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Abstract. In the paper, after concisely surveying some closed formulas and

applications of special values of the Bell polynomials of the second kind for
some special sequences and elementary functions, the authors newly establish

some closed formulas for some special values of the Bell polynomials of the

second kind.
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(1) In the first section, we will concisely survey some closed formulas and ap-
plications of special values of the Bell polynomials of the second kind for
some special sequences and elementary functions. Most of these results are
formally published and applied in recent years.

(2) In the second section, we will discover or recover some relations and closed
formulas for those numbers discussed in [20] by Howard.

(3) In the third section, we will establish a closed formula for a special Bell
polynomial of the second kind which was mentioned in [20] by Howard.

Finally, in the fourth section, we will simply compare our main results with some
known results.

1. Survey of closed formulas for the Bell polynomials

In [6, Definition 11.2] and [7, p. 134, Theorem A], the Bell polynomials of the
second kind, denoted by Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(
xi
i!

)`i
.

The Faà di Bruno formula, see [6, Theorem 11.4] and [7, p. 139, Theorem C], can
be described in terms of Bn,k(x1, x2, . . . , xn−k+1) by

dn

dxn
f ◦ h(x) =

n∑
k=0

f (k)(h(x)) Bn,k
(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
. (1.1)

The identity

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1) (1.2)

for n ≥ k ≥ 0 and a, b ∈ C can be found in [6, p. 412] and [7, p. 135].
There have been a number of literature, such as [1, 6, 7, 20, 22, 23, 26, 27, 102,

103, 104, 105], dedicated to the general theory of the Bell polynomials of the second
kind Bn,k(x1, x2, . . . , xn−k+1).

In mathematics, a closed form is a mathematical expression that can be evaluated
in a finite number of operations. It may contain constants, variables, four arithmetic
operations, and elementary functions, but usually no limit.

In this paper, we pay our main attention on closed and explicit formulas, rather
than recursive identities like (1.2), of the Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) for x1, x2, . . . , xn−k+1 to be replaced by some special se-
quences and elementary functions.

We now concisely survey some formulas and applications of the polynomials
Bn,k(x1, x2, . . . , xn−k+1) for x1, x2, . . . , xn−k+1 to be replaced by some special se-
quences and elementary functions.

1.1. Exponential function. To find general formulas of the nth derivatives for
functions of the type f(ex), such as 1

e±x±1 , by the Faà di Bruno formula (1.1), we
need to compute

Bn,k
(
(e±x)′, (e±x)′′, . . . , (e±x)(n−k+1)

)
= Bn,k

(
±e±x, (±1)2e±x, . . . , (±1)n−k+1e±x

)
= (±1)ne±kx Bn,k(1, 1, . . . , 1),

where we used in the last step the identity (1.2). In [7, p. 135], it is given that

Bn,k(1, 1, . . . , 1) = S(n, k), (1.3)
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where S(n, k) denotes the Stirling numbers of the second kind. Consequently, by
the Faà di Bruno formula (1.1) and the identities (1.2) and (1.3), for example, we
can easily obtain(

1

e±x ± 1

)(n)

= (±1)n
n∑
k=0

(−1)kk!S(n, k)
e±kx

(e±x ± 1)k+1
.

For more information on applications of the identity (1.3), please read the pa-
pers [11, 12, 13, 15, 18, 30, 32, 35, 45, 50, 51, 60, 63, 73, 74, 79, 84, 100, 101, 106,
107, 109] and closely related references therein.

1.2. Logarithmic function. To acquire general formulas of the nth derivatives
for functions of the type f(lnx), such as 1

ln(1+x) , by the Faà di Bruno formula (1.1)

and the identity (1.2), we need to compute

Bn,k
(
[ln(1 + x)]′, [ln(1 + x)]′′, . . . , [ln(1 + x)](n−k+1)

)
= Bn,k

(
1

1 + x
,
−1

(1 + x)2
, . . . ,

(−1)n−k(n− k)!

(1 + x)n−k+1

)
=

(−1)n−k

(1 + x)n
Bn,k(0!, 1!, . . . , (n− k)!).

In [7, p. 135], it is listed that

Bn,k(0!, 1!, 2!, . . . , (n− k)!) = (−1)n−ks(n, k), (1.4)

where s(n, k) denotes the Stirling numbers of the first kind. Consequently, by virtue
of the Faà di Bruno formula (1.1) and the identities (1.2) and (1.4), as an example,
we have [

1

ln(1 + x)

](n)
=

1

(1 + x)n

n∑
k=0

(−1)kk!s(n, k)

lnk+1(1 + x)
.

For more information on applications of the identity (1.4), please refer to [29, 38,
39, 41, 42, 44, 46, 73, 80, 91, 95, 96] and closely related references therein.

1.3. Power function. To establish general formulas of the nth derivatives for

functions of the type f(xα) for α ∈ R, such as ex
2

and sin
√
a+ bx , by the Faà di

Bruno formula (1.1) and the identity (1.2), we need to calculate

Bn,k
(
(xα)′, (xα)′′, . . . , (xα)(n−k+1)

)
= xkα−n Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1),

where

〈α〉n =

n−1∏
k=0

(α− k) =

{
α(α− 1) · · · (α− n+ 1), n ≥ 1

1, n = 0

is called [87] the falling factorial. In [83], it was discovered that

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈α`〉n. (1.5)

The formula (1.5) has an equivalent form

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
`=0

(1− `λ)

)

=
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`− qλ) (1.6)
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which was earlier obtained in [72]. For more information on applications of the
formula (1.6), please see [49, 55, 56, 67, 72, 76, 77, 81, 83] and closely related
references.

Taking λ = 0 in (1.6) recovers the identity (1.3). Letting λ = −1 in (1.6) and
simplifying give

Bn,k(1!, 2!, 3!, . . . , (n− k + 1)!) = (−1)k
n!

k!

k∑
`=1

(−1)`
(
k

`

)(
n+ `− 1

`− 1

)
=

(
n− 1

k − 1

)
n!

k!

(1.7)

which is the Lah numbers collected in [6, p. 450] and [7, p. 135]. For more informa-
tion on applications of the formula (1.7), please refer to the papers [17, 33, 37, 39,
47, 48, 59, 62, 66, 69, 71, 72, 73, 77, 83, 87, 88, 93] and closely related references
therein.

By the way, the nth derivatives for functions of the type f(xn) were recursively,
not explicitly, discussed in [27, Section 4].

1.4. A sequence related to square. In [65, Theorem 5.1] and [97, Section 3], it
was found little by little that

Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n, (1.8)

where
(
0
0

)
= 1 and

(
p
q

)
= 0 for q > p ≥ 0. Consequently, as an example, we have(
ex

2
)(n)

= ex
2 n!

(2x)n

n∑
k=0

(
k

n− k

)
(2x)2k

k!
.

Taking α = 2 in (1.5) or taking λ = 1
2 in (1.6), making use of (1.2), letting x = 1

in (1.8), and comparing yield the sum

k∑
`=0

(−1)k−`
(
k

`

)
〈2`〉n =

n!

2n−2k

(
k

n− k

)
.

One of anonymous referees pointed out that the formula (1.8) is essentially the
same as those formulas in [26, Section 4]. The difference is that, in the article [26],
the expressions are given, in compact form, in terms of the Hermite-Kampé de
Fériet polynomials. By using definitions of these classical polynomials [3], the
explicit forms given in (1.8) can be recovered.

For detailed information on applications of the formula (1.8), please refer to the
papers [31, 40, 54, 56, 62, 65, 67, 70, 72, 82, 83, 86, 88, 97, 98, 101, 111] and closely
related references therein.

1.5. Square roots. In [88, Theorem 1.4], it was presented that

Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
= (−1)n+k[2(n− k)− 1]!!

(
b

2

)n(
2n− k − 1

2(n− k)

)
1

(a+ bx)n−k/2
, (1.9)

where g(x) =
√
a+ bx for a, b ∈ R and b 6= 0.

