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Olivier H. Roux3

1 LSV – ENS Cachan, France
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Abstract. Reset Petri nets are a particular class of Petri nets where
transition firings can remove all tokens from a place without checking
if this place actually holds tokens or not. In this paper we look at
partial order semantics of such nets. In particular, we propose a pomset
bisimulation for comparing their concurrent behaviours. Building on this
pomset bisimulation we then propose a generalization of the standard
finite complete prefixes of unfolding to the class of safe reset Petri nets.

1 Introduction

Petri nets are a well suited formalism for specifying, modeling, and analyzing sys-
tems with conflicts, synchronization and concurrency. Many interesting properties
of such systems (reachability, boundedness, liveness, deadlock,. . . ) are decidable
for Petri nets. Over time, many extensions of Petri nets have been proposed
in order to capture specific, possibly quite complex, behaviors in a more direct
manner. These extensions offer more compact representations and/or increase
expressive power. One can notice, in particular, a range of extensions adding
new kinds of arcs to Petri nets: read arcs and inhibitor arcs [3, 11] (allowing to
read variables values without modifying them), and reset arcs [1] (allowing to
modify variables values independently of their previous value). Reset arcs increase
the expressiveness of Petri nets, but they compromise analysis techniques. For
example, boundedness [6] and reachability [1] are undecidable. For bounded reset
Petri nets, more properties are decidable, as full state spaces can be computed.

Full state-space computations (i.e. using state graphs) do not preserve partial
order semantics. To face this problem, Petri nets unfolding has been proposed
and has gained the interest of researchers in verification [7], diagnosis [4], and
planning [9]. This technique keeps the intrinsic parallelism and prevents the
combinatorial interleaving of independent events. While the unfolding of a Petri
net can be infinite, there exist algorithms for constructing finite prefixes of it [8,
10]. Unfolding have the strong interest of preserving more behavioral properties
of Petri nets than state graphs. In particular they preserve concurrency and
its counterpart: causality. Unfolding techniques have also been developed for
extensions of Petri nets, and in particular Petri nets with read arcs [2].

Our contribution: Reachability analysis is known to be feasible on bounded
reset Petri nets, however, as far as we know, no technique for computing finite



prefixes of unfolding exists yet, and so, no technique preserving concurrency and
causality exists yet. This is the aim of this paper to propose one. For that, we
characterise the concurrent behaviour of reset Petri nets by defining a notion
of pomset bisimulation. This has been inspired by several works on pomset
behaviour of concurrent systems [5, 12, 14]. From this characterization we can
then express what should be an unfolding preserving the concurrent behaviour of
a reset Petri net. We show that it is not possible to remove reset arcs from safe
reset Petri nets while preserving their behaviours with respect to this pomset
bisimulation. Then we propose a notion of finite complete prefixes of unfolding of
safe reset Petri nets that allows for reachability analysis while preserving pomset
behaviour. As a consequence of the two other contributions, these finite complete
prefixes do have reset arcs.

This paper is organized as follows: We first give basic definitions and notations
for (safe) reset Petri nets. Then, in Section 3, we propose the definition of a
pomset bisimulation for reset Petri nets. In Section 4 we show that, in general,
there is no Petri net without resets which is pomset bisimilar to a given reset
Petri net. Finally, in Section 5 – building on the results of Section 4 – we propose
a finite complete prefix construction for reset Petri nets.

2 Reset Petri nets

Definition 1 (structure). A reset Petri net structure is a tuple (P , T , F ,R)
where P and T are disjoint sets of places and transitions, F ⊆ (P ×T )∪ (T ×P )
is a set of arcs, and R ⊆ P × T is a set of reset arcs.

An element x ∈ P ∪ T is called a node and has a preset •x = {y ∈ P ∪
T : (y, x) ∈ F} and a postset x• = {y ∈ P ∪ T : (x, y) ∈ F}. If, moreover, x is
a transition, it has a set of resets �x = {y ∈ P : (y, x) ∈ R}.

