementary functions.

1.1. Exponential function. To find general formulas of the nth derivatives for functions of the type f (e x ), such as 1 e ±x ±1 , by the Faà di Bruno formula (1.1), we need to compute B n,k (e ±x ) , (e ±x ) , . . . , (e ±x ) (n-k+1) = B n,k ±e ±x , (±1) 2 e ±x , . . . , (±1) n-k+1 e ±x = (±1) n e ±kx B n,k (1, 1, . . . , 1), where we used in the last step the identity (1.2). In [7, p. 135], it is given that B n,k (1, 1, . . . , 1) = S(n, k), (1.3) where S(n, k) denotes the Stirling numbers of the second kind. Consequently, by the Faà di Bruno formula (1.1) and the identities (1.2) and (1.3), for example, we can easily obtain 1 e ±x ± 1

(n) = (±1) n n k=0 (-1) k k!S(n, k)
e ±kx (e ±x ± 1) k+1 .

For more information on applications of the identity (1.3), please read the papers [START_REF] Guo | A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers[END_REF][START_REF] Guo | Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers[END_REF][START_REF] Guo | An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions[END_REF][START_REF] Guo | Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind[END_REF][START_REF] Guo | Some identities and an explicit formula for Bernoulli and Stirling numbers[END_REF][START_REF] Qi | A simple form for coefficients in a family of nonlinear ordinary differential equations[END_REF][START_REF] Qi | An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers[END_REF][START_REF] Qi | Determinantal expressions and recurrence relations for Fubini and Eulerian polynomials[END_REF][START_REF] Qi | Simplification of coefficients in two families of nonlinear ordinary differential equations[END_REF][START_REF] Qi | Some inequalities for the Bell numbers[END_REF][START_REF] Qi | Some inequalities and an application of exponential polynomials[END_REF][START_REF] Qi | Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers[END_REF][START_REF] Qi | Explicit formulas and recurrence relations for higher order Eulerian polynomials[END_REF][START_REF] Qi | Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations[END_REF][START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF][START_REF] Qi | Simplification of coefficients in differential equations associated with higher order Frobenius-Euler numbers[END_REF][START_REF] Qi | Some properties and an application of multivariate exponential polynomials[END_REF][START_REF] Wei | Complete monotonicity of functions connected with the exponential function and derivatives[END_REF][START_REF] Wei | Several closed expressions for the Euler numbers[END_REF][START_REF] Xu | Closed formulas for computing higher-order derivatives of functions involving exponential functions[END_REF][START_REF] Xu | Some identities involving exponential functions and Stirling numbers and applications[END_REF][START_REF] Zhao | Derivative polynomials of a function related to the Apostol-Euler and Frobenius-Euler numbers[END_REF] and closely related references therein.

Logarithmic function.

To acquire general formulas of the nth derivatives for functions of the type f (ln x), such as 1 ln(1+x) , by the Faà di Bruno formula (1.1) and the identity (1.2), we need to compute

B n,k [ln(1 + x)] , [ln(1 + x)] , . . . , [ln(1 + x)] (n-k+1) = B n,k 1 1 + x , -1 (1 + x) 2 , . . . , (-1) n-k (n -k)! (1 + x) n-k+1 = (-1) n-k (1 + x) n B n,k (0!, 1!, . . . , (n -k)!).
In [7, p. 135], it is listed that

B n,k (0!, 1!, 2!, . . . , (n -k)!) = (-1) n-k s(n, k), (1.4) 
where s(n, k) denotes the Stirling numbers of the first kind. Consequently, by virtue of the Faà di Bruno formula (1.1) and the identities (1.2) and (1.4), as an example, we have 1 ln(1 + x)

(n) = 1 (1 + x) n n k=0 (-1) k k!s(n, k) ln k+1 (1 + x)
.

For more information on applications of the identity (1.4), please refer to [START_REF] Qi | A new formula for the Bernoulli numbers of the second kind in terms of the Stirling numbers of the first kind[END_REF][START_REF] Qi | Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind[END_REF][START_REF] Qi | Explicit formulas for the convolved Fibonacci numbers[END_REF][START_REF] Qi | Notes on several families of differential equations related to the generating function for the Bernoulli numbers of the second kind[END_REF][START_REF] Qi | On multivariate logarithmic polynomials and their properties[END_REF][START_REF] Qi | Simple forms for coefficients in two families of ordinary differential equations[END_REF][START_REF] Qi | Simplifying coefficients in a family of nonlinear ordinary differential equations[END_REF][START_REF] Qi | Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations[END_REF][START_REF] Qi | Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind[END_REF][START_REF] Qi | Simplifying and finding ordinary differential equations in terms of the Stirling numbers[END_REF][START_REF] Qi | An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind[END_REF][START_REF] Qi | Some properties of the Bernoulli numbers of the second kind and their generating function[END_REF] and closely related references therein.

Power function.

To establish general formulas of the nth derivatives for functions of the type f (x α ) for α ∈ R, such as e x 2 and sin √ a + bx , by the Faà di Bruno formula (1.1) and the identity (1.2), we need to calculate

B n,k (x α ) , (x α ) , . . . , (x α ) (n-k+1) = x kα-n B n,k ( α 1 , α 2 , . . . , α n-k+1 ),
where

α n = n-1 k=0 (α -k) = α(α -1) • • • (α -n + 1), n ≥ 1 1, n = 0
is called [START_REF] Qi | Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers[END_REF] the falling factorial. In [START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF], it was discovered that

B n,k ( α 1 , α 2 , . . . , α n-k+1 ) = (-1) k k! k =0 (-1) k α n . (1.5)
The formula (1.5) has an equivalent form

B n,k 1, 1 -λ, (1 -λ)(1 -2λ), . . . , n-k =0 (1 -λ) = (-1) k k! k =0 (-1) k n-1 q=0 ( -qλ) (1.6)
which was earlier obtained in [START_REF] Qi | Viewing some ordinary differential equations from the angle of derivative polynomials[END_REF]. For more information on applications of the formula (1.6), please see [START_REF] Qi | Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials[END_REF][START_REF] Qi | Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials[END_REF][START_REF] Qi | Some properties of central Delannoy numbers[END_REF][START_REF] Qi | Several explicit and recursive formulas for generalized Motzkin numbers[END_REF][START_REF] Qi | Viewing some ordinary differential equations from the angle of derivative polynomials[END_REF][START_REF] Qi | Alternative proofs of some formulas for two tridiagonal determinants[END_REF][START_REF] Qi | Explicit expressions related to degenerate Cauchy numbers and their generating function[END_REF][START_REF] Qi | Some identities for a sequence of unnamed polynomials connected with the Bell polynomials[END_REF][START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF] and closely related references.