Setting a = 0 and b = 1 and letting x→ 1 in (1.9) result in

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!) = [2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
, (1.10)
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where the double factorial of negative odd integers −(2`+ 1) is defined by

(−2`− 1)!! =
(−1)`

(2`− 1)!!
= (−1)`

2``!

(2`)!
, ` ≥ 0.

Taking α = 1
2 in (1.5) or taking λ = 2 in (1.6), simplifying, and comparing

with (1.10) arrive at the sum

k∑
`=0

(−1)`
(
k

`

)〈
`

2

〉
n

= (−1)n
k![2(n− k)− 1]!!

2n

(
2n− k − 1

2(n− k)

)
.

By virtue of the formula (1.1), the identity (1.2), and the formula (1.10) in
sequence, we derived in [83] five closed formulas for the (modified) spherical Bessel

functions jn(z), yn(z), i
(1)
n (z), i

(2)
n (z), and kn(z), whose definitions can be found

in [28, p. 262–266], from considering the nth derivatives of the functions

cos
√
z2 − 2zt , sin

√
z2 − 2zt , cosh

√
z2 + 2izt ,

sinh
√
z2 + 2izt , exp

(
−
√
z2 + 2izt

)
with respect to t.

In [8], it was obtained that

dn
(
es
√
x
)

dxn
=

(
s

2
√
x

)n
es
√
x
n−1∑
k=0

(
1

s
√
x

)k
(−1)k(n+ k − 1)!

2kk!(n− k − 1)!
(1.11)

and

Kn−1/2
(
−
√
x
)

=
√
π (−1)−1/2

(
2
√
x
)n−1/2(

e
√
x
)(n)

,

where n ≥ 1, x > 0, and

Kn+1/2(z) =

√
π

2z
e−z

n∑
k=0

(n+ k)!

k!(n− k)!(2z)k
, z ∈ C

is known as the modified spherical Bessel functions of the third kind [2, p. 444,
10.2.15]. In [25], it was further established that

I
(`)
n−1/2

(
−
√
x
)

=
(−1)(−1)

n−1/2

√
π

(
2
√
x
)n−1/2[

e(−1)
`√x ](n),

H
(`)
n−1/2

(
−i
√
x
)

=
2(−1)(−1)

n−1/2

√
π

(
2i
√
x
)n−1/2[

e(−1)
`−1√x ](n),

and

H
(2)
n−1/2

(
i
√
x
)

=
2√
π

(
2i
√
x
)n−1/2(

e
√
x
)(n)

for i =
√
−1 and ` = 1, 2, where

I
(`)
n+1/2(z) =

(−1)(`−1)(n+1)

√
2πz

e(−1)
`−1z

n∑
k=0

(−1)`k(n+ k)!

k!(n− k)!(2z)k

for z ∈ C and ` = 1, 2, which can be derived from a combination of [2, p. 443, 10.2.9
and 10.2.11], are known as the modified spherical Bessel functions of the first kind,
and

H
(`)
n−1/2(z) =

√
2

πz
i(−1)

`ne(−1)
`−1iz

n−1∑
k=0

(−1)`k
(n+ k − 1)!

k!(n− k − 1)!(2iz)k

for z ∈ C and ` = 1, 2, which is a combination of the formulas (1.7) and (1.8) in [25],
are known as the Hankel functions. By virtue of the Faà di Bruno formula (1.1)
and the formula (1.9) for a = b = 1, we can simply recover the formula (1.11).
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The modified Bessel functions of the first kind, which are related to the modified
spherical Bessel functions mentioned above, were applied and studied in [19, 43, 52,
89, 90, 94]. For more information on applications of the formulas (1.9) and (1.10),
please refer to the papers [49, 68, 73, 83, 93, 88] and closely related references
therein.

1.6. Sine and cosine. In [34, Theorem 1.2], it was derived that

Bn,k

(
− sinx,− cosx, sinx, cosx, . . . , cos

[
x+

(n− k + 1)π

2

])
=

(−1)k cosk x

k!

k∑
`=0

(
k

`

)
(−1)`

(2 cosx)`

∑̀
q=0

(
`

q

)
(2q − `)n cos

[
(2q − `)x+

nπ

2

]
(1.12)

and

Bn,k

(
cosx,− sinx,− cosx, sinx, . . . , sin

[
x+

(n− k + 1)π

2

])
=

(−1)k sink x

k!

k∑
`=0

(
k

`

)
1

(2 sinx)`

∑̀
q=0

(−1)q
(
`

q

)
(2q−`)n cos

[
(2q−`)x+

(n− `)π
2

]
.

(1.13)

Since sin
(
x± π

2

)
= ± cosx and cos

(
x± π

2

)
= ∓ sinx, the formulas (1.12) and (1.13)

are equivalent to each other. These two formulas can be applied to establish general
formulas of the nth derivatives for functions of the types f(sinx) and f(cosx), such
as sinα x, cosα x, secα x, cscα x, e± sin x, e± cos x, ln cosx, ln sinx, ln secx, ln cscx,
sin sinx, cos sinx, sin cosx, cos cosx, tanx, and cotx. For more information on
related applications and approaches, please refer to the papers [34, 57, 61, 101, 106,
108] and closely related references therein.

Recall from [4, p. 243, Eq. (10) and p. 250, Theorem 16] and [5, p. 152, Eq. (3.9)]
that weighted Stirling numbers, whose definitions can be found in [4, 5, 9], can be
generated by

(et − 1)k

k!
ert =

∞∑
n=0

Sr(n, k)
tn

n!
=

∞∑
n=k

Sr(n, k)
tn

n!
.

Recall from [5, p. 152, Eq. (3.8)] that

Sr(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
(r + j)n, n ≥ k ≥ 0.

It is clear that S0(n, k) = S(n, k) and Sr(n,m) = 0 for m > n. See also [10, 65]
and closely related reference therein. Taking x→ 0 in (1.12) and (1.13) leads to

Bn,k

(
0,−1, 0, 1, . . . , cos

(n− k + 1)π

2

)
=

(−1)k

k!

(
cos

nπ

2

) k∑
`=0

(−1)`

2`

(
k

`

)∑̀
q=0

(
`

q

)
(2q − `)n (1.14)

and

Bn,k

(
1, 0,−1, 0, . . . , sin

(n− k + 1)π

2

)
=

(−1)k

k!2k

[
cos

(n− k)π

2

] k∑
q=0

(−1)q
(
k

q

)
(2q − k)n
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=

[
cos

(n− k)π

2

]
2n−kS−k/2(n, k). (1.15)

Similar to the formulas (1.14) and (1.15), another two formulas

Bn,k

(
1, 0, 1, . . . ,

1− (−1)n−k+1

2

)
=

1

2kk!

k∑
`=0

(−1)`
(
k

`

)
(k − 2`)n

= (−1)n−k2n−kS−k/2(n, k) = 2n−kS−k/2(n, k)

and

Bn,k

(
0, 1, 0, . . . ,

1 + (−1)n−k+1

2

)
=

1

2kk!

2k∑
`=0

(−1)`
(

2k

`

)
(k − `)n

= (−1)n
(2k)!

(2k)!!
S−k(n, 2k),

where 00 is regarded as 1, were established, discussed, and applied to derive a closed
formula for the Euler numbers in [65, 92, 101].

1.7. Two sequences related to factorials. In [37, Theorem 1.1], the formulas

Bn,k

(
1!

2
,

2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)
= (−1)n−k

1

k!

k∑
m=0

(−1)m
(
k

m

)
s(n+m,m)(

n+m
m

)
and

Bn,k(0, 1!, 2! . . . , (n− k)!) = (−1)n
(
n

k

) k∑
`=0

(−1)`
(
k
`

)(
n−k+`

`

)s(n− k + `, `)

were proved for n ≥ k ≥ 1. These two formulas were used in [37, 59] to discover
diagonal recurrence relations for the Stirling numbers of the first kind.