For two nodes x, y ∈ P ∪ T , we say that: x is a causal predecessor of y,
noted x ≺ y, if there exists a sequence of nodes x1 . . . xn with n ≥ 2 so that
∀i ∈ [1..n−1], (xi, xi+1) ∈ F , x1 = x, and xn = y. If x ≺ y or y ≺ x we say that x
and y are in causal relation. The nodes x and y are in conflict, noted x#y, if there
exists two sequences of nodes x1 . . . xn with n ≥ 2 and ∀i ∈ [1..n−1], (xi, xi+1) ∈
F , and y1 . . . ym with m ≥ 2 and ∀i ∈ [1..m− 1], (yi, yi+1) ∈ F , so that x1 = y1
is a place, x2 6= y2, xn = x, and ym = y.

A marking is a set M ⊆ P of places. It enables a transition t ∈ T if
∀p ∈ •t, p ∈M . In this case, t can be fired from M , leading to the new marking
M ′ = (M \ (•t ∪ �t)) ∪ t•. The fact that M enables t and that firing t leads to
M ′ is denoted by M [t〉M ′.

Definition 2 (reset Petri net). A reset Petri net is a tuple (P , T , F ,R,M0)
where (P , T , F ,R) is a reset Petri net structure and M0 is a marking called the
initial marking.

Figure 1 (left) is a graphical representation of a reset Petri net. It has five
places (circles) and three transitions (squares). Its set of arcs contains seven
elements (arrows) and there is one reset arc (line with a diamond).
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Fig. 1. A reset Petri net (left) and one
of its processes (right)

A marking M is said to be reachable
in a reset Petri net if there exists a se-
quence M1 . . .Mn of markings so that:
∀i ∈ [1..n − 1],∃t ∈ T ,M i[t〉M i+1 (each
marking enables a transition that leads
to the next marking in the sequence),
M1 = M0 (the sequence starts from the
initial marking), and Mn = M (the se-
quence leads to M). The set of all mark-
ings reachable in a reset Petri net NR is
denoted by [NR〉.

A reset Petri net with an empty set of reset arcs is simply called a Petri net.

Definition 3 (underlying Petri net). Given NR = (P , T , F ,R,M0) a reset
Petri net, we call its underlying Petri net the Petri net N = (P , T , F , ∅,M0).

The above formalism is in fact a simplified version of the general formalism of
reset Petri nets: arcs have no multiplicity and markings are sets of places rather
than multisets of places. We use it because it suffices for representing safe nets.

Definition 4 (safe reset Petri net). A reset Petri net (P , T , F ,R,M0) is
said to be safe if for any reachable marking M and any transition t ∈ T , if M
enables t then (t• \ (•t ∪ �t)) ∩M = ∅.

The reader familiar with Petri nets will notice that our results generalize to
larger classes of nets: unbounded reset Petri nets for our pomset bisimulation
(Section 3), and bounded reset Petri nets for our prefix construction (Section 5).

In the rest of the paper, unless the converse is specified, we consider reset
Petri nets so that the preset of each transition t is non-empty: •t 6= ∅. Notice that
this is not a restriction to our model: one can equip any transition t of a reset
Petri net with a place pt so that pt is in the initial marking and •pt = p•t = {t}.

One may need to express that two (reset) Petri nets have the same behaviour.
This is useful in particular for building minimal (or at least small, that is with
few places and transitions) representatives of a net; or for building simple (such
as loop-free) representatives of a net. A standard way to do so is to define a
bisimulation between (reset) Petri nets, and state that two nets have the same
behaviour if they are bisimilar.

The behaviour of a net will be an observation of its transition firing, this ob-
servation being defined thanks to a labelling of nets associating to each transition
an observable label or the special unobservable label ε.

Definition 5 (labelled reset Petri net). A labelled reset Petri net is a tuple
(NR, Σ, λ) so that: NR = (P , T , F ,R,M0) is a reset Petri net, Σ is a set of
transition labels, and λ : T → Σ ∪ {ε} is a labelling function.