Taking λ = 0 in (1.6) recovers the identity (1.3). Letting λ = -1 in (1.6) and simplifying give

B n,k (1!, 2!, 3!, . . . , (n -k + 1)!) = (-1) k n! k! k =1 (-1) k n + -1 -1 = n -1 k -1 n! k! (1.7)
which is the Lah numbers collected in [6, p. 450] and [7, p. 135]. For more information on applications of the formula (1.7), please refer to the papers [START_REF] Guo | Six proofs for an identity of the Lah numbers[END_REF][START_REF] Qi | An explicit formula of a sequence of polynomials[END_REF][START_REF] Qi | Diagonal recurrence relations for the Stirling numbers of the first kind[END_REF][START_REF] Qi | Explicit formulas for the convolved Fibonacci numbers[END_REF][START_REF] Qi | Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Laguerre polynomials[END_REF][START_REF] Qi | Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Mittag-Leffler polynomials[END_REF][START_REF] Qi | A diagonal recurrence relation for the Stirling numbers of the first kind[END_REF][START_REF] Qi | Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers[END_REF][START_REF] Qi | On the sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function[END_REF][START_REF] Qi | Some properties of the average numbers of comparisons used by the quicksort[END_REF][START_REF] Qi | The reciprocal of the weighted geometric mean is a Stieltjes function[END_REF][START_REF] Qi | Viewing some ordinary differential equations from the angle of derivative polynomials[END_REF][START_REF] Qi | Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations[END_REF][START_REF] Qi | Explicit expressions related to degenerate Cauchy numbers and their generating function[END_REF][START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF][START_REF] Qi | Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers[END_REF][START_REF] Qi | Several formulas for special values of the Bell polynomials of the second kind and applications[END_REF][START_REF] Qi | Simplifying coefficients in differential equations for generating function of Catalan numbers[END_REF] and closely related references therein.

By the way, the nth derivatives for functions of the type f (x n ) were recursively, not explicitly, discussed in [27, Section 4]. 1.4. A sequence related to square. In [65, Theorem 5.1] and [97, Section 3], it was found little by little that

B n,k (x, 1, 0, . . . , 0) = 1 2 n-k n! k! k n -k x 2k-n , (1.8) 
where 0 0 = 1 and p q = 0 for q > p ≥ 0. Consequently, as an example, we have

e x 2 (n) = e x 2 n! (2x) n n k=0 k n -k (2x) 2k k! .
Taking α = 2 in (1.5) or taking λ = 1 2 in (1.6), making use of (1.2), letting x = 1 in (1.8), and comparing yield the sum

k =0 (-1) k-k 2 n = n! 2 n-2k k n -k .
One of anonymous referees pointed out that the formula (1.8) is essentially the same as those formulas in [START_REF] Natalini | Higher order Bell polynomials and the relevant integer sequences[END_REF]Section 4]. The difference is that, in the article [START_REF] Natalini | Higher order Bell polynomials and the relevant integer sequences[END_REF], the expressions are given, in compact form, in terms of the Hermite-Kampé de Fériet polynomials. By using definitions of these classical polynomials [START_REF] Appell | Fonctions hypergéométriques et hypersphériques: Polynômes d'Hermite[END_REF], the explicit forms given in (1.8) can be recovered.

For detailed information on applications of the formula (1.8), please refer to the papers [START_REF] Qi | A simple form for coefficients in a family of ordinary differential equations related to the generating function of the Legendre polynomials[END_REF][START_REF] Qi | Integral representations for multivariate logarithmic polynomials[END_REF][START_REF] Qi | Some discussions on a kind of improper integrals[END_REF][START_REF] Qi | Some properties of central Delannoy numbers[END_REF][START_REF] Qi | Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers[END_REF][START_REF] Qi | Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials[END_REF][START_REF] Qi | Several explicit and recursive formulas for generalized Motzkin numbers[END_REF][START_REF] Qi | Some properties of the Hermite polynomials[END_REF][START_REF] Qi | Viewing some ordinary differential equations from the angle of derivative polynomials[END_REF][START_REF] Qi | Notes on explicit and inversion formulas for the Chebyshev polynomials of the first two kinds[END_REF][START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF][START_REF] Qi | Two explicit formulas of the Schröder numbers[END_REF][START_REF] Qi | Several formulas for special values of the Bell polynomials of the second kind and applications[END_REF][START_REF] Qi | Explicit expressions for a family of the Bell polynomials and applications[END_REF][START_REF] Qi | The inverse of a triangular matrix and several identities of the Catalan numbers[END_REF][START_REF] Wei | Several closed expressions for the Euler numbers[END_REF][START_REF] Zhao | Two explicit formulas for the generalized Motzkin numbers[END_REF] and closely related references therein. 1.5. Square roots. In [START_REF] Qi | Several formulas for special values of the Bell polynomials of the second kind and applications[END_REF]Theorem 1.4], it was presented that

B n,k g (x), g (x), . . . , g (n-k+1) (x) = (-1) n+k [2(n -k) -1]!! b 2 n 2n -k -1 2(n -k) 1 (a + bx) n-k/2 , (1.9)
where g(x) = √ a + bx for a, b ∈ R and b = 0. Setting a = 0 and b = 1 and letting x → 1 in (1.9) result in

B n,k ((-1)!!, 1!!, 3!!, . . . , [2(n -k) -1]!!) = [2(n -k) -1]!! 2n -k -1 2(n -k) , (1.10) 
where the double factorial of negative odd integers -(2 + 1) is defined by

(-2 -1)!! = (-1) (2 -1)!! = (-1) 2 ! (2 )! , ≥ 0.
Taking α = 1 2 in (1.5) or taking λ = 2 in (1.6), simplifying, and comparing with (1.10) arrive at the sum

k =0 (-1) k 2 n = (-1) n k![2(n -k) -1]!! 2 n 2n -k -1 2(n -k) .
By virtue of the formula (1.1), the identity (1.2), and the formula (1.10) in sequence, we derived in [START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF] five closed formulas for the (modified) spherical Bessel functions j n (z), y n (z), i

n (z), i (1) 
n (z), and k n (z), whose definitions can be found in [28, p. 262-266], from considering the nth derivatives of the functions

cos z 2 -2zt , sin z 2 -2zt , cosh z 2 + 2izt , sinh z 2 + 2izt , exp -z 2 + 2izt
with respect to t.

In [START_REF] Ferrante | Connections between the iterated (anti)derivatives of e s √ x with respect to x and spherical modified Bessel functions of second kind[END_REF], it was obtained that

d n e s √ x dx n = s 2 √ x n e s √ x n-1 k=0 1 s √ x k (-1) k (n + k -1)! 2 k k!(n -k -1)! (1.11) and K n-1/2 - √ x = √ π (-1) -1/2 2 √ x n-1/2 e √ x (n) ,
where n ≥ 1, x > 0, and

K n+1/2 (z) = π 2z e -z n k=0 (n + k)! k!(n -k)!(2z) k , z ∈ C
is known as the modified spherical Bessel functions of the third kind [2, p. 444, 10.2.15]. In [START_REF] Natalini | Bell polynomials and modified Bessel functions of half-integral order[END_REF], it was further established that

I ( ) n-1/2 - √ x = (-1) (-1) n-1 /2 √ π 2 √ x n-1/2 e (-1) √ x (n) , H ( ) n-1/2 -i √ x = 2(-1) (-1) n-1 /2 √ π 2i √ x n-1/2 e (-1) -1 √ x (n) , and 
H (2) n-1/2 i √ x = 2 √ π 2i √ x n-1/2 e √ x (n) 
for i = √ -1 and = 1, 2, where

I ( ) n+1/2 (z) = (-1) ( -1)(n+1) √ 2πz e (-1) -1 z n k=0 (-1) k (n + k)! k!(n -k)!(2z) k
for z ∈ C and = 1, 2, which can be derived from a combination of [2, p. 443, 10.2.9 and 10.2.11], are known as the modified spherical Bessel functions of the first kind, and

H ( ) n-1/2 (z) = 2 πz i (-1) n e (-1) -1 iz n-1 k=0 (-1) k (n + k -1)! k!(n -k -1)!(2iz) k
for z ∈ C and = 1, 2, which is a combination of the formulas (1.7) and (1.8) in [START_REF] Natalini | Bell polynomials and modified Bessel functions of half-integral order[END_REF], are known as the Hankel functions. By virtue of the Faà di Bruno formula (1.1) and the formula (1.9) for a = b = 1, we can simply recover the formula (1.11).