1.8. Two simple sequences. In [14, 16, 36, 53, 58, 110], the formulas

Bn,k(0, 1, . . . , 1) =

k∑
`=0

(−1)`
(
n

`

)
S(n− `, k − `)

and

Bn,k

(
1

2
,

1

3
, . . . ,

1

n− k + 2

)
=

n!

(n+ k)!

k∑
`=0

(−1)k−`
(
n+ k

k − `

)
S(n+ `, `) (1.16)

were established and applied to investigate functions of the type f
(
et−1
t

)
such as

generating functions for the Bernoulli numbers and polynomials and for the Stirling
numbers and polynomials.

1.9. A sequence containing factorials. In [86, Lemma 6], among other things,
the formula

Bn,k(2!, 3!, . . . , (n− k + 2)!) =
n!

k!

k∑
`=0

(−1)k−`
(
k

`

)(
n+ 2`− 1

n

)
,

where
(
q
0

)
= 1 for all q ∈ C, was deduced for establishing a closed formula for the

large Schröder numbers. See also [62] and closely related references therein.
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1.10. A sequence from natural numbers. In [64, Lemma 2], the formula

Bn,k(x, 1 + x, 2 + x, . . . , n− k + x)

= kn−k
(
n

k

) k∑
`=0

(
k

`

)[n−k∑
q=0

(−1)q

kq

(
n− k
q

)
S(`+ q, `)(

`+q
`

) ]
(x− 1)` (1.17)

was proved and applied to acquire closed formulas for derangement numbers and
their generating function. From (1.17), the formula

Bn,k(1, 2, 3, . . . , n− k + 1) =

(
n

k

)
kn−k (1.18)

listed in [6, p. 451] and [7, p. 135] can be recovered straightforwardly.

1.11. Several sequences related to factorials. In [6, p. 451], the formulas

B2r,k(0, 2!, . . . , 0, (2r)!) =
(2r)!

k!

(
r − 1

k − 1

)
,

B2r−1,k(0, 2!, . . . , (2r − 2)!, 0) = 0,

B2r,2s(1!, 0, . . . , (2r − 1)!, 0) =
(2r)!

(2s)!

(
r + s− 1

2s− 1

)
,

B2r,2s−1(1!, 0, . . . , (2r − 1)!, 0) = 0,

B2r−1,2s−1(1!, 0, . . . , (2r − 1)!, 0) =
(2r − 1)!

(2s− 1)!

(
r + s− 2

2s− 2

)
,

B2r−1,2s(1!, 0, . . . , 0, (2r − 1)!) = 0

were stated as exercises. These six formulas can be uniformly written as

Bn,k

(
0, 2!, 0, 4!, . . . , (n− k + 1)!

1 + (−1)n−k+1

2

)
=

1 + (−1)n

2

n!

k!

(n
2 − 1

k − 1

)
and

Bn,k

(
1!, 0, 3!, 0, . . . , (n− k + 1)!

1− (−1)n−k+1

2

)
=

1 + (−1)n+k

2

n!

k!

(n+k
2 − 1

k − 1

)
.

For details on discussion of these quantities, please refer to [70, Lemma 2.5], [75]
and closely related references therein.

1.12. Several sequences from natural numbers. A class of the Bell polynomi-
als of the second kind

Bn,k(a1, a2, 3− α, 4− α, . . . , (n− k + 1)− α) (1.19)

were investigated in [20, Section 5]. In [20], the following closed formulas were
presented:

Bn,k(0, 2, 3, . . . , n− k + 1) =
n!

(n− k)!
S(n− k, k), (1.20)

Bn,k(0, 0, 3, 4, . . . , n− k + 1) =
n!

(n− k)!
S(n− k, k; 1), (1.21)

Bn,k(x, 2, 3, 4, . . . , n− k + 1) =

(
n

k

) k∑
r=0

(
k

r

)
(k − r)n−k(x− 1)r, (1.22)

Bn,k(0, 1, 2, 3, . . . , n− k) =

n∑
r=0

(−1)n−r
(
n

r

)
krS(n− r, k; 1), (1.23)



SPECIAL VALUES OF BELL POLYNOMIALS OF SECOND KIND 9

where S(n, k; r) for n ≥ k ≥ 0 and r ≥ 0 are known as the r-associate Stirling
numbers of the second kind and were defined by(

ex −
r∑
i=0

xi

i!

)k
=

( ∞∑
j=r+1

xj

j!

)k
= k!

∞∑
n=(r+1)k

S(n, k; r)
xn

n!
.

in [21, p. 303, eq. (1.2)]. The formula (1.18) gives a closed formula for the special
case a1 = 1, a2 = 2, and α = 0 in (1.19). Substituting 1−α for x in (1.17) leads to

Bn,k(1− α, 2− α, 3− α, . . . , n− k + 1− α)

= kn−k
(
n

k

) k∑
`=0

(−1)`
(
k

`

)[n−k∑
q=0

(−1)q

kq

(
n− k
q

)
S(q + `, `)(

q+`
`

) ]
α`. (1.24)

Letting x = 0 in (1.17) or taking α = 1 in (1.24) results in

Bn,k(0, 1, 2, 3, . . . , n− k) = kn−k
(
n

k

) k∑
`=0

(−1)`
(
k

`

) n−k∑
q=0

(−1)q

kq

(
n− k
q

)
S(q + `, `)(

q+`
`

)
which, due to useless of associate Stirling numbers of the second kind, is more
elementary than (1.23). In [78, Section 2], an alternative expression for (1.21) was
derived in term of the Stirling numbers of the second kind S(n, k).

1.13. Howard’s numbers. In the paper [20] and closely related references therein,
the following numbers and their generating functions were considered:

x2

2

1

ex − x− 1
=

∞∑
n=0

An
xn
n!
,

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
,

2x

ex + 1
=

∞∑
n=1

Gn
xn

n!
, − x2

(x− 2)(ex − x− 1)
=

∞∑
n=0

A′n
xn

n!
,

− 2x

(x− 2)(ex − 1)
=

∞∑
n=0

B′n
xn

n!
, − 4

(x− 2)(ex + 1)
=

∞∑
n=0

G′n
xn

n!
,

x3

6

1

x(ex + 1)− 2(ex − 1)
=

∞∑
n=0

Vn
xn

n!
, − 4

x(ex − 1)− 2(ex + 1)
=

∞∑
n=0

Wn
xn

n!
,

and (
1− x

2

)
[x(ex + 1)− 2(ex − 1)]k = k!

∞∑
n=3k

A(n, k)
xn

n!
,

[x(ex + 1)− 2(ex − 1)]k = k!

∞∑
n=3k

V (n, k)
xn

n!
,

[(x− 2)(ex − 1)]k = k!

∞∑
n=k

W (n, k)
xn

n!
.

Among them, the numbers Bn, Gn, and Vn are called the Bernoulli, Genocchi, and
van der Pol numbers respectively. In [20], among other things, the closed formulas
and identities

Wn =

n∑
k=1

n∑
r=0

(−1)k+r
k!r!

2k+r

(
n

r

)(
k

r

)
S(n− r, k), (1.25)

V (n, k) = Bn,k(0, 0, 1, 2, . . . , n− k − 1), (1.26)
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W (n, k) = Bn,k(−2, 0, 1, 2, 3, . . . , n− k − 1)

=

n∑
r=0

r!

(
n

r

)(
k

r

)
(−2)k−rS(n− r, k)

(1.27)

were obtained.

2. Closed formulas for some numbers discussed by Howard

In this section, we will discover or recover some relations and closed formulas for
those numbers An, Bn, Gn, A′n, B′n, G′n, Vn, Wn, A(n, k), V (n, k), and W (n, k)
which have been discussed in [20].