In such a labelled net we extend the labelling function λ to sequences of
transitions in the following way: given a sequence t1 . . . tn (with n ≥ 2) of tran-
sitions, λ(t1 . . . tn) = λ(t1)λ(t2 . . . tn) if λ(t1) ∈ Σ and λ(t1 . . . tn) = λ(t2 . . . tn)
else (that is if λ(t1) = ε). From that, one can define bisimulation as follows.



Definition 6 (bisimulation). Let (NR,1, Σ1, λ1) and (NR,2, Σ2, λ2) be two
labelled reset Petri nets with NR,i = (P i, T i, F i, Ri,M0,i). They are bisimilar if
and only if there exists a relation ρ ⊆ [NR,1〉 × [NR,2〉 (a bisimulation) so that:

1. (M0,1,M0,2) ∈ ρ,
2. if (M1,M2) ∈ ρ, then

(a) for every transition t ∈ T 1 so that M1[t〉M1,n there exists a sequence
t1 . . . tn of transitions from T 2 and a sequence M2,1 . . .M2,n of markings
of NR,2 so that: M2[t1〉M2,1[t2〉 . . . [tn〉M2,n, λ2(t1 . . . tn) = λ1(t), and
(M1,n,M2,n) ∈ ρ

(b) the other way around (for every transition t ∈ T 2. . . )
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Fig. 2. Two bisimilar nets

This bisimulation however hides an impor-
tant part of the behaviours of (reset) Petri
nets: transition firings may be concurrent
when transitions are not in causal relation
nor in conflict. For example, consider Fig-
ure 2 where NR,1 and NR,2 are bisimilar
(we identify transition names and labels). In
NR,1, t1 and t2 are not in causal relation
while in NR,2 they are in causal relation.

To avoid this loss of information, a stan-
dard approach is to define bisimulations
based on partially ordered sets of transitions rather than totally ordered sets of
transitions (the transition sequences used in the above definition). Such bisimula-
tions are usually called pomset bisimulations.

3 Pomset bisimulation for reset Petri nets

In this section, we propose a definition of pomset bisimulation for reset Petri nets.
It is based on an ad hoc notion of processes (representations of the executions of
a Petri net, concurrent counterpart of paths in automata).

3.1 Processes of reset Petri nets

We recall a standard notion of processes of Petri nets and show how it can be
extended to reset Petri nets. As a first step, we define occurrence nets which are
basically Petri nets without loops.

Definition 7 (occurrence net). An occurrence net is a (reset) Petri net
(B,E, FO, RO,MO0 ) so that, ∀b ∈ B, ∀x ∈ B ∪ E: (1) |•b| ≤ 1, (2) x is not in
causal relation with itself, (3) x is not in conflict with itself, (4) {y ∈ B∪E : y ≺
x} is finite, (5) b ∈MO0 if and only if •b = ∅.

Places of an occurrence net are usually referred to as conditions and transitions
as events. In an occurrence net, if two nodes x, y ∈ B ∪ E are so that x 6= y, are



not in causal relation, and are not in conflict, they are said to be concurrent.
Moreover, in occurrence net, the causal relation is a partial order.

There is a price to pay for having reset arcs in occurrence nets. With no reset
arcs, checking if a set E of events together form a feasible execution (i.e. checking
that the events from E can all be ordered so that they can be fired in this order
starting from the initial marking) is linear in the size of the occurrence net (it
suffices to check that E is causally closed and conflict free). With reset arcs the
same task is NP-complete as stated in the below proposition.

Proposition 1. The problem of deciding if a set E of events of an occurrence
net with resets forms a feasible execution is NP-complete.

Proof. (Sketch) Graph 3-coloring reduces to executability of an occurrence net.

The branching processes of a Petri net are then defined as particular occurrence
nets linked to the original net by homomorphisms.