The modified Bessel functions of the first kind, which are related to the modified spherical Bessel functions mentioned above, were applied and studied in [START_REF] Guo | Some inequalities and absolute monotonicity for modified Bessel functions of the first kind[END_REF][START_REF] Qi | Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions[END_REF][START_REF] Qi | Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified Bessel function[END_REF][START_REF] Qi | A double inequality for an integral mean in terms of the exponential and logarithmic means[END_REF][START_REF] Qi | Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions[END_REF][START_REF] Qi | Arithmetic means for a class of functions and the modified Bessel functions of the first kind[END_REF]. For more information on applications of the formulas (1.9) and (1.10), please refer to the papers [START_REF] Qi | Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials[END_REF][START_REF] Qi | Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers[END_REF][START_REF] Qi | Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations[END_REF][START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF][START_REF] Qi | Simplifying coefficients in differential equations for generating function of Catalan numbers[END_REF][START_REF] Qi | Several formulas for special values of the Bell polynomials of the second kind and applications[END_REF] and closely related references therein.

1.6. Sine and cosine. In [START_REF] Qi | Derivatives of tangent function and tangent numbers[END_REF]Theorem 1.2], it was derived that B n,k -sin x, -cos x, sin x, cos x, . . . ,

cos x + (n -k + 1)π 2 = (-1) k cos k x k! k =0 k (-1) (2 cos x) q=0 q (2q -) n cos (2q -)x + nπ 2 (1.12) and B n,k cos x, -sin x, -cos x, sin x, . . . , sin x + (n -k + 1)π 2 = (-1) k sin k x k! k =0 k 1 (2 sin x) q=0 (-1) q q (2q-) n cos (2q-)x+ (n -)π 2 .
(

Since sin x ± π 2 = ± cos x and cos x ± π 2 = ∓ sin x, the formulas (1.12) and (1.13) are equivalent to each other. These two formulas can be applied to establish general formulas of the nth derivatives for functions of the types f (sin x) and f (cos x), such as sin α x, cos α x, sec α x, csc α x, e ± sin x , e ± cos x , ln cos x, ln sin x, ln sec x, ln csc x, sin sin x, cos sin x, sin cos x, cos cos x, tan x, and cot x. For more information on related applications and approaches, please refer to the papers [START_REF] Qi | Derivatives of tangent function and tangent numbers[END_REF][START_REF] Qi | Revisiting Bouvier's paper on tangent numbers[END_REF][START_REF] Qi | An explicit formula for derivative polynomials of the tangent function[END_REF][START_REF] Wei | Several closed expressions for the Euler numbers[END_REF][START_REF] Xu | Closed formulas for computing higher-order derivatives of functions involving exponential functions[END_REF][START_REF] Zhao | Remarks on inequalities for the tangent function[END_REF] and closely related references therein.

Recall from [4, p. 243, Eq. ( 10) and p. 250, Theorem 16] and [5, p. 152, Eq. (3.9)] that weighted Stirling numbers, whose definitions can be found in [START_REF] Broder | The r-Stirling numbers[END_REF][START_REF] Carlitz | Weighted Stirling numbers of the first and second kind, I[END_REF][START_REF] Griffiths | A generalization of Stirling numbers of the second kind via a special multiset[END_REF], can be generated by

(e t -1) k k! e rt = ∞ n=0 S r (n, k) t n n! = ∞ n=k S r (n, k) t n n! .
Recall from [5, p. 152, Eq. (3.8)] that

S r (n, k) = 1 k! k j=0 (-1) k-j k j (r + j) n , n ≥ k ≥ 0. It is clear that S 0 (n, k) = S(n, k) and S r (n, m) = 0 for m > n.
See also [START_REF] Guo | An explicit formula for the Bernoulli polynomials in terms of the r-Stirling numbers of the second kind[END_REF][START_REF] Qi | Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials[END_REF] and closely related reference therein. Taking x → 0 in (1.12) and (1.13) leads to

B n,k 0, -1, 0, 1, . . . , cos (n -k + 1)π 2 = (-1) k k! cos nπ 2 k =0 (-1) 2 k q=0 q (2q -) n (1.14) and B n,k 1, 0, -1, 0, . . . , sin (n -k + 1)π 2 = (-1) k k!2 k cos (n -k)π 2 k q=0 (-1) q k q (2q -k) n = cos (n -k)π 2 2 n-k S -k/2 (n, k). (1.15)
Similar to the formulas (1.14) and (1.15), another two formulas

B n,k 1, 0, 1, . . . , 1 -(-1) n-k+1 2 = 1 2 k k! k =0 (-1) k (k -2 ) n = (-1) n-k 2 n-k S -k/2 (n, k) = 2 n-k S -k/2 (n, k) and B n,k 0, 1, 0, . . . , 1 + (-1) n-k+1 2 = 1 2 k k! 2k =0 (-1) 2k (k -) n = (-1) n (2k)! (2k)!! S -k (n, 2k),
where 0 0 is regarded as 1, were established, discussed, and applied to derive a closed formula for the Euler numbers in [START_REF] Qi | Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials[END_REF][START_REF] Qi | An alternative proof of a closed formula for central factorial numbers of the second kind[END_REF][START_REF] Wei | Several closed expressions for the Euler numbers[END_REF].

1.7. Two sequences related to factorials. In [37, Theorem 1.1], the formulas

B n,k 1! 2 , 2! 3 , . . . , (n -k + 1)! n -k + 2 = (-1) n-k 1 k! k m=0 (-1) m k m s(n + m, m) n+m m and B n,k (0, 1!, 2! . . . , (n -k)!) = (-1) n n k k =0 (-1) k n-k+ s(n -k + , )
were proved for n ≥ k ≥ 1. These two formulas were used in [START_REF] Qi | Diagonal recurrence relations for the Stirling numbers of the first kind[END_REF][START_REF] Qi | A diagonal recurrence relation for the Stirling numbers of the first kind[END_REF] to discover diagonal recurrence relations for the Stirling numbers of the first kind.