Theorem 2.1. For n ≥ k ≥ 0, we have

Bn,k

(
1

2 · 3
,

1

3 · 4
, . . . ,

1

(n− k + 2)(n− k + 3)

)
=

(−1)k

[2(n+ k)]!!

(
n

k

) n−k∑
m=0

m!〈−2k〉n−k−m
(
n− k
m

)(
n+ k

m

)

×
k∑
`=0

(−1)`
(
k

`

) n+k∑
q=0

2q〈k − `〉n+k−q
(
n+ k

q

)
S(`+ q, `)(

`+q
`

) (2.1)

and

An =
1

2nn!

n∑
k=0

(
n
k

)(
n+k
k

) n−k∑
m=0

m!〈−2k〉n−k−m
(
n− k
m

)(
n+ k

m

)

×
k∑
`=0

(−1)`
(
k

`

) n+k∑
q=0

2q〈k − `〉n+k−q
(
n+ k

q

)
S(`+ q, `)(

`+q
`

) . (2.2)

Proof. Let u = u(x) = 2(ex−x−1)
x2 . It is easy to see that

lim
x→0

1

u(x)
= lim
x→0

(
x2

2

1

ex − x− 1

)
= 1

and

lim
x→0

u(n)(x) = lim
x→0

[
2(ex − x− 1)

x2

](n)
= lim
x→0

(
2

x2

∞∑
k=2

xk

k!

)(n)

= 2 lim
x→0

[ ∞∑
k=0

xk

(k + 2)!

](n)
= 2 lim

x→0

∞∑
k=n

〈k〉n
(k + 2)!

xk−n

= 2
〈n〉n

(n+ 2)!
= 2

n!

(n+ 2)!
=

2

(n+ 1)(n+ 2)
.

Therefore, by virtue of the Faà di Bruno formula (1.1), we obtain

An = lim
x→0

[
1

u(x)

](n)
= lim
x→0

n∑
k=0

(
1

u

)(k)

Bn,k
(
u′(x), u′′(x), . . . , u(n−k+1)(x)

)
= lim
x→0

n∑
k=0

(−1)kk!

uk+1
Bn,k

(
u′(x), u′′(x), . . . , u(n−k+1)(x)

)
=

n∑
k=0

(−1)kk!2k Bn,k

(
1

2 · 3
,

1

3 · 4
, . . . ,

1

(n− k + 2)(n− k + 3)

)
.
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In [7, p. 133], it was listed that

1

k!

( ∞∑
m=1

xm
tm

m!

)k
=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
(2.3)

for k ≥ 0. From (2.3) it can be deduced that

∞∑
n=k

Bn,k

(
1

2 · 3
,

1

3 · 4
, . . . ,

1

(n− k + 2)(n− k + 3)

)
tn

n!

=
1

k!

[ ∞∑
m=1

1

(m+ 1)(m+ 2)

tm

m!

]k
=

1

k!

[ ∞∑
m=1

tm

(m+ 2)!

]k

=
1

k!

(
et − 1− t− t2

2

t2

)k
=
tk

k!

(
et − 1− t− t2

2

t3

)k
which is equivalent to

∞∑
n=0

Bn+k,k

(
1

2 · 3
,

1

3 · 4
, . . . ,

1

(n+ 2)(n+ 3)

)
k!

(n+ k)!
tn =

(
et − 1− t− t2

2

t3

)k

=
1

t2k

[
et − 1

t
−
(

1 +
t

2

)]k
=

1

t2k

k∑
`=0

(−1)k−`
(
k

`

)(
et − 1

t

)`(
1 +

t

2

)k−`
.

This implies that

Bn+k,k

(
1

2 · 3
,

1

3 · 4
, . . . ,

1

(n+ 2)(n+ 3)

)
n!k!

(n+ k)!

= lim
t→0

[
1

t2k

k∑
`=0

(−1)k−`
(
k

`

)(
et − 1

t

)`(
1 +

t

2

)k−`](n)

= lim
t→0

n∑
m=0

(
n

m

)(
1

t2k

)(m)
[

k∑
`=0

(−1)k−`
(
k

`

)(
et − 1

t

)`(
1 +

t

2

)k−`](n−m)

= lim
t→0

n∑
m=0

(
n

m

)
〈−2k〉m
t2k+m

k∑
`=0

(−1)k−`
(
k

`

)[(
et − 1

t

)`(
1 +

t

2

)k−`](n−m)

= lim
t→0

1

t2k+n

n∑
m=0

(
n

m

)
〈−2k〉m

k∑
`=0

(−1)k−`
(
k

`

)
tn−m

×
[(

et − 1

t

)`(
1 +

t

2

)k−`](n−m)

=
1

(2k + n)!
lim
t→0

(
n∑

m=0

〈−2k〉n−m
(
n

m

) k∑
`=0

(−1)k−`
(
k

`

)
tm

×
[(

et − 1

t

)`(
1 +

t

2

)k−`](m)
)(2k+n)

=
(−1)k

(2k + n)!
lim
t→0

n∑
m=0

〈−2k〉n−m
(
n

m

) k∑
`=0

(−1)`
(
k

`

)

×
2k+n∑
q=0

(
2k + n

q

)
(tm)(q)

[(
et − 1

t

)`(
1 +

t

2

)k−`](m+2k+n−q)
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=
(−1)k

(2k + n)!

n∑
m=0

〈−2k〉n−m
(
n

m

) k∑
`=0

(−1)`
(
k

`

)(
2k + n

m

)

×m! lim
t→0

[(
et − 1

t

)`(
1 +

t

2

)k−`](2k+n)
=

(−1)k

(2k + n)!

n∑
m=0

m!〈−2k〉n−m
(
n

m

)(
2k + n

m

) k∑
`=0

(−1)`
(
k

`

)

× lim
t→0

2k+n∑
q=0

(
2k + n

q

)[(
et − 1

t

)`](q)[(
1 +

t

2

)k−`](2k+n−q)

=
(−1)k

(2k + n)!

n∑
m=0

m!〈−2k〉n−m
(
n

m

)(
2k + n

m

) k∑
`=0

(−1)`
(
k

`

)

× lim
t→0

2k+n∑
q=0

(
2k + n

q

)[
`!

∞∑
p=q

S(p+ `, `)

(p+ `)!
〈p〉qtp−q

]

×〈k − `〉2k+n−q
22k+n−q

(
1 +

t

2

)k−`−(2k+n−q)
=

(−1)k

(2k + n)!

n∑
m=0

m!〈−2k〉n−m
(
n

m

)(
2k + n

m

) k∑
`=0

(−1)`
(
k

`

)

×
2k+n∑
q=0

(
2k + n

q

)[
`!
S(q + `, `)

(q + `)!
〈q〉q

]
〈k − `〉2k+n−q

22k+n−q
,

where we used the L’Hôspital rule and the generating function

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
(2.4)

for the Stirling numbers of the second kind S(n, k). As a result, we procure

Bn+k,k

(
1

2 · 3
,

1

3 · 4
, . . . ,

1

(n+ 2)(n+ 3)

)
=

(−1)k

[2(n+ 2k)]!!

(
n+ k

k

) n∑
m=0

m!〈−2k〉n−m
(
n

m

)(
n+ 2k

m

)

×
k∑
`=0

(−1)`
(
k

`

) n+2k∑
q=0

2q〈k − `〉n+2k−q

(
n+ 2k

q

)
S(q + `, `)(

q+`
`

)
which is equivalent to (2.1). From (2.1), we derive (2.2). The closed formula (2.2)
was numerically verified to be true by the software Mathematica. The proof of
Theorem 2.1 is thus complete. �

Theorem 2.2 ([14, Theorem 1]). For n ≥ 0, we have

Bn =

n∑
i=0

(−1)i
(
n+1
i+1

)(
n+i
i

)S(n+ i, i). (2.5)

Proof. Let v = v(x) = ex−1
x . Then

lim
x→0

[v(x)](n) = lim
x→0

(
ex − 1

x

)(n)

= lim
x→0

( ∞∑
k=1

xk−1

k!