Definition 8 (homomorphism of nets). Let N 1 and N 2 be two Petri nets
such that N i = (P i, T i, F i, ∅,M0,i). A mapping h : P 1 ∪ T 1 → P 2 ∪ T 2 is
an homomorphism of nets from N 1 to N 2 if ∀p1 ∈ P 1,∀p2 ∈ P 2,∀t ∈ T 1:
(1) h(p1) ∈ P 2, (2) h(t) ∈ T 2, (3) p2 ∈ •h(t) ⇔ ∃p′1 ∈ •t, h(p′1) = p2, (4)
p2 ∈ h(t)• ⇔ ∃p′1 ∈ t•, h(p′1) = p2, (5) p2 ∈M0,2 ⇔ ∃p′1 ∈M0,1, h(p′1) = p2.

Definition 9 (processes of a Petri net). Let N = (P , T , F , ∅,M0) be a Petri
net, O = (B,E, FO, ∅,MO0 ) be an occurrence net, and h be an homomorphism of
nets from O to N . Then (O, h) is a branching process of N if ∀e1, e2 ∈ E, (•e1 =
•e2 ∧ h(e1) = h(e2))⇒ e1 = e2. If, moreover, ∀b ∈ B, |b•| ≤ 1, then (O, h) is a
process of N .

Finally, a process of a reset Petri net is obtained by adding reset arcs to a
process of the underlying Petri net (leading to what we call below a potential
process) and checking that all its events can still be enabled and fired in some
order.

Definition 10 (potential processes of a reset Petri net). Let NR =
(P , T , F ,R,M0) be a reset Petri net and N be its underlying Petri net, let
O = (B,E, FO, RO,MO0 ) be an occurrence net, and h be an homomorphism of
nets from O to NR. Then (O, h) is a potential process of NR if (1) (O′, h) is
a process of N with O′ = (B,E, FO, ∅,MO0 ), (2) ∀b ∈ B, ∀e ∈ E, (b, e) ∈ RO if
and only if (h(b), h(e)) ∈ R.

Definition 11 (processes of a reset Petri net). Let NR = (P , T , F ,R,M0)
be a reset Petri net, O = (B,E, FO, RO,MO0 ) be an occurrence net, and h be an
homomorphism of nets from O to NR. Then (O, h) is a process of NR if (1) (O, h)
is a potential process of NR, and (2) if E = {e1, . . . , en} then ∃M1, . . . ,Mn ⊆ B
so that MO0 [ek1

〉M1[ek2
〉 . . . [ekn

〉Mn with {k1, . . . , kn} = {1, . . . , n}.

Notice that processes of reset Petri nets and processes of Petri nets do not
exactly have the same properties. In particular, two properties are central in
defining pomset bisimulation for Petri nets and do not hold for reset Petri nets.



Property 1. In any process of a Petri net with set of events E, consider any
sequence of events e1e2 . . . en (1) that contains all the events in E and (2)
such that ∀i, j ∈ [1..n] if ei ≺ ej then i < j. Necessarily, there exist markings
M1, . . . ,Mn so that MO0 [e1〉M1[e2〉 . . . [en〉Mn.

This property (which, intuitively, expresses that processes are partially ordered
paths) is no longer true for reset Petri nets. Consider for example the reset Petri
net of Figure 1 (left). Figure 1 (right) is one of its processes (the occurrence net
with the homomorphism h below). As not e2 ≺ e1, their should exist markings
M1,M2 so that M0[e1〉M1[e2〉M2. However, M0 = {c1, c3} indeed enables e1,
but the marking M1 such that M0[e1〉M1 is {c2}, which does not enable e2.

Property 2. In a process of a Petri net all the sequences of events e1e2 . . . en
verifying (1) and (2) of Property 1 lead to the same marking (i.e. Mn is always
the same), thus uniquely defining a notion of maximal marking of a process.

This property defines the marking reached by a process. As a corollary of
Property 1 not holding for reset Petri nets, there is no uniquely defined notion
of maximal marking in their processes. Back to the example {c2} is somehow
maximal (no event can be fired from it) as well as {c2, c4}.

To transpose the spirit of Properties 1 and 2 to processes of reset Petri nets,
we define below a notion of maximal markings in such processes.

