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NONPARAMETRIC SURVIVAL FUNCTION ESTIMATION FOR DATA

SUBJECT TO INTERVAL CENSORING CASE 2

OLIVIER BOUAZIZ(1), ELODIE BRUNEL(2), FABIENNE COMTE(1)

Abstract. In this paper, we propose a new strategy of estimation for the survival function
S, associated to a survival time subject to interval censoring case 2. Our method is based on
a least squares contrast of regression type with parameters corresponding to the coefficients of
the development of S on an orthonormal basis. We obtain a collection of projection estimators
where the dimension of the projection space has to be adequately chosen via a model selection
procedure. For compactly supported bases, we obtain adaptive results leading to general non-
parametric rates. However, our results can be used for non compactly supported bases, a true
novelty in regression setting, and we use specifically the Laguerre basis which is R+-supported
and thus well suited when nonnegative random variables are involved in the model. Simulation
results comparing our proposal with previous strategies show that it works well in a very general
context. A real data set is considered to illustrate the methodology.

MSC 2010 subject classification: 62N02–62G05
Keywords and phrases: Interval censoring, nonparametric estimation, regression contrast,
survival function.

1. Introduction

Let X1 be a survival time of interest (the time at which the event of interest occurs) with
unknown survival function S, S(x) = P(X1 > x). Our aim is to propose a nonparametric
estimator of S in a setting where X1 is not observed, but subject to interval censoring case 2.
To be more precise, the observations are (Li, Ui, δi)1≤i≤n with

(1) δi =

 −1 if Xi ≤ Li
0 if Li < Xi ≤ Ui
1 if Xi > Ui

We assume that the triples (Li, Ui, δi)1≤i≤n are i.i.d. and that the (Li, Ui) are independent of
the Xi. Note that interval censoring case 1 corresponds to Ui = Li (or Li = −∞), so that the
δis have only two modalities.

There have been previous proposals on the topic. First, Turnbull (1976) introduced an itera-
tive procedure in order to obtain a Non Parametric Maximum Likelihood Estimator (NPMLE)
of the survival function under different censoring and truncation types. Then Groeneboom and
Wellner (1992) introduced the iterative convex minorant algorithm based on isotonic regression
theory. Asymptotics of these estimators were also studied in Groeneboom and Wellner (1992)
and asymptotics of functional estimators of the survival function were investigated in Geskus
and Groeneboom (1996, 1997, 1999). Among the problems, there was the question of building
an explicit estimator reaching their rates, and Birgé (1999) solved it with an explicit histogram

proposal for which he proved a L1-risk bound with adequate rate of order (n log(n))−1/3.
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Smooth estimators have also been proposed for interval censored data. In case 1, Yang (2000)
studied the estimate of functionals of the survival function using locally linear smoothers and
Brunel and Comte (2009) proposed two adaptive estimators, one of quotient type and another
one of regression type, using projection methods. For interval censored data with case 2, spline
methods were introduced in Kooperberg and Stone (1992) and a kernel method was studied in
Braun et al. (2005) for the estimation of the density function. More recently, smooth alternatives
to the NPMLE were proposed by using a kernel method in Groeneboom and Ketelaars (2011)
and by introducing a log-concave constraint in the estimation procedure in Anderson-Bergman
and Yu (2016).

Here, we propose a least squares contrast minimization method, in the spirit of Brunel and
Comte (2009). First, we propose a procedure which relies on the regression equation E[1 −
1δi=−1|Li] = S(Li) and another one based on its counterpart E[1δi=1|Ui] = S(Ui). However, we
want to elaborate a method taking both relations into account, and we finally propose a mixed
contrast. We explain how it is built, and in what sense it improves the estimation.

The bases used in Brunel and Comte (2009) are compactly supported. This requires to define
the domain of estimation at the very beginning of the procedure. This step is avoided by using
the Laguerre basis, which is R+-supported. However, this non-compact feature is excluded from
the theoretical framework of Brunel and Comte (2009), as well as from most other papers on
nonparametric least squares regression (see e.g. Baraud, 2002). Therefore, we borrow elements
from a recent work by Comte and Genon-Catalot (2018), to include this possibility in our results.
We are then able to provide mean-square risk bounds for the resulting estimators, to compute
general rates of convergence in the compactly supported case, and to propose a model selection
device leading to an automatic bias variance tradeoff. Note that, similarly to Brunel and Comte
(2009), we obtain a final estimator taking values between 1 and 0 and decreasing thanks to
the procedure described in Chernozhukov et al. (2009), which is conveniently associated with a
R-package Rearrangement.

The plan of the paper is the following. Section 2 describes the bases and projection spaces and
explains the way estimators are built. Non asymptotic risk bounds are then proved, which allow
to discuss asymptotic rates in a rather general setting. Section 3 develops the model selection
strategy and the associated risk bounds. Then we show, in thorough simulation experiments
presented in Section 4 that our estimator works well, especially when using the Laguerre basis,
in comparison with the NPMLE implemented in the prodlim R package and the log-concave
estimator proposed by Anderson-Bergman and Yu (2016) in the logconPH R package. Real
interval censored data on HIV infections are analyzed in Section 5 using our estimator. Most
proofs are gathered in Section 6.