1.8. Two simple sequences. In [START_REF] Guo | An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind[END_REF][START_REF] Guo | On inequalities for the exponential and logarithmic functions and means[END_REF][START_REF] Qi | Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind[END_REF][START_REF] Qi | Two closed forms for the Bernoulli polynomials[END_REF][START_REF] Qi | A closed form for the Stirling polynomials in terms of the Stirling numbers[END_REF][START_REF] Zhang | Notes on some identities related to the partial Bell polynomials[END_REF], the formulas

B n,k (0, 1, . . . , 1) = k =0 (-1) n S(n -, k -) and B n,k 1 2 , 1 3 , . . . , 1 n -k + 2 = n! (n + k)! k =0 (-1) k-n + k k - S(n + , ) (1.16)
were established and applied to investigate functions of the type f e t -1 t such as generating functions for the Bernoulli numbers and polynomials and for the Stirling numbers and polynomials. 1.9. A sequence containing factorials. In [START_REF] Qi | Two explicit formulas of the Schröder numbers[END_REF]Lemma 6], among other things, the formula

B n,k (2!, 3!, . . . , (n -k + 2)!) = n! k! k =0 (-1) k-k n + 2 -1 n ,
where q 0 = 1 for all q ∈ C, was deduced for establishing a closed formula for the large Schröder numbers. See also [START_REF] Qi | Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers[END_REF] and closely related references therein. 1.10. A sequence from natural numbers. In [64, Lemma 2], the formula

B n,k (x, 1 + x, 2 + x, . . . , n -k + x) = k n-k n k k =0 k n-k q=0 (-1) q k q n -k q S( + q, ) +q (x -1) (1.17)
was proved and applied to acquire closed formulas for derangement numbers and their generating function. From (1.17), the formula

B n,k (1, 2, 3, . . . , n -k + 1) = n k k n-k (1.18)
listed in [6, p. 451] and [7, p. 135] can be recovered straightforwardly.

1.11. Several sequences related to factorials. In [6, p. 451], the formulas

B 2r,k (0, 2!, . . . , 0, (2r)!) = (2r)! k! r -1 k -1 , B 2r-1,k (0, 2!, . . . , (2r -2)!, 0) = 0, B 2r,2s (1!, 0, . . . , (2r -1)!, 0) = (2r)! (2s)! r + s -1 2s -1 , B 2r,2s-1 (1!, 0, . . . , (2r -1)!, 0) = 0, B 2r-1,2s-1 (1!, 0, . . . , (2r -1)!, 0) = (2r -1)! (2s -1)! r + s -2 2s -2 , B 2r-1,2s (1! 
, 0, . . . , 0, (2r -1)!) = 0 were stated as exercises. These six formulas can be uniformly written as

B n,k 0, 2!, 0, 4!, . . . , (n -k + 1)! 1 + (-1) n-k+1 2 = 1 + (-1) n 2 n! k! n 2 -1 k -1 and B n,k 1!, 0, 3!, 0, . . . , (n -k + 1)! 1 -(-1) n-k+1 2 = 1 + (-1) n+k 2 n! k! n+k 2 -1 k -1 .
For details on discussion of these quantities, please refer to [70, Lemma 2.5], [START_REF] Qi | Notes on two kinds of special values for the Bell polynomials of the second kind[END_REF] and closely related references therein.

1.12. Several sequences from natural numbers. A class of the Bell polynomials of the second kind

B n,k (a 1 , a 2 , 3 -α, 4 -α, . . . , (n -k + 1) -α) (1.19)
were investigated in [20, Section 5]. In [START_REF] Howard | A special class of Bell polynomials[END_REF], the following closed formulas were presented:

B n,k (0, 2, 3, . . . , n -k + 1) = n! (n -k)! S(n -k, k), (1.20) B n,k (0, 0, 3, 4, . . . , n -k + 1) = n! (n -k)! S(n -k, k; 1), (1.21) B n,k (x, 2, 3, 4, . . . , n -k + 1) = n k k r=0 k r (k -r) n-k (x -1) r , (1.22) B n,k (0, 1, 2, 3, . . . , n -k) = n r=0 (-1) n-r n r k r S(n -r, k; 1), (1.23) 
where S(n, k; r) for n ≥ k ≥ 0 and r ≥ 0 are known as the r-associate Stirling numbers of the second kind and were defined by

e x - r i=0 x i i! k = ∞ j=r+1 x j j! k = k! ∞ n=(r+1)k S(n, k; r) x n n! .
in [21, p. 303, eq. (1.

2)]. The formula (1.18) gives a closed formula for the special case a 1 = 1, a 2 = 2, and α = 0 in (1.19). Substituting 1 -α for x in (1.17) leads to

B n,k (1 -α, 2 -α, 3 -α, . . . , n -k + 1 -α) = k n-k n k k =0 (-1) k n-k q=0 (-1) q k q n -k q S(q + , ) q+ α . (1.24) Letting x = 0 in (1.17) or taking α = 1 in (1.24) results in B n,k (0, 1, 2, 3, . . . , n -k) = k n-k n k k =0 (-1) k n-k q=0 (-1) q k q n -k q S(q + , )
q+ which, due to useless of associate Stirling numbers of the second kind, is more elementary than (1.23). In [78, Section 2], an alternative expression for (1.21) was derived in term of the Stirling numbers of the second kind S(n, k).

1.13. Howard's numbers. In the paper [START_REF] Howard | A special class of Bell polynomials[END_REF] and closely related references therein, the following numbers and their generating functions were considered:

x 2 2 1 e x -x -1 = ∞ n=0 A n x n n! , x e x -1 = ∞ n=0 B n x n n! , 2x e x + 1 = ∞ n=1 G n x n n! , - x 2 (x -2)(e x -x -1) = ∞ n=0 A n x n n! , - 2x (x -2)(e x -1) = ∞ n=0 B n x n n! , - 4 (x -2)(e x + 1) = ∞ n=0 G n x n n! , x 3 6 1 x(e x + 1) -2(e x -1) = ∞ n=0 V n x n n! , - 4 x(e x -1) -2(e x + 1) = ∞ n=0 W n x n n! , and 
1 - x 2 [x(e x + 1) -2(e x -1)] k = k! ∞ n=3k A(n, k) x n n! , [x(e x + 1) -2(e x -1)] k = k! ∞ n=3k V (n, k) x n n! , [(x -2)(e x -1)] k = k! ∞ n=k W (n, k) x n n! .
Among them, the numbers B n , G n , and V n are called the Bernoulli, Genocchi, and van der Pol numbers respectively. In [START_REF] Howard | A special class of Bell polynomials[END_REF], among other things, the closed formulas and identities

W n = n k=1 n r=0 (-1) k+r k!r! 2 k+r n r k r S(n -r, k), (1.25) 
V (n, k) = B n,k (0, 0, 1, 2, . . . , n -k -1), (1.26) 
W (n, k) = B n,k (-2, 0, 1, 2, 3, . . . , n -k -1) = n r=0 r! n r k r (-2) k-r S(n -r, k) (1.27)
were obtained.

2. Closed formulas for some numbers discussed by Howard

In this section, we will discover or recover some relations and closed formulas for those numbers andW (n, k) which have been discussed in [START_REF] Howard | A special class of Bell polynomials[END_REF].

A n , B n , G n , A n , B n , G n , V n , W n , A(n, k), V (n, k),
Theorem 2.1. For n ≥ k ≥ 0, we have B n,k 1 2 • 3 , 1 3 • 4 , . . . , 1 (n -k + 2)(n -k + 3) = (-1) k [2(n + k)]!! n k n-k m=0 m! -2k n-k-m n -k m n + k m × k =0 (-1) k n+k q=0 2 q k -n+k-q n + k q S( + q, ) +q (2.1)
and

A n = 1 2 n n! n k=0 n k n+k k n-k m=0 m! -2k n-k-m n -k m n + k m × k =0 (-1) k n+k q=0 2 q k -n+k-q n + k q S( + q, ) +q . (2.2) Proof. Let u = u(x) = 2(e x -x-1)
x 2

. It is easy to see that

lim x→0 1 u(x) = lim x→0 x 2 2 1 e x -x -1 = 1 and lim x→0 u (n) (x) = lim x→0 2(e x -x -1) x 2 (n) = lim x→0 2 x 2 ∞ k=2 x k k! (n) = 2 lim x→0 ∞ k=0 x k (k + 2)! (n) = 2 lim x→0 ∞ k=n k n (k + 2)! x k-n = 2 n n (n + 2)! = 2 n! (n + 2)! = 2 (n + 1)(n + 2)
.