Definition 12 (maximal markings). Let P = (O, h) be a process with set of
events E = {e1, . . . , en} and initial marking MO0 of a reset Petri net. The
set Mmax(P) of maximal markings of P contains exactly the markings M
so that ∃M1, . . . ,Mn−1, verifying MO0 [ek1

〉M1[ek2
〉 . . .Mn−1[ekn

〉M for some
{k1, . . . , kn} = {1, . . . , n}.

In other words, the maximal markings of a process are all the marking that
are reachable in it using all its events. This, in particular, excludes {c2} in the
above example.

3.2 Abstracting processes

We show how processes of labelled reset Petri nets can be abstracted as partially
ordered multisets (pomsets) of labels.

Definition 13 (pomset abstraction of processes). Let (NR, Σ, λ) be a la-
belled reset Petri net and (O, h) be a process of NR with O = (B,E, FO, RO,MO0 ).
Define E′ = {e ∈ E : λ(h(e)) 6= ε}. Define λ′ : E′ → Σ as the function so
that ∀e ∈ E′, λ′(e) = λ(h(e)). Define moreover < ⊆ E′ × E′ as the relation so
that e1 < e2 if and only if e1 ≺ e2 (e1 is a causal predecessor of e2 in O). Then,
(E′, < , λ′) is the pomset abstraction of (O, h).

This abstraction (E,< , λ′) of a process is called its pomset abstraction
because it can be seen as a multiset of labels (several events may have the same
associated label by λ′) that are partially ordered by the < relation. In order to
compare processes with respect to their pomset abstractions, we also define the
following equivalence relation.



Definition 14 (pomset equivalence). Let (E,< , λ) and (E′, < ′, λ′) be the
pomset abstractions of two processes P and P ′. These processes are pomset
equivalent, noted P ≡ P ′ if and only if there exists a bijection f : E → E′ so that
∀e1, e2 ∈ E: (1) λ(e1) = λ′(f(e1)), and (2) e1 < e2 if and only if f(e1) < ′f(e2).

Intuitively, two processes are pomset equivalent if their pomset abstractions
define the same pomset: same multisets of labels with same partial orderings.
Finally, we also need to be able to abstract processes as sequences of labels.

Definition 15 (linear abstraction). Let (NR, Σ, λ) be a labelled reset Petri
net, let P = (O, h) be a process of NR with O = (B,E, FO, RO,MO0 ), and
let M be a reachable marking in O. Define λ′ : E → Σ as the function so
that ∀e ∈ E, λ′(e) = λ(h(e)). The linear abstraction of P with respect to
M is the set lin(M,P) so that a sequence of labels ω is in lin(M,P) if and
only if in O there exist markings M1, . . . ,Mn−1 and events e1, . . . , en so that
MO0 [e1〉M1[e2〉 . . .Mn−1[en〉M and λ′(e1 . . . en) = ω.

3.3 Pomset bisimulation

We now define a notion of pomset bisimulation between reset Petri nets, inspired
by [5, 12, 14]. Intuitively, two reset Petri nets are pomset bisimilar if there exists
a relation between their reachable markings so that the markings that can
be reached by pomset equivalent processes from two markings in relation are
themselves in relation. This is formalized by the below definition.

Definition 16 (pomset bisimulation for reset nets). Let (NR,1, Σ1, λ1)
and (NR,2, Σ2, λ2) be two labelled reset Petri nets with NR,i = (P i, T i, F i, Ri,M0,i).
They are pomset bisimilar if and only if there exists a relation ρ ⊆ [NR,1〉×[NR,2〉
(called a pomset bisimulation) so that:

1. (M0,1,M0,2) ∈ ρ,
2. if (M1,M2) ∈ ρ, then

(a) for every process P1 of (P 1, T 1, F 1, R1,M1) there exists a process P2 of
(P 2, T 2, F 2, R2, M2) so that P1 ≡ P2 and

– ∀M ′1 ∈Mmax(P1),∃M ′2 ∈Mmax(P2) so that (M ′1,M
′
2) ∈ ρ,

– ∀M ′1 ∈Mmax(P1),∀M ′2 ∈Mmax(P2), (M ′1,M
′
2) ∈ ρ⇒ lin(M ′1,P1) =

lin(M ′2,P2).
(b) the other way around (for every process P2. . . )

Notice that, in the above definition, taking the processes P1 and P2 bisimilar
(using the standard bisimulation relation for Petri nets) rather than comparing
lin(M ′1,P1) and lin(M ′2,P2) would lead to an equivalent definition.