)(n)
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= lim
x→0

[ ∞∑
k=0

xk

(k + 1)!

](n)
= lim
x→0

∞∑
k=n

〈k〉n
(k + 1)!

xk−n =
〈n〉n

(n+ 1)!
=

1

n+ 1

and, in light of (1.1) and (1.16) in sequence,

Bn = lim
x→0

(
x

ex − 1

)(n)

= lim
x→0

[
1

v(x)

](n)
= lim
x→0

n∑
k=0

(
1

v

)(k)

Bn,k
(
v′(x), v′′(x), . . . , v(n−k+1)(x)

)
=

n∑
k=0

lim
x→0

(−1)kk!

vk+1
lim
x→0

Bn,k
(
v′(x), v′′(x), . . . , v(n−k+1)(x)

)
=

n∑
k=0

(−1)kk! Bn,k

(
1

2
,

1

3
, . . . ,

1

n− k + 2

)

=

n∑
k=0

1(
n+k
n

) k∑
`=0

(−1)`
(
n+ k

k − `

)
S(n+ `, `) =

n∑
i=0

(−1)i
(
n+1
i+1

)(
n+i
i

)S(n+ i, i).

The proof of Theorem 2.2 is complete. �

Theorem 2.3 ([11, Theorem 1.1]). For n ∈ N, we have

Gn = n

n−1∑
k=0

(−1)k
k!

2k
S(n− 1, k).

Proof. The generating function of the Genocchi numbers Gn can be rewritten as

2

ex + 1
=

∞∑
n=1

Gn
xn−1

n!
=

∞∑
n=0

Gn+1

n+ 1

xn

n!

which means that, when denoting w = w(x) = ex + 1,

Gn+1

n+ 1
= lim
x→0

(
2

ex + 1

)(n)

= 2 lim
x→0

n∑
k=0

(
1

w

)(k)

Bn,k(ex, ex, . . . , ex)

= 2 lim
x→0

n∑
k=0

(−1)kk!

wk+1
ekx Bn,k(1, 1, . . . , 1)

=

n∑
k=0

(−1)k
k!

2k
Bn,k(1, 1, . . . , 1) =

n∑
k=0

(−1)k
k!

2k
S(n, k)

which gives

Gn+1 = (n+ 1)

n∑
k=0

(−1)k
k!

2k
S(n, k), n ≥ 0

and then recovers [11, Theorem 1.1]. The proof of Theorem 2.3 is complete. �

Theorem 2.4. For n ≥ 0, we have

A′n+1 −
n+ 1

2
A′n = An+1

and

A′n =

n∑
k=0

〈n〉k
2k

An−k =

n∑
p=0

〈n〉n−p
2n−p

Ap
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=
1

2n

n∑
p=0

〈n〉n−p
p!

p∑
k=0

(
p
k

)(
p+k
k

) p−k∑
m=0

m!〈−2k〉p−k−m
(
p− k
m

)(
p+ k

m

)

×
k∑
`=0

(−1)`
(
k

`

) p+k∑
q=0

2q〈k − `〉p+k−q
(
p+ k

q

)
S(q + `, `)(

q+`
`

) . (2.6)

Proof. The generating function of the numbers A′n can be rearranged as

x2

2(ex − x− 1)
=

(
1− x

2

) ∞∑
n=0

A′n
xn

n!
=

∞∑
n=0

A′n
xn

n!
− 1

2

∞∑
n=0

A′n
xn+1

n!

=

∞∑
n=0

A′n
xn

n!
− 1

2

∞∑
n=1

A′n−1
xn

(n− 1)!
= A′0 +

∞∑
n=1

(
A′n −

n

2
A′n−1

)
xn

n!

which implies that A′0 = 1 and

A′n −
n

2
A′n−1 = lim

x→0

[
x2

2(ex − x− 1)

](n)
= An

for n ∈ N. Recursing consecutively and making use of (2.1), the formula (2.6)
follows. The proof of Theorem 2.4 is complete. �

Theorem 2.5. For n ≥ 0, we have

B′0 = 1, B′n+1 −
n+ 1

2
B′n = Bn+1, (2.7)

and

B′n =

n∑
p=0

〈n〉n−p
2n−p

p∑
i=0

(−1)i
(
p+1
i+1

)(
p+i
i

)S(p+ i, i).

Proof. The generating function of the numbers B′n can be formulated as

x

ex − 1
=

(
1− x

2

) ∞∑
n=0

B′n
xn

n!
= B′0 +

∞∑
n=1

(
B′n −

n

2
B′n−1

)
xn

n!

which means that the relation (2.7) is true. Recursing and utilizing (2.5), we obtain

B′n =

n∑
k=0

〈n〉k
2k

Bn−k =

n∑
p=0

〈n〉n−p
2n−p

Bp =

n∑
p=0

〈n〉n−p
2n−p

p∑
i=0

(−1)i
(
p+1
i+1

)(
p+i
i

)S(p+ i, i).

The proof of Theorem 2.5 is complete. �

Theorem 2.6. For n ≥ 0, we have

G′0 = 1, G′n+1 −
n+ 1

2
G′n =

Gn+2

n+ 2
,

and

G′n =

n∑
`=0

〈n〉n−`
2n−`

∑̀
k=0

(−1)k
k!

2k
S(`, k).

Proof. It is easy to see that

2x

ex + 1
= x

(
1− x

2

)[
− 4

(x− 2)(ex + 1)

]
= x

(
1− x

2

) ∞∑
n=0

G′n
xn

n!

= G′0x+

∞∑
n=2

n

(
G′n−1 −

n− 1

2
G′n−2

)
xn

n!
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which leads to G′0 = G1 = 1 and

G′n−1 −
n− 1

2
G′n−2 =

Gn
n
, n ≥ 2.

Recursively, it follows that

G′n =

n∑
k=0

〈n〉k
2k

Gn−k+1

n− k + 1
=

n∑
`=0

〈n〉n−`
2n−`

G`+1

`+ 1
=

n∑
`=0

〈n〉n−`
2n−`

∑̀
k=0

(−1)k
k!

2k
S(`, k).

The proof of Theorem 2.6 is complete. �

Theorem 2.7. For n ≥ k ≥ 0, we have

Bn,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(n− k + 3)(n− k + 4)

)
=

(−1)k

(n+ 2k)!6k

(
n

k

)
×
n−k∑
q=0

〈−3k〉q(n− k − q)!
(
n− k
q

)(
n+ 2k

n− k − q

) k∑
`=0

12`
(
k

`

) n+2k∑
p=0

(n+ 2k − p)!

×
(
n+ 2k

p

)
S(p+ `, `)(

p+`
`

) k−∑̀
s=0

(
k − `
s

)
(−6)s

(n− p+ 2`+ 2s)!

s∑
β=1

(
s

β

)
βn−p+2`+2s

and

Vn =

n∑
k=0

k!

(n+ 2k)!

(
n

k

) n−k∑
q=0

〈−3k〉q(n− k − q)!
(
n− k
q

)(
n+ 2k

n− k − q

)

×
k∑
`=0

12`
(
k

`

) n+2k∑
p=0

(n+ 2k − p)!
(
n+ 2k

p

)
S(p+ `, `)(

p+`
`

)
×
k−∑̀
s=0

(
k − `
s

)
(−6)s

(n− p+ 2`+ 2s)!

s∑
β=1

(
s

β

)
βn−p+2`+2s.

Proof. The generating function of the numbers Vn can be rewritten as[
x(ex + 1)− 2(ex − 1)

x3/6

]−1
=
∞∑
n=0

Vn
xn

n!
.