Therefore, by virtue of the Faà di Bruno formula (1.1), we obtain

A n = lim x→0 1 u(x) (n) = lim x→0 n k=0 1 u (k) B n,k u (x), u (x), . . . , u (n-k+1) (x) = lim x→0 n k=0 (-1) k k! u k+1 B n,k u (x), u (x), . . . , u (n-k+1) (x) = n k=0 (-1) k k!2 k B n,k 1 2 • 3 , 1 3 • 4 , . . . , 1 (n -k + 2)(n -k + 3)
.

In [7, p. 133], it was listed that

1 k! ∞ m=1 x m t m m! k = ∞ n=k B n,k (x 1 , x 2 , . . . , x n-k+1 ) t n n! (2.3)
for k ≥ 0. From (2.3) it can be deduced that

∞ n=k B n,k 1 2 • 3 , 1 3 • 4 , . . . , 1 (n -k + 2)(n -k + 3) t n n! = 1 k! ∞ m=1 1 (m + 1)(m + 2) t m m! k = 1 k! ∞ m=1 t m (m + 2)! k = 1 k! e t -1 -t -t 2 2 t 2 k = t k k! e t -1 -t -t 2 2 t 3 k which is equivalent to ∞ n=0 B n+k,k 1 2 • 3 , 1 3 • 4 , . . . , 1 (n + 2)(n + 3) k! (n + k)! t n = e t -1 -t -t 2 2 t 3 k = 1 t 2k e t -1 t -1 + t 2 k = 1 t 2k k =0 (-1) k-k e t -1 t 1 + t 2 k- . This implies that B n+k,k 1 2 • 3 , 1 3 • 4 , . . . , 1 (n + 2)(n + 3) n!k! (n + k)! = lim t→0 1 t 2k k =0 (-1) k-k e t -1 t 1 + t 2 k-(n) = lim t→0 n m=0 n m 1 t 2k (m) k =0 (-1) k-k e t -1 t 1 + t 2 k-(n-m) = lim t→0 n m=0 n m -2k m t 2k+m k =0 (-1) k-k e t -1 t 1 + t 2 k-(n-m) = lim t→0 1 t 2k+n n m=0 n m -2k m k =0 (-1) k-k t n-m × e t -1 t 1 + t 2 k-(n-m) = 1 (2k + n)! lim t→0 n m=0 -2k n-m n m k =0 (-1) k-k t m × e t -1 t 1 + t 2 k-(m) (2k+n) = (-1) k (2k + n)! lim t→0 n m=0 -2k n-m n m k =0 (-1) k × 2k+n q=0 2k + n q (t m ) (q) e t -1 t 1 + t 2 k-(m+2k+n-q) = (-1) k (2k + n)! n m=0 -2k n-m n m k =0 (-1) k 2k + n m ×m! lim t→0 e t -1 t 1 + t 2 k-(2k+n) = (-1) k (2k + n)! n m=0 m! -2k n-m n m 2k + n m k =0 (-1) k × lim t→0 2k+n q=0 2k + n q e t -1 t (q) 1 + t 2 k-(2k+n-q) = (-1) k (2k + n)! n m=0 m! -2k n-m n m 2k + n m k =0 (-1) k × lim t→0 2k+n q=0 2k + n q ! ∞ p=q S(p + , ) (p + )! p q t p-q × k -2k+n-q 2 2k+n-q 1 + t 2 k--(2k+n-q) = (-1) k (2k + n)! n m=0 m! -2k n-m n m 2k + n m k =0 (-1) k × 2k+n q=0 2k + n q ! S(q + , ) (q + )! q q k -2k+n-q 2 2k+n-q ,
where we used the L'Hôspital rule and the generating function

(e x -1) k k! = ∞ n=k S(n, k) x n n! (2.4)
for the Stirling numbers of the second kind S(n, k). As a result, we procure

B n+k,k 1 2 • 3 , 1 3 • 4 , . . . , 1 (n + 2)(n + 3) = (-1) k [2(n + 2k)]!! n + k k n m=0 m! -2k n-m n m n + 2k m × k =0 (-1) k n+2k q=0 2 q k -n+2k-q n + 2k q S(q + , )
q+ which is equivalent to (2.1). From (2.1), we derive (2.2). The closed formula (2.2) was numerically verified to be true by the software Mathematica. The proof of Theorem 2.1 is thus complete.

Theorem 2.2 ([14, Theorem 1]).

For n ≥ 0, we have

B n = n i=0 (-1) i n+1 i+1 n+i i S(n + i, i).
(2.5)

Proof. Let v = v(x) = e x -1 x . Then lim x→0 [v(x)] (n) = lim x→0 e x -1 x (n) = lim x→0 ∞ k=1 x k-1 k! (n) = lim x→0 ∞ k=0 x k (k + 1)! (n) = lim x→0 ∞ k=n k n (k + 1)! x k-n = n n (n + 1)! = 1 n + 1
and, in light of (1.1) and (1.16) in sequence,

B n = lim x→0 x e x -1 (n) = lim x→0 1 v(x) (n) = lim x→0 n k=0 1 v (k) B n,k v (x), v (x), . . . , v (n-k+1) (x) = n k=0 lim x→0 (-1) k k! v k+1 lim x→0 B n,k v (x), v (x), . . . , v (n-k+1) (x) = n k=0 (-1) k k! B n,k 1 2 , 1 3 , . . . , 1 n -k + 2 = n k=0 1 n+k n k =0 (-1) n + k k - S(n + , ) = n i=0 (-1) i n+1 i+1 n+i i S(n + i, i).
The proof of Theorem 2.2 is complete.

Theorem 2.3 ([11, Theorem 1.1]).

For n ∈ N, we have

G n = n n-1 k=0 (-1) k k! 2 k S(n -1, k).
Proof. The generating function of the Genocchi numbers G n can be rewritten as

2 e x + 1 = ∞ n=1 G n x n-1 n! = ∞ n=0 G n+1 n + 1 x n n!
which means that, when denoting w = w(x) = e x + 1,

G n+1 n + 1 = lim x→0 2 e x + 1 (n) = 2 lim x→0 n k=0 1 w (k) B n,k (e x , e x , . . . , e x ) = 2 lim x→0 n k=0 (-1) k k! w k+1 e kx B n,k (1, 1, . . . , 1) = n k=0 (-1) k k! 2 k B n,k (1, 1, . . . , 1) = n k=0 (-1) k k! 2 k S(n, k)
which gives

G n+1 = (n + 1) n k=0 (-1) k k! 2 k S(n, k), n ≥ 0
and then recovers [START_REF] Guo | A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers[END_REF]Theorem 1.1]. The proof of Theorem 2.3 is complete.