Remark that pomset bisimulation implies bisimulation, as expressed by the
following proposition. The converse is obviously not true.

Proposition 2. Let (NR,1, Σ1, λ1) and (NR,2, Σ2, λ2) be two pomset bisimilar
labelled reset Petri nets, then (NR,1, Σ1, λ1) and (NR,2, Σ2, λ2) are bisimilar.

Proof. It suffices to notice that Definition 6 can be obtained from Definition 16 by
restricting the processes considered, taking only those with exactly one transition
whose label is different from ε.



4 Reset arcs removal and pomset bisimulation

From now on, we consider that (reset) Petri nets are finite, i.e. their sets of places
and transitions are finite.
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R and its structural transformation N pat

str , a labelled
reset Petri net N 0R including the pattern NR, and a finite complete prefix F0R of N 0R .
Transition labels are given on transitions.

In this section, we prove that it is, in general, not possible to remove reset
arcs from safe reset Petri nets while preserving their behaviours with respect to
this pomset bisimulation. More precisely, we prove that it is not possible to build
a safe labelled Petri net (while this is out of the scope of this paper, the reader
familiar with Petri nets may notice that this is the case for bounded labelled
Petri net) without reset arcs which is pomset bisimilar to a given safe labelled
reset Petri net. For that, we exhibit a particular pattern – Figure 3 (left) – and
show that a reset Petri net including this pattern cannot be pomset bisimilar to
a Petri net without reset arcs.

As a first intuition of this fact, let us consider the following structural trans-
formation that removes reset arcs from a reset Petri net.

Definition 17 (Structural transformation). Let (NR, Σ, λ) be a labelled re-
set Petri net such that NR = (P , T , F ,R,M0), its structural transformation is the
labelled Petri net (NR,str, Σstr, λstr) where NR,str = (P str, T str, F str, ∅,M0,str)
so that:

P str = P ∪ P with P = {p : p ∈ P ∧ ∃t ∈ T , (p, t) ∈ R},
T str = T ∪ T with T = {t : t ∈ T ∧ �t 6= ∅},
Fstr = F ∪ {(p, t) : t ∈ T , (p, t) ∈ F} ∪ {(t, p) : t ∈ T , (t, p) ∈ F} (1)

∪ {(p, t) : p ∈ P , (t, p) ∈ F} ∪ {(t, p) : p ∈ P , (p, t) ∈ F} (2)

∪ {(p, t) ∈ P × T : (t, p) ∈ F} ∪ {(t, p) ∈ T × P : (p, t) ∈ F} (3)

∪ {(p, t), (p, t), (t, p), (t, p) : (p, t) ∈ R}, (4)

M0,str = M0 ∪ {p ∈ P : p /∈M0},

and moreover, Σstr = Σ, ∀t ∈ T, λstr(t) = λ(t), and ∀t ∈ T , λstr(t) = λ(t).



Intuitively, in this transformation, for each reset arc (p, t), a copy p of p and
a copy t of t are created. The two places are so that p is marked if and only if p
is not marked, the transition t will perform the reset when p is marked and t will
perform it when p is not marked (i.e when p is marked). For that, new arcs are
added to F so that: t mimics t (1), the link between p and p is enforced (2, 3),
and the resets are either performed by t or t depending of the markings of p and
p (4). This is examplified in Figure 3 (left and middle left).

Lemma 1. A labelled reset Petri net (NR, Σ, λ) and its structural transforma-
tion (NR,str, Σstr, λstr) as defined in Definition 17 are bisimilar.