It is easy to see that

x(ex + 1)− 2(ex − 1)

x3/6
=

6

x3

[
x+

∞∑
k=0

xk+1

k!
− 2

∞∑
k=1

xk

k!

]

=
6

x3

[
x+

∞∑
k=1

xk

(k − 1)!
− 2

∞∑
k=1

xk

k!

]
=

6

x3

∞∑
k=2

[
1

(k − 1)!
− 2

k!

]
xk

=
6

x3

∞∑
k=3

(k − 2)
xk

k!
= 6

∞∑
k=3

(k − 2)
xk−3

k!
= 6

∞∑
k=0

(k + 1)
xk

(k + 3)!

and that

lim
x→0

[
x(ex + 1)− 2(ex − 1)

x3/6

](n)
= 6 lim

x→0

[ ∞∑
k=0

(k + 1)
xk

(k + 3)!

](n)

= 6 lim
x→0

∞∑
k=n

(k + 1)
〈k〉nxk−n

(k + 3)!
= 6(n+ 1)

〈n〉n
(n+ 3)!

=
6

(n+ 2)(n+ 3)
.
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Accordingly, by similar arguments as above, it follows that

Vn = lim
x→0

dn

dxn

[
x(ex + 1)− 2(ex − 1)

x3/6

]−1
=

n∑
k=0

(−1)kk!6k Bn,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(n− k + 3)(n− k + 4)

)
.

By virtue of the formula (2.3), we have

∞∑
n=k

Bn,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(n− k + 3)(n− k + 4)

)
tn

n!

=
1

k!

[ ∞∑
m=1

1

(m+ 2)(m+ 3)

tm

m!

]k

=
1

k!

[
6t(et + 1)− t3 − 12(et − 1)

6t3

]k
=

1

k!

2k

t2k

(
et + 1

2
− t2

12
− et − 1

t

)k
=

1

k!

2k

t2k

k∑
`=0

(−1)`
(
k

`

)(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`
which is equivalent to

∞∑
`=0

B`+k,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(`+ 3)(`+ 4)

)
1(
`+k
k

) t`
`!

=
2k

t3k

k∑
`=0

(−1)`
(
k

`

)(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`
.

This implies that, by virtue of the L’Hôspital rule and the generating function (2.4)
for the Stirling numbers of the second kind S(n, k),

1(
m+k
k

) Bm+k,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(m+ 3)(m+ 4)

)

= lim
t→0

[
2k

t3k

k∑
`=0

(−1)`
(
k

`

)(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`](m)

= 2k lim
t→0

m∑
q=0

(
m

q

)(
1

t3k

)(q)
[

k∑
`=0

(−1)`
(
k

`

)(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`](m−q)

= 2k lim
t→0

m∑
q=0

(
m

q

)
〈−3k〉q
t3k+q

k∑
`=0

(−1)`
(
k

`

)[(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`](m−q)

= 2k lim
t→0

1

t3k+m

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

)
tm−q

×
[(

et + 1

2
− t2

12

)k−`(
et − 1

t

)`](m−q)
=

2k

(3k +m)!
lim
t→0

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

)
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×

(
tm−q

[(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`](m−q))(3k+m)

=
2k

(3k +m)!
lim
t→0

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

) 3k+m∑
p=0

(
3k +m

p

)

× (tm−q)(p)

([(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`](m−q))(3k+m−p)

=
2k

(3k +m)!

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

)(
3k +m

m− q

)
(m− q)!

× lim
t→0

[(
et + 1

2
− t2

12

)k−`(
et − 1

t

)`](3k+m)

=
2k

(3k +m)!

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

)(
3k +m

m− q

)
(m− q)!

× lim
t→0

3k+m∑
p=0

(
3k +m

p

)[(
et + 1

2
− t2

12

)k−`](3k+m−p)[(
et − 1

t

)`](p)

=
2k

(3k +m)!

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

)(
3k +m

m− q

)
(m− q)!

× lim
t→0

3k+m∑
p=0

(
3k +m

p

)[(
et + 1

2
− t2

12

)k−`](3k+m−p)
`!

∞∑
r=p

S(r + `, `)

(r + `)!
〈r〉ptr−p

=
2k

(3k +m)!

m∑
q=0

(
m

q

)
〈−3k〉q

k∑
`=0

(−1)`
(
k

`

)(
3k +m

m− q

)
(m− q)!

×
3k+m∑
p=0

(
3k +m

p

)
lim
t→0

[(
et + 1

2
− t2

12

)k−`](3k+m−p)
S(p+ `, `)(

p+`
`

) ,

where

lim
t→0

[(
et + 1

2
− t2

12

)k−`](τ)
= lim
t→0

[
k−∑̀
s=0

(−1)k−`−s
(
k − `
s

)(
et + 1

2

)s(
t2

12

)k−`−s](τ)

= lim
t→0

k−∑̀
s=0

(−1)k−`−s

12k−`−s

(
k − `
s

)[(
et + 1

2

)s
t2(k−`−s)

](τ)

= lim
t→0

k−∑̀
s=0

(−1)k−`−s

12k−`−s2s

(
k − `
s

)[
t2(k−`−s)

s∑
β=0

(
s

β

)
eβt

](τ)

= lim
t→0

k−∑̀
s=0

(−1)k−`−s

12k−`−s2s

(
k − `
s

)[
t2(k−`−s)

s∑
β=0

(
s

β

) ∞∑
γ=0

βγtγ

γ!

](τ)

= lim
t→0

k−∑̀
s=0

(−1)k−`−s

12k−`−s2s

(
k − `
s

)[ s∑
β=0

(
s

β

) ∞∑
γ=0

βγ

γ!
t2(k−`−s)+γ

](τ)
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= lim
t→0

k−∑̀
s=0

(−1)k−`−s

12k−`−s2s

(
k − `
s

) s∑
β=0

(
s

β

) ∞∑
γ=0

βγ

γ!
〈2(k − `− s) + γ〉τ t2(k−`−s)+γ−τ

=

k−∑̀
s=0

(−1)k−`−s

12k−`−s2s

(
k − `
s

) s∑
β=0

(
s

β

)
βτ−2(k−`−s)

[τ − 2(k − `− s)]!
〈τ〉τ .

Consequently, we have

Bm+k,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(m+ 3)(m+ 4)

)
=

(−1)k

(3k +m)!6k

(
m+ k

k

) m∑
q=0

〈−3k〉q
(
m

q

)(
3k +m

m− q

)
(m− q)!

×
k∑
`=0

12`
(
k

`

) 3k+m∑
p=0

(3k +m− p)!
(

3k +m

p

)
S(p+ `, `)(

p+`
`

)
×
k−∑̀
s=0

(
k − `
s

)
(−6)s

(k +m− p+ 2`+ 2s)!

s∑
β=1

(
s

β

)
βk+m−p+2`+2s.

The proof of Theorem 2.7 is complete. �

Theorem 2.8. For n ≥ k ≥ 0, we have

W (n, k) = Bn,k(−2, 0, 1, 2, . . . , n− k − 1)

=

(
n

k

) n−k∑
`=0

(−2)`〈k〉n−k−`
(
n− k
`

)
S(`+ k, k)(

`+k
k

) (2.8)

and

Wn =

n∑
k=0

k!

4k
W (n, k) =

n∑
k=0

k!

4k

(
n

k

) n−k∑
`=0

(−2)`〈k〉n−k−`
(
n− k
`

)
S(`+ k, k)(

`+k
k

) . (2.9)

Proof. It is not difficult to find that

x(ex − 1)− 2(ex + 1) =

∞∑
k=1

xk+1

k!
− 2

∞∑
k=0

xk

k!
− 2

=

∞∑
k=2

xk

(k − 1)!
− 2

∞∑
k=2

xk

k!
− 2x− 4 =

∞∑
k=3

(k − 2)
xk

k!
− 2x− 4.