Theorem 2.4. For n ≥ 0, we have

A n+1 - n + 1 2 A n = A n+1
and

A n = n k=0 n k 2 k A n-k = n p=0 n n-p 2 n-p A p = 1 2 n n p=0 n n-p p! p k=0 p k p+k k p-k m=0 m! -2k p-k-m p -k m p + k m × k =0 (-1) k p+k q=0 2 q k -p+k-q p + k q S(q + , ) q+ . (2.6)
Proof. The generating function of the numbers A n can be rearranged as

x 2 2(e x -x -1) = 1 - x 2 ∞ n=0 A n x n n! = ∞ n=0 A n x n n! - 1 2 ∞ n=0 A n x n+1 n! = ∞ n=0 A n x n n! - 1 2 ∞ n=1 A n-1 x n (n -1)! = A 0 + ∞ n=1 A n - n 2 A n-1 x n n!
which implies that A 0 = 1 and

A n - n 2 A n-1 = lim x→0 x 2 2(e x -x -1) (n) = A n
for n ∈ N. Recursing consecutively and making use of (2.1), the formula (2.6) follows. The proof of Theorem 2.4 is complete.

Theorem 2.5. For n ≥ 0, we have

B 0 = 1, B n+1 - n + 1 2 B n = B n+1 , (2.7) 
and

B n = n p=0 n n-p 2 n-p p i=0 (-1) i p+1 i+1 p+i i S(p + i, i).
Proof. The generating function of the numbers B n can be formulated as

x e x -1 = 1 - x 2 ∞ n=0 B n x n n! = B 0 + ∞ n=1 B n - n 2 B n-1 x n n!
which means that the relation (2.7) is true. Recursing and utilizing (2.5), we obtain

B n = n k=0 n k 2 k B n-k = n p=0 n n-p 2 n-p B p = n p=0 n n-p 2 n-p p i=0 (-1) i p+1 i+1 p+i i S(p + i, i).
The proof of Theorem 2.5 is complete.

Theorem 2.6. For n ≥ 0, we have

G 0 = 1, G n+1 - n + 1 2 G n = G n+2 n + 2 ,
and

G n = n =0 n n- 2 n- k=0 (-1) k k! 2 k S( , k).
Proof. It is easy to see that 2x

e x + 1 = x 1 - x 2 - 4 (x -2)(e x + 1) = x 1 - x 2 ∞ n=0 G n x n n! = G 0 x + ∞ n=2 n G n-1 - n -1 2 G n-2 x n n! which leads to G 0 = G 1 = 1 and G n-1 - n -1 2 G n-2 = G n n , n ≥ 2.
Recursively, it follows that

G n = n k=0 n k 2 k G n-k+1 n -k + 1 = n =0 n n- 2 n- G +1 + 1 = n =0 n n- 2 n- k=0 (-1) k k! 2 k S( , k).
The proof of Theorem 2.6 is complete.

Theorem 2.7. For n ≥ k ≥ 0, we have

B n,k 1 3 • 4 , 1 4 • 5 , . . . , 1 (n -k + 3)(n -k + 4) = (-1) k (n + 2k)!6 k n k × n-k q=0 -3k q (n -k -q)! n -k q n + 2k n -k -q k =0 12 k n+2k p=0 (n + 2k -p)! × n + 2k p S(p + , ) p+ k- s=0 k - s (-6) s (n -p + 2 + 2s)! s β=1 s β β n-p+2 +2s
and

V n = n k=0 k! (n + 2k)! n k n-k q=0 -3k q (n -k -q)! n -k q n + 2k n -k -q × k =0 12 k n+2k p=0 (n + 2k -p)! n + 2k p S(p + , ) p+ × k- s=0 k - s (-6) s (n -p + 2 + 2s)! s β=1 s β β n-p+2 +2s .
Proof. The generating function of the numbers V n can be rewritten as

x(e x + 1) -2(e x -1)

x 3 /6 -1 = ∞ n=0 V n x n n! .
It is easy to see that

x(e x + 1) -2(e x -1)

x 3 /6 = 6 x 3 x + ∞ k=0 x k+1 k! -2 ∞ k=1 x k k! = 6 x 3 x + ∞ k=1 x k (k -1)! -2 ∞ k=1 x k k! = 6 x 3 ∞ k=2 1 (k -1)! - 2 k! x k = 6 x 3 ∞ k=3 (k -2) x k k! = 6 ∞ k=3 (k -2) x k-3 k! = 6 ∞ k=0 (k + 1)
x k (k + 3)! and that lim x→0

x(e x + 1) -2(e x -1)

x 3 /6

(n) = 6 lim x→0 ∞ k=0 (k + 1) x k (k + 3)! (n) = 6 lim x→0 ∞ k=n (k + 1) k n x k-n (k + 3)! = 6(n + 1) n n (n + 3)! = 6 (n + 2)(n + 3)
.

Accordingly, by similar arguments as above, it follows that

V n = lim x→0 d n dx n
x(e x + 1) -2(e x -1)

x 3 /6 -1 = n k=0 (-1) k k!6 k B n,k 1 3 • 4 , 1 4 • 5 , . . . , 1 (n -k + 3)(n -k + 4)
.

By virtue of the formula (2.3), we have

∞ n=k B n,k 1 3 • 4 , 1 4 • 5 , . . . , 1 (n -k + 3)(n -k + 4) t n n! = 1 k! ∞ m=1 1 (m + 2)(m + 3) t m m! k = 1 k! 6t(e t + 1) -t 3 -12(e t -1) 6t 3 k = 1 k! 2 k t 2k e t + 1 2 - t 2 12 - e t -1 t k = 1 k! 2 k t 2k k =0 (-1) k e t + 1 2 - t 2 12 k- e t -1 t which is equivalent to ∞ =0 B +k,k 1 3 • 4 , 1 4 • 5 , . . . , 1 ( + 3)( + 4) 1 +k k t ! = 2 k t 3k k =0 (-1) k e t + 1 2 - t 2 12 
ke t -1 t .

This implies that, by virtue of the L'Hôspital rule and the generating function (2.4) for the Stirling numbers of the second kind S(n, k),

1 m+k k B m+k,k 1 3 • 4 , 1 4 • 5 , . . . , 1 (m + 3)(m + 4) = lim t→0 2 k t 3k k =0 (-1) k e t + 1 2 - t 2 12 k- e t -1 t (m) = 2 k lim t→0 m q=0 m q 1 t 3k (q) k =0 (-1) k e t + 1 2 - t 2 12 k- e t -1 t (m-q) = 2 k lim t→0 m q=0 m q -3k q t 3k+q k =0 (-1) k e t + 1 2 - t 2 12 k- e t -1 t (m-q) = 2 k lim t→0 1 t 3k+m m q=0 m q -3k q k =0 (-1) k t m-q × e t + 1 2 - t 2 12 k- e t -1 t (m-q) = 2 k (3k + m)! lim t→0 m q=0 m q -3k q k =0 (-1) k × t m-q e t + 1 2 - t 2 12 k- e t -1 t (m-q) (3k+m) = 2 k (3k + m)! lim t→0 m q=0 m q -3k q k =0 (-1) k 3k+m p=0 3k + m p × (t m-q ) (p) e t + 1 2 - t 2 12 k- e t -1 t (m-q) (3k+m-p) = 2 k (3k + m)! m q=0 m q -3k q k =0 (-1) k 3k + m m -q (m -q)! × lim t→0 e t + 1 2 - t 2 12 k- e t -1 t (3k+m) = 2 k (3k + m)! m q=0 m q -3k q k =0 (-1) k 3k + m m -q (m -q)! × lim t→0 3k+m p=0 3k + m p e t + 1 2 - t 2 12 k-(3k+m-p) e t -1 t (p) = 2 k (3k + m)! m q=0 m q -3k q k =0 (-1) k 3k + m m -q (m -q)! × lim t→0 3k+m p=0 3k + m p e t + 1 2 - t 2 12 k-(3k+m-p) ! ∞ r=p S(r + , ) (r + )! r p t r-p = 2 k (3k + m)! m q=0 m q -3k q k =0 (-1) k 3k + m m -q (m -q)! × 3k+m p=0 3k + m p lim t→0 e t + 1 2 - t 2 12 k-(3k+m-p) S(p + , ) p+ ,
where