Proof. (Sketch) The bisimulation relation is ρ ⊆ [NR,1〉 × [NR,2〉 defined by
(M,Mstruct) ∈ ρ iff ∀p ∈ P,M(p) = Mstruct(p) and ∀p ∈ P such that p ∈ P , we
have Mstruct(p) +Mstruct(p) = 1.

For the transformation of Definition 17, a reset Petri net and its transformation
are bisimilar but not always pomset bisimilar. This can be remarked on any safe
reset Petri net including the pattern N pat

R of Figure 3. Indeed, this transformation

adds in N pat
str a causality relation between the transition labelled by t1 and each

of the two transitions labelled by t3. From the initial marking of N pat
str , for any

process whose pomset abstraction includes both t1 and t3, these two labels are
causally ordered. While, from the initial marking of N pat

R there is a process which
pomset abstraction includes both t1 and t3 but does not order them. We now
generalize this result.

Let us consider the labelled reset Petri Net N 0R of Figure 3 (middle right).
It uses the pattern N pat

R of Figure 3 in which t1 and t3 can be fired in different
order infinitely often. In this net, the transitions with labels t1 and t3 are not in
causal relation.

Proposition 3. There is no finite safe labelled Petri net (i.e. without reset arc)
which is pomset bisimilar to the labelled reset Petri net N 0R .

Proof. We simply remark that any finite safe labelled Petri net with no reset arcs
which is bisimilar to N 0R has a causal relation between two transitions labelled
by t1 and t3 respectively (Lemma 2). From that, by Proposition 2, we get that
any such labelled Petri net N which would be pomset bisimilar to N 0R would
have a process from its initial marking whose pomset abstraction is such that
some occurrence of t1 and some occurrence of t3 are ordered, while this is never
the case in the processes of N 0R . This prevents N from being pomset bisimilar
to N 0R , and thus leads to a contradiction, proving the proposition.

Lemma 2. Any safe labelled Petri net with no reset arcs which is bisimilar (see
definition 6) to N 0R has a causal relation between two transitions labelled by t1
and t3 respectively.

Proof. (Sketch) The firing of t3 prevents the firing of t2; then t3 and t2 are in
conflict and share an input place which has to be marked again after the firing
of t1. This place generates a causality between t1 and t3.



5 Finite complete prefixes of unfolding of reset Petri nets

In this section, we propose a notion of finite complete prefixes of unfolding of
safe reset Petri nets preserving reachability of markings and pomset behaviour.
As a consequence of the previous section, these finite complete prefixes do have
reset arcs.

The unfolding of a Petri net is a particular branching process (generally
infinite) representing all its reachable markings and ways to reach them. It also
preserves concurrency.

Definition 18 (Unfolding of a Petri net). The unfolding of a net can be
defined as the union of all its branching processes [7] or equivalently its largest
branching process (with respect to inclusion).

In the context of reset Petri nets, no notion of unfolding has been defined
yet. Accordingly to our notion of processes for reset Petri nets and because of
Proposition 4 below we propose Definition 19. In it and the rest of the paper,
nets and labelled nets are identified (each transition is labelled by itself) and
labellings of branching processes are induced by homomorphisms (as for pomset
abstraction).

Definition 19 (Unfolding of a reset Petri net). Let NR be a safe reset
Petri net and N be its underlying Petri net. Let U be the unfolding of N . The
unfolding of NR is UR, obtained by adding reset arcs to U according to (2) in
Definition 10.

Proposition 4. Any safe (labelled) reset Petri net NR and its unfolding UR are
pomset bisimilar.

Proof. (Sketch) This extends a result of [13], stating that two Petri nets having
the same unfolding (up to isomorphism) are pomset bisimilar (for a notion of
bisimulation coping with our in absence of resets).

Petri nets unfolding is however unpractical for studying Petri nets behaviour
as it is generally an infinite object. In practice, finite complete prefixes of it are
preferred [10, 8].