Consequently, it follows that

[x(ex − 1)− 2(ex + 1)]′
∣∣
x=0

= −2, [x(ex − 1)− 2(ex + 1)]′′
∣∣
x=0

= 0,

and

[x(ex − 1)− 2(ex + 1)](n)
∣∣
x=0

= n− 2, n ≥ 3.

Therefore, we can derive that

Wn = lim
x→0

dn

dxn

[
− 4

x(ex − 1)− 2(ex + 1)

]
= −4

n∑
k=0

(−1)k
k!

(−4)k+1
Bn,k(−2, 0, 1, 2, . . . , n− k − 1)

=

n∑
k=0

k!

4k
Bn,k(−2, 0, 1, 2, . . . , n− k − 1)
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for n ≥ 0. Since

∞∑
n=k

W (n, k)
xn

n!
=

1

k!
[(x− 2)(ex − 1)]k =

1

k!

[
(x− 2)

∞∑
n=1

xn

n!

]k

=
1

k!

[ ∞∑
n=2

xn

(n− 1)!
− 2

∞∑
n=1

xn

n!

]k
=

1

k!

[
−2x+

∞∑
n=2

(n− 2)
xn

n!

]k
,

comparing with (2.3) recovers the first equality in (1.27). Consequently, we have

W (n+ k, k)(
n+k
k

) =
Bn+k,k(−2, 0, 1, 2, . . . , n− 1)(

n+k
k

)
= lim
t→0

dn

dtn

[
(t− 2)

(
et − 1

t

)]k
= lim
t→0

n∑
`=0

(
n

`

)[
(t− 2)k

](`)[(et − 1

t

)k](n−`)
= lim
t→0

n∑
`=0

(
n

`

)
〈k〉`(t− 2)k−`

[
k!

∞∑
p=n−`

S(p+ k, k)

(p+ k)!
〈p〉n−`tp−(n−`)

]

=
n∑
`=0

(
n

`

)
〈k〉`(−2)k−`k!

S(n− `+ k, k)

(n− `+ k)!
〈n− `〉n−`

= k!

n∑
`=0

(
n

`

)
〈k〉n−`(−2)`

S(`+ k, k)

(`+ k)!
〈`〉`.

As a result, it follows that

Bn+k,k(−2, 0, 1, 2, . . . , n− 1) =

(
n+ k

k

) n∑
`=0

(−2)`〈k〉n−`
(
n

`

)
S(`+ k, k)(

`+k
k

) .

The proof of Theorem 2.8 is complete. �

Theorem 2.9. For n ≥ 3k, we have

A(3k, k) = V (3k, k), A(n+ 1, k) = V (n+ 1, k)− n+ 1

2
V (n, k) (2.10)

and

V (n, k) = Bn,k(0, 0, 1, 2, . . . , n− k − 1) = 2k
(
n

k

) k∑
`=0

(−1)k−`
(
k

`

)

×
n−k∑
q=0

(
n− k
q

)
S(n− q − `, k − `)(

n−q−`
n−q

) q∑
m=0

〈`〉m
2m

S(q,m). (2.11)

Proof. Since

k!

∞∑
n=3k

A(n, k)
xn

n!
=

(
1− x

2

)
[x(ex + 1)− 2(ex − 1)]k

=

(
1− x

2

)
k!

∞∑
n=3k

V (n, k)
xn

n!
= k!

[ ∞∑
n=3k

V (n, k)
xn

n!
− 1

2

∞∑
n=3k

V (n, k)
xn+1

n!

]

= k!

[ ∞∑
n=3k

V (n, k)
xn

n!
− 1

2

∞∑
n=3k+1

V (n− 1, k)
xn

(n− 1)!

]

= k!V (3k, k) + k!

∞∑
n=3k+1

[
V (n, k)− n

2
V (n− 1, k)

]
xn

n!
,

then the relations in (2.10) follow immediately.
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Combining the formula (2.3) with

∞∑
n=3k

V (n, k)
xn

n!
=

1

k!
[x(ex + 1)− 2(ex − 1)]k =

1

k!

[ ∞∑
`=3

(`− 2)
x`

`!

]k
reveals that the formula (1.26) for n ≥ 3k. By virtue of (2.3), we have

∞∑
n=k

Bn,k(0, 0, 1, 2, . . . , n− k − 1)
tn

n!
=

1

k!

[ ∞∑
m=3

(m− 2)
tm

m!

]k
,

∞∑
n=0

Bn+k,k(0, 0, 1, 2, . . . , n− 1)(
n+k
k

) tn

n!
= 2k

(
et + 1

2
− et − 1

t

)k
,

Bn+k,k(0, 0, 1, 2, . . . , n− 1)(
n+k
k

) = 2k lim
t→0

dn

dtn

(
et + 1

2
− et − 1

t

)k
= 2k lim

t→0

dn

dtn

k∑
`=0

(−1)k−`
(
k

`

)(
et + 1

2

)`(
et − 1

t

)k−`

= 2k lim
t→0

k∑
`=0

(−1)k−`
(
k

`

) n∑
q=0

(
n

q

)[(
et + 1

2

)`](q)[(
et − 1

t

)k−`](n−q)

= lim
t→0

k∑
`=0

(−2)k−`
(
k

`

) n∑
q=0

(
n

q

) q∑
m=0

〈`〉m(et + 1)`−m Bq,m(et, et, . . . , et)

×

[
(k − `)!

∞∑
p=n−q

S(p+ k − `, k − `)
(p+ k − `)!

〈p〉n−qtp−(n−q)
]

=

k∑
`=0

(−2)k−`
(
k

`

) n∑
q=0

(
n

q

) q∑
m=0

〈`〉m2`−m Bq,m(1, 1, . . . , 1)

×(k − `)!S(n− q + k − `, k − `)
(n− q + k − `)!

〈n− q〉n−q

= (−2)k
k∑
`=0

(−1)`
(
k

`

) n∑
q=0

(
n

q

)
S(n− q + k − `, k − `)(

n−q+k−`
n−q

) q∑
m=0

〈`〉m
2m

S(q,m).

The formula (2.11) follows readily. The proof of Theorem 2.9 is complete. �

3. A closed formula for a special Bell polynomial

The quantity Bn,k(a1, a2, 3−α, 4−α, . . . , (n−k+1)−α) was specially investigated
in [20], but there was no closed formula developed for it there. We now start out to
derive a closed and explicit formula for Bn,k(a1, a2, 3−α, 4−α, . . . , (n−k+1)−α).

Theorem 3.1. For n ≥ k ≥ 0, we have

Bn,k(a1, a2, 3− α, 4− α, . . . , (n− k + 1)− α)

=
n!

k!

k∑
m=0

(
k

m

) ∑
p+q+r=n−k

(−α)m−q(a1 + α)k−m−p

×
(
a2 + α

2
− 1

)p 〈k −m〉p〈m〉q
p!q!r!

S(r +m,m)(
r+m
r

) . (3.1)
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Proof. By virtue of (2.3), we have

∞∑
n=k

Bn,k(a1, a2, 3− α, 4− α, . . . , (n− k + 1)− α)
tn

n!

=
1

k!

(
a1t+

a2
2
t2 +

∞∑
m=3

(m− α)
tm

m!

)k

=
tk

k!

[
a1 + α+

(
a2 + α

2
− 1

)
t+ (t− α)

(
et − 1

t

)]k
which is equivalent to

∞∑
n=0

Bn+k,k(a1, a2, 3− α, 4− α, . . . , (n+ 1)− α)(
n+k
k

) tn

n!

=

[
a1 + α+

(
a2
2

+
α

2
− 1

)
t+ (t− α)

(
et − 1

t

)]k
.