lim t→0 e t + 1 2 - t 2 12 k-(τ ) = lim t→0 k- s=0 (-1) k--s k - s e t + 1 2 s t 2 12 k--s (τ ) = lim t→0 k- s=0 (-1) k--s 12 k--s k - s e t + 1 2 s t 2(k--s) (τ ) = lim t→0 k- s=0 (-1) k--s 12 k--s 2 s k - s t 2(k--s) s β=0 s β e βt (τ ) = lim t→0 k- s=0 (-1) k--s 12 k--s 2 s k - s t 2(k--s) s β=0 s β ∞ γ=0 β γ t γ γ! (τ ) = lim t→0 k- s=0 (-1) k--s 12 k--s 2 s k - s s β=0 s β ∞ γ=0 β γ γ! t 2(k--s)+γ (τ ) = lim t→0 k- s=0 (-1) k--s 12 k--s 2 s k - s s β=0 s β ∞ γ=0 β γ γ! 2(k --s) + γ τ t 2(k--s)+γ-τ = k- s=0 (-1) k--s 12 k--s 2 s k - s s β=0 s β β τ -2(k--s) [τ -2(k --s)]! τ τ .
Consequently, we have

B m+k,k 1 3 • 4 , 1 4 • 5 , . . . , 1 (m + 3)(m + 4) = (-1) k (3k + m)!6 k m + k k m q=0 -3k q m q 3k + m m -q (m -q)! × k =0 12 k 3k+m p=0 (3k + m -p)! 3k + m p S(p + , ) p+ × k- s=0 k - s (-6) s (k + m -p + 2 + 2s)! s β=1 s β β k+m-p+2 +2s .
The proof of Theorem 2.7 is complete.

Theorem 2.8. For n ≥ k ≥ 0, we have

W (n, k) = B n,k (-2, 0, 1, 2, . . . , n -k -1) = n k n-k =0 (-2) k n-k- n -k S( + k, k) +k k (2.8) 
and

W n = n k=0 k! 4 k W (n, k) = n k=0 k! 4 k n k n-k =0 (-2) k n-k- n -k S( + k, k) +k k . (2.9)
Proof. It is not difficult to find that

x(e x -1) -2(e x + 1) =

∞ k=1 x k+1 k! -2 ∞ k=0 x k k! -2 = ∞ k=2 x k (k -1)! -2 ∞ k=2 x k k! -2x -4 = ∞ k=3 (k -2) x k k! -2x -4.
Consequently, it follows that [x(e x -1) -2(e x + 1)] x=0 = -2, [x(e x -1) -2(e x + 1)] x=0 = 0, and [x(e x -1) -2(e x + 1)] (n) x=0 = n -2, n ≥ 3. Therefore, we can derive that

W n = lim x→0 d n dx n - 4 x(e x -1) -2(e x + 1) = -4 n k=0 (-1) k k! (-4) k+1 B n,k (-2, 0, 1, 2, . . . , n -k -1) = n k=0 k! 4 k B n,k (-2, 0, 1, 2, . . . , n -k -1) for n ≥ 0. Since ∞ n=k W (n, k) x n n! = 1 k! [(x -2)(e x -1)] k = 1 k! (x -2) ∞ n=1 x n n! k = 1 k! ∞ n=2 x n (n -1)! -2 ∞ n=1 x n n! k = 1 k! -2x + ∞ n=2 (n -2) x n n! k ,
comparing with (2.3) recovers the first equality in (1.27). Consequently, we have

W (n + k, k) n+k k = B n+k,k (-2, 0, 1, 2, . . . , n -1) n+k k = lim t→0 d n dt n (t -2) e t -1 t k = lim t→0 n =0 n (t -2) k ( ) e t -1 t k (n-) = lim t→0 n =0 n k (t -2) k-k! ∞ p=n- S(p + k, k) (p + k)! p n-t p-(n-) = n =0 n k (-2) k-k! S(n -+ k, k) (n -+ k)! n -n- = k! n =0 n k n-(-2) S( + k, k) ( + k)! .
As a result, it follows that

B n+k,k (-2, 0, 1, 2, . . . , n -1) = n + k k n =0 (-2) k n- n S( + k, k) +k k
.

The proof of Theorem 2.8 is complete.

Theorem 2.9. For n ≥ 3k, we have

A(3k, k) = V (3k, k), A(n + 1, k) = V (n + 1, k) - n + 1 2 V (n, k) (2.10) and V (n, k) = B n,k (0, 0, 1, 2, . . . , n -k -1) = 2 k n k k =0 (-1) k-k × n-k q=0 n -k q S(n -q -, k -) n-q- n-q q m=0 m 2 m S(q, m). (2.11) Proof. Since k! ∞ n=3k A(n, k) x n n! = 1 - x 2 [x(e x + 1) -2(e x -1)] k = 1 - x 2 k! ∞ n=3k V (n, k) x n n! = k! ∞ n=3k V (n, k) x n n! - 1 2 ∞ n=3k V (n, k) x n+1 n! = k! ∞ n=3k V (n, k) x n n! - 1 2 ∞ n=3k+1 V (n -1, k) x n (n -1)! = k!V (3k, k) + k! ∞ n=3k+1 V (n, k) - n 2 V (n -1, k) x n n! ,
then the relations in (2.10) follow immediately.

Combining the formula (2.3) with

∞ n=3k V (n, k) x n n! = 1 k! [x(e x + 1) -2(e x -1)] k = 1 k! ∞ =3 ( -2)
x ! k reveals that the formula (1.26) for n ≥ 3k. By virtue of (2.3), we have

∞ n=k B n,k (0, 0, 1, 2, . . . , n -k -1) t n n! = 1 k! ∞ m=3 (m -2) t m m! k , ∞ n=0 
B n+k,k (0, 0, 1, 2, . . . , n -1)

n+k k t n n! = 2 k e t + 1 2 - e t -1 t k , B n+k,k (0, 0, 1, 2, . . . , n -1) n+k k = 2 k lim t→0 d n dt n e t + 1 2 - e t -1 t k = 2 k lim t→0 d n dt n k =0 (-1) k-k e t + 1 2 e t -1 t k- = 2 k lim t→0 k =0 (-1) k-k n q=0 n q e t + 1 2 (q) e t -1 t k-(n-q) = lim t→0 k =0 (-2) k-k n q=0 n q q m=0
m (e t + 1) -m B q,m (e t , e t , . . . , e t )

× (k -)! ∞ p=n-q S(p + k -, k -) (p + k -)! p n-q t p-(n-q) = k =0 (-2) k-k n q=0 n q q m=0 m 2 -m B q,m (1, 1, . . . , 1) ×(k -)! S(n -q + k -, k -) (n -q + k -)! n -q n-q = (-2) k k =0 (-1) k n q=0 n q S(n -q + k -, k -) n-q+k- n-q q m=0 m 2 m S(q, m).
The formula (2.11) follows readily. The proof of Theorem 2.9 is complete.