Definition 20 (finite complete prefix, reachable marking preservation).
A finite complete prefix of the unfolding of a safe Petri net N is a finite branching
processe (O, h) of N verifying the following property of reachable marking
preservation: a marking M is reachable in N if and only if there exists a reachable
marking M ′ in O so that M = {h(b) : b ∈M ′}.

In this section, we propose an algorithm for construction of finite complete
prefixes for safe reset Petri nets. For that, we assume the existence of a black-box
algorithm for building finite complete prefixes of safe Petri nets (without reset
arcs). Notice that such algorithms indeed do exist [10, 8].

Because of Proposition 3, we know that such finite prefixes should have reset
arcs to preserve pomset behaviour. We first remark that directly adding reset
arcs to finite complete prefixes of underlying nets would not work.



Proposition 5. Let U be the unfolding of the underlying Petri Net N of a safe
reset Petri net NR, let F be one of its finite and complete prefixes. Let F ′ be the
object obtained by adding reset arcs to F according to (2) in Definition 10. The
reachable marking preservation is in general not verified by F ′ (with respect to
NR).

The proof of this proposition relies on the fact that some reachable markings
of NR are not represented in F ′. This suggests that this prefix is not big enough.
We however know an object that contains, for sure, every reachable marking
of NR along with a way to reach each of them: its structural transformation
NR,str (Definition 17). We thus propose to compute finite prefixes of reset Petri
nets from their structural transformations: in the below algorithm, Fstr is used
to determine the deepness of the prefix (i.e. the length of the longest chain of
causally ordered transitions).

Algorithm 1 (Finite complete prefix construction for reset Petri nets)
Let NR be a safe reset Petri net, (step 1) compute the structural transformation
NR,str of NR, (step 2) compute a finite complete prefix Fstr of NR,str, (step
3) compute a finite prefix F of U (the unfolding of the underlying net N ) that
simulates Fstr (a labelled net N 2 simulates a labelled net N 1 if they verify Def-
inition 6 except for condition 2.b.), (step 4) compute FR by adding reset arcs
from NR to F according to (2) in Definition 10. The output of the algorithm is
FR.

Applying this algorithm to the net N 0R of Figure 3 (middle right) – using
the algorithm from [8] at step 2 – leads to the reset Petri net F0R of Figure 3
(right).

Notice that the computation of Fstr – step 1 and 2 – can be done in exponential
time and space with respect to the size of NR. The computation of F from Fstr

(step 3) is linear in the size of F . And, the addition of reset arcs (step 4) is at
most quadratic in the size of F .

We conclude this section by showing that Algorithm 1 actually builds finite
complete prefixes of reset Petri nets.

Proposition 6. The object FR obtained by Algorithm 1 from a safe reset Petri
net NR is a finite and complete prefix of the unfolding of NR.

Proof. Notice that if NR is safe, then NR,str is safe as well. Thus Fstr is finite
by definition of finite complete prefixes of Petri nets (without reset arcs). Fstr is
finite and has no node in causal relation with itself (i.e. no cycle), hence any net
bisimilar with it is also finite, this is in particular the case of F . Adding reset
arcs to a finite object does not break its finiteness, so FR is finite.

Moreover, Fstr is complete by definition of finite complete prefixes of Petri
nets (without reset arcs). As F simulates Fstr it must also be complete (it
can only do more). The reset arcs addition removes semantically to F only the
unexpected sequences (i.e. the sequence which are possible in F but not in Fstr).
Therefore, FR is complete.



6 Conclusion

Our contribution in this paper is three-fold. First, we proposed a notion of pomset
bisimulation for reset Petri nets. This notion is, in particular, inspired from a
similar notion that has been defined for Petri nets (without reset arcs) in [5].
Second, we have shown that it is not possible to remove reset arcs from safe
reset Petri nets while preserving their behaviours with respect to this pomset
bisimulation. And, third, we proposed a notion of finite complete prefixes of
unfolding of safe reset Petri nets that allows for reachability analysis while
preserving pomset behaviour. As a consequence of the two other contributions,
these finite complete prefixes do have reset arcs.
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