2. Definition and study of projection estimators

We first present the different bases associated with projection estimators defined in the sequel.

2.1. Projection spaces. Consider Σm(I) = span(ϕ0, . . . , ϕm−1) where (ϕj)0≤j≤m−1 consti-
tutes an orthonormal basis 〈ϕj , ϕk〉 = δj,k with respect to the scalar product 〈u, v〉 =

∫
I u(x)v(x)dx.

The domain I is the support of the basis and can be an interval [a, b] which shall be taken equal
to [0, 1] for simplicity in the examples below. We will also consider the case where I = R+ which
can be very convenient in this type of problems.

The examples of bases we have in mind are the following.

• Histogram basis with I = [0, 1], defined by hj(x) =
√
m1[j/m,(j+1)/m[ for j = 0, . . . ,m−1.

They can be generalized to piecewise polynomials with given degree r, by rescaling
Q0, . . . , Qr the Legendre basis on each sub-interval [j/m, (j + 1)/m[, j = 0, . . . ,m− 1.
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• Trigonometric basis, I = [0, 1], t0(x) = 1[0,1](x), t2j−1(x) =
√

2 cos(2πjx)1[0,1](x),

t2j(x) =
√

2 sin(2πjx)1[0,1](x), for 2j ≤ m − 1. Generally, m is chosen odd and in

this case j = 1, · · · , m−1
2 .

• The Laguerre basis associated with I = R+ is defined as follows. Consider the Laguerre
polynomials (Pj) and the Laguerre functions (`j) given by

(2) Pj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Pj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 constitutes a complete orthonormal system on L2(R+), such that

(see Abramowitz and Stegun, 1964) ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2. For any function f ∈
L2(R+), we can develop f on the Laguerre basis with f =

∑
j≥0 aj(f)`j , aj(f) = 〈f, `j〉.

The general notation for all these bases is (ϕj)j . They all satisfy

(3) ∀m ∈ N \ {0}, sup
x∈I

m−1∑
j=0

ϕ2
j (x) := ‖

m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm,

for some constant cϕ > 0 depending on the basis only. For the histogram basis, and the
trigonometric basis with odd m, we have cϕ = 1 and for the Laguerre basis, c2

ϕ = 2.
The most important thing here is the following: the first two bases are compactly supported,

and the last one is not. Most regression results hold with compactly supported bases, a case
which is generally exclusively considered. In this work, we provide results in the setting of non
compactly supported bases, and show empirically that the Laguerre basis is very relevant for
survival function estimation. It has the advantage that we do not have to choose an estimation
support for the basis and thus for the computation of the coefficients of the function in the basis.

Moreover, we mention that we estimate the survival function rather than the cumulative
distribution function because we need the function under estimation to be possibly square-
integrable on R+, in order to use the Laguerre basis. Note that survival functions in all classical
models are square-integrable on R+. For instance, S(x) = Pλ,k(x)e−λx1R+(x) for a γ(k, λ)

density, Pλ,k being a polynomial depending on λ with degree k − 1, S(x) = e−(x/λ)k1R+(x)

for a Weibull density with parameters k, λ, S(x) = (xm/x)k1[xm,+∞[(x) for xm > 0, k > 1/2

for a Pareto density, the Gompertz-Makeham density S(x) = exp{−λx − α
β (eβx − 1)}1x≥0, for

α, β, λ > 0, are square integrable.

2.2. Notation. Let (Li, Ui, δi)1≤i≤n be a n-sample from model (1). We denote by fU and fL
the densities of U1 and L1 and by f(L,U) the joint density of (L1, U1). We denote by (ϕj)0≤j≤m−1

an orthonormal L2(I, dx) basis as described in section 2.1.
We also use all along the paper the following notation. For any measurable I-supported

functions ψ, ψ̃, we define the weighted L2(I, fZ(x)dx)-norms and scalar products, for Z = L,U ,

(4) ‖ψ‖2Z =

∫
ψ2(x)fZ(x)dx, and 〈ψ, ψ̃〉Z =

∫
ψ(x)ψ̃(x)fZ(x)dx,

as soon as ‖ψ‖2Z < +∞, ‖ψ̃‖2Z < +∞, and their empirical counterparts:

(5) ‖ψ‖2n,Z =
1

n

n∑
i=1

ψ2(Zi), 〈ψ, ψ̃〉n,Z =
1

n

n∑
i=1

ψ(Zi)ψ̃(Zi).

Clearly, E(‖ψ‖2n,Z) = ‖ψ‖2Z , and E(〈ψ, ψ̃〉n,Z) = 〈ψ, ψ̃〉Z for Z = L,U .



4 O. BOUAZIZ, E. BRUNEL, & F. COMTE

As classical in regression setting, the following matrices and vectors are useful:

(6)

{
Φ

(L)
m = (ϕj(Li))1