A closed formula for a special Bell polynomial

The quantity B n,k (a 1 , a 2 , 3-α, 4-α, . . . , (n-k+1)-α) was specially investigated in [START_REF] Howard | A special class of Bell polynomials[END_REF], but there was no closed formula developed for it there. We now start out to derive a closed and explicit formula for B n,k (a 1 , a 2 , 3 -α, 4 -α, . . . , (n -k + 1) -α). Theorem 3.1. For n ≥ k ≥ 0, we have

B n,k (a 1 , a 2 , 3 -α, 4 -α, . . . , (n -k + 1) -α) = n! k! k m=0 k m p+q+r=n-k (-α) m-q (a 1 + α) k-m-p × a 2 + α 2 -1 p k -m p m q p!q!r! S(r + m, m) r+m r . (3.1)
Proof. By virtue of (2.3), we have

∞ n=k B n,k (a 1 , a 2 , 3 -α, 4 -α, . . . , (n -k + 1) -α) t n n! = 1 k! a 1 t + a 2 2 t 2 + ∞ m=3 (m -α) t m m! k = t k k! a 1 + α + a 2 + α 2 -1 t + (t -α) e t -1 t k which is equivalent to ∞ n=0 B n+k,k (a 1 , a 2 , 3 -α, 4 -α, . . . , (n + 1) -α) n+k k t n n! = a 1 + α + a 2 2 + α 2 -1 t + (t -α) e t -1 t k .
Therefore, it follows that, when A = a 1 + α and B = a2+α

2 -1, B n+k,k (a 1 , a 2 , 3 -α, 4 -α, . . . , (n + 1) -α) = n + k k lim t→0 d n dt n a 1 + α + a 2 2 + α 2 -1 t + (t -α) e t -1 t k = n + k k lim t→0 d n dt n k =0 k (A + Bt) (t -α) k-e t -1 t k- = n + k k lim t→0 k =0 k p+q+r=n n! p!q!r! (A + Bt) (p) × (t -α) k-(q) e t -1 t k-(r) = n + k k lim t→0 k =0 k p+q+r=n n! p!q!r! p B p (A + Bt) -p k -q (t -α) k--q ×(k -)! ∞ s=r S(s + k -, k -) (s + k -)! s r t s-r = n + k k k =0 k p+q+r=n n! p!q!r! p B p A -p k -q ×(-α) k--q (k -)! S(r + k -, k -) (r + k -)! r r = n! n + k k k =0 k p+q+r=n (-α) k--q B p A -p p k -q p!q!r! S(r + k -, k -) r+k- r
.

The equality (3.1) is thus proved. The proof of Theorem 3.1 is thus complete.

Remarks and comparisons

We now list several remarks and comparisons about our main results and some known results. Comparing this with (1.17) demonstrates that

k n-k (n -k)! k =0 k n-k q=0 (-1) q k q
n -k q S(q + , ) ( -q)![(n -k) -( -q)]! S(n -k + q, ) n-k+q

(n-k)-( -q) (x -1) q = k =0 q=0 k q !S(n -k + q, ) (n -k + q)! (x -1) q = k q=0 k =q k q !S(n -k + q, ) (n -k + q)! (x -1) q = k =0 k m= k m m m!S(n -k + , m) (n -k + )! (x -1) = k =0 k- q=0 k + q + q ( + q)!S(n -k + , + q) (n -k + )! (x -1)
which implies

k n (n + )! n! k n q=0
(-1) q k q n q S(q + , ) q+ = k-q=0 k + q + q ( + q)!S(n + , + q). (4.2)

In particular, letting = k in (4.2) results in an interesting identity n q=0 (-1) q n q S(q + k, k) k for the Chebyshev polynomials of the second kind U n was recovered by virtue of the formulas (1.1) and (1.8). We remark that the formula (4.5) was ever recovered in [55, p. 127] simply from a formula

U n (x) = n/2 m=0 n + 1 2m + 1 x n-2m x 2 -1 m (4.6)
in [START_REF] Mason | Chebyshev Polynomials[END_REF], where x is the floor function whose value equals the largest integer less than or equal to x. However, it seems that the formula (4.6) does not appear in [START_REF] Mason | Chebyshev Polynomials[END_REF].

Remark 4.8. This paper is a slightly corrected and revised version of the electronic preprint [START_REF] Qi | Special values of the Bell polynomials of the second kind for some sequences and functions[END_REF].
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Remark 4 . 3 . 1 )

 431 Taking a 1 = x, a 2 = 1 + x, and α = 1 -x in Theorem 3.1 gives B n,k (x, 1 + x, 2 + x, 3 + x, . . . , n -k + x) -q .

Remark 4 . 4 .Remark 4 . 5 .kRemark 4 . 6 .

 444546 Letting a 1 = 1, a 2 = 2, and α = 0 in Theorem 3.1 yieldsB n,k (1, 2, 3, 4, . . . , n -k + 1) = n! (n -k)! k =0 S(n -k, ) (k -)! .Comparing this with (1.18) leads to an identity (n, j)in[99, p. 116, (9.11)]. Setting a 1 = x, a 2 = 2, and α → 0 in Theorem 3.1 reduces toB n,k (x, 2, 3, 4, . . . , n -k + 1) (k -)!S(n -k, k -)x .Letting x → 0 in the above equation recovers(1.20). Comparing (1.22) with the above equation revealsk r=0 k r (k -r) n-k (x -1) r = k =0 k (k -)!S(n -k, k -)x (4.4)In particular, when x = 1 in (4.4), we obtain the equation (4.3) once again. Three special casesB n,k (1, 2, 3, . . . , n -k + 1) = n k k n-k , B n,k (0, 2, 3, . . . , n -k + 1) = n! (n -k)! S(n -k, k),andB n,k (0, 0, 3, 4, . . . , n -k + 1) = n! -k -, k -) (n -k -)!of Theorem 3.1 have been applied in[START_REF] Qi | Recurrences of Stirling and Lah numbers via second kind Bell polynomials[END_REF] to construct several recursive relations of the Stirling numbers of the second kind S(n, k) which have interpretations in combinatorics and number theory.

Remark 4 . 7 . 2 =0

 472 In[START_REF] Qi | Notes on explicit and inversion formulas for the Chebyshev polynomials of the first two kinds[END_REF] Theorem 1], among other things, the formulaU n (x) = x n n/

  Remark 4.1. Although those formulas in Theorem 2.7 are a little complex, but they are surely closed formulas for

	B n,k	1 3 • 4	,	1 4 • 5	, . . . ,	1 (n -k + 3)(n -k + 4)	(4.1)
	and V n . If computing along alternative approaches the nth derivative of the function
		1 t 2k	e t + 1 2	-	t 2 12	-	t e t -1	k
	with respect to t, then we can find alternative closed formulas for the quantity (4.1)
	and the sequence V n .						
	Remark 4.2. The formulas (2.8) and (2.9) are slightly different from the formu-
	las (1.27) and (1.25) respectively.			
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