Therefore, it follows that, when A = a1 + α and B = a2+α
2 − 1,

Bn+k,k(a1, a2, 3− α, 4− α, . . . , (n+ 1)− α)

=

(
n+ k

k

)
lim
t→0

dn

dtn

[
a1 + α+

(
a2
2

+
α

2
− 1

)
t+ (t− α)

(
et − 1

t

)]k
=

(
n+ k

k

)
lim
t→0

dn

dtn

k∑
`=0

(
k

`

)
(A+Bt)`(t− α)k−`

(
et − 1

t

)k−`

=

(
n+ k

k

)
lim
t→0

k∑
`=0

(
k

`

) ∑
p+q+r=n

n!

p!q!r!

[
(A+Bt)`

](p)
×
[
(t− α)k−`

](q)[(et − 1

t

)k−`](r)
=

(
n+ k

k

)
lim
t→0

k∑
`=0

(
k

`

) ∑
p+q+r=n

n!

p!q!r!
〈`〉pBp(A+Bt)`−p〈k − `〉q(t− α)k−`−q

×(k − `)!
∞∑
s=r

S(s+ k − `, k − `)
(s+ k − `)!

〈s〉rts−r

=

(
n+ k

k

) k∑
`=0

(
k

`

) ∑
p+q+r=n

n!

p!q!r!
〈`〉pBpA`−p〈k − `〉q

×(−α)k−`−q(k − `)!S(r + k − `, k − `)
(r + k − `)!

〈r〉r

= n!

(
n+ k

k

) k∑
`=0

(
k

`

) ∑
p+q+r=n

(−α)k−`−qBpA`−p〈`〉p〈k − `〉q
p!q!r!

S(r + k − `, k − `)(
r+k−`
r

) .

The equality (3.1) is thus proved. The proof of Theorem 3.1 is thus complete. �

4. Remarks and comparisons

We now list several remarks and comparisons about our main results and some
known results.
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Remark 4.1. Although those formulas in Theorem 2.7 are a little complex, but they
are surely closed formulas for

Bn,k

(
1

3 · 4
,

1

4 · 5
, . . . ,

1

(n− k + 3)(n− k + 4)

)
(4.1)

and Vn. If computing along alternative approaches the nth derivative of the function

1

t2k

(
et + 1

2
− t2

12
− et − 1

t

)k
with respect to t, then we can find alternative closed formulas for the quantity (4.1)
and the sequence Vn.

Remark 4.2. The formulas (2.8) and (2.9) are slightly different from the formu-
las (1.27) and (1.25) respectively.

Remark 4.3. Taking a1 = x, a2 = 1 + x, and α = 1− x in Theorem 3.1 gives

Bn,k(x, 1 + x, 2 + x, 3 + x, . . . , n− k + x)

=
n!

k!

k∑
`=0

(
k

`

) ∑
q+r=n−k

〈`〉q
q!r!

S(r + `, `)(
r+`
r

) (x− 1)`−q.

Comparing this with (1.17) demonstrates that

kn−k

(n− k)!

k∑
`=0

(
k

`

)[n−k∑
q=0

(−1)q

kq

(
n− k
q

)
S(q + `, `)(

q+`
`

) ]
(x− 1)`

=

k∑
`=0

(
k

`

) n−k∑
m=0

〈`〉n−k−m
(n− k −m)!m!

S(m+ `, `)(
m+`
m

) (x− 1)`+m−(n−k)

=

k∑
`=0

(
k

`

) n−k∑
m=n−k−`

〈`〉n−k−m
(n− k −m)!m!

S(m+ `, `)(
m+`
m

) (x− 1)`+m−(n−k)

=

k∑
`=0

(
k

`

)∑̀
q=0

〈`〉`−q
(`− q)![(n− k)− (`− q)]!

S(n− k + q, `)(
n−k+q

(n−k)−(`−q)
) (x− 1)q

=

k∑
`=0

∑̀
q=0

(
k

`

)(
`

q

)
`!S(n− k + q, `)

(n− k + q)!
(x− 1)q

=

k∑
q=0

k∑
`=q

(
k

`

)(
`

q

)
`!S(n− k + q, `)

(n− k + q)!
(x− 1)q

=

k∑
`=0

k∑
m=`

(
k

m

)(
m

`

)
m!S(n− k + `,m)

(n− k + `)!
(x− 1)`

=

k∑
`=0

k−∑̀
q=0

(
k

`+ q

)(
`+ q

`

)
(`+ q)!S(n− k + `, `+ q)

(n− k + `)!
(x− 1)`

which implies

kn
(n+ `)!

n!

(
k

`

) n∑
q=0

(−1)q

kq

(
n

q

)
S(q + `, `)(

q+`
`

)
=

k−∑̀
q=0

(
k

`+ q

)(
`+ q

`

)
(`+ q)!S(n+ `, `+ q). (4.2)
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In particular, letting ` = k in (4.2) results in an interesting identity

n∑
q=0

(−1)q
(
n

q

)
S(q + k, k)

kq
(
q+k
k

) =
S(n+ k, k)

kn
(
n+k
n

) .

Remark 4.4. Letting a1 = 1, a2 = 2, and α = 0 in Theorem 3.1 yields

Bn,k(1, 2, 3, 4, . . . , n− k + 1) =
n!

(n− k)!

k∑
`=0

S(n− k, `)
(k − `)!

.

Comparing this with (1.18) leads to an identity

k∑
`=0

S(n, `)

(k − `)!
=

k∑
m=0

S(n, k −m)

m!
=
kn

k!
(4.3)

which is a special case of the formula

xn =

n∑
j=0

(
x

j

)
j!S(n, j)

in [99, p. 116, (9.11)].

Remark 4.5. Setting a1 = x, a2 = 2, and α→ 0 in Theorem 3.1 reduces to

Bn,k(x, 2, 3, 4, . . . , n− k + 1)

=
n!

k!

k∑
`=0

(
k

`

) ∑
k−`+r=n−k

〈k − `〉k−`
(k − `)!r!

x`
S(r + k − `, k − `)(

r+k−`
r

)
=
n!

k!

k∑
`=0

(
k

`

)
1

(n− 2k + `)!

S(n− k, k − `)(
n−k

n−2k+`
) x`

=

(
n

k

) k∑
`=0

(
k

`

)
(k − `)!S(n− k, k − `)x`.

Letting x → 0 in the above equation recovers (1.20). Comparing (1.22) with the
above equation reveals

k∑
r=0

(
k

r

)
(k − r)n−k(x− 1)r =

k∑
`=0

(
k

`

)
(k − `)!S(n− k, k − `)x` (4.4)

In particular, when x = 1 in (4.4), we obtain the equation (4.3) once again.

Remark 4.6. Three special cases

Bn,k(1, 2, 3, . . . , n− k + 1) =

(
n

k

)
kn−k,

Bn,k(0, 2, 3, . . . , n− k + 1) =
n!

(n− k)!
S(n− k, k),

and

Bn,k(0, 0, 3, 4, . . . , n− k + 1) = n!

k∑
`=0

(−1)`

`!

S(n− k − `, k − `)
(n− k − `)!

of Theorem 3.1 have been applied in [78] to construct several recursive relations
of the Stirling numbers of the second kind S(n, k) which have interpretations in
combinatorics and number theory.
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Remark 4.7. In [82, Theorem 1], among other things, the formula

Un(x) = xn
bn/2c∑
`=0

(
n+ 1

2`+ 1

)(
1− 1

x2

)`
(4.5)

for the Chebyshev polynomials of the second kind Un was recovered by virtue of
the formulas (1.1) and (1.8). We remark that the formula (4.5) was ever recovered
in [55, p. 127] simply from a formula

Un(x) =

bn/2c∑
m=0

(
n+ 1

2m+ 1

)
xn−2m

(
x2 − 1

)m
(4.6)

in [24], where bxc is the floor function whose value equals the largest integer less
than or equal to x. However, it seems that the formula (4.6) does not appear in [24].

Remark 4.8. This paper is a slightly corrected and revised version of the electronic
preprint [85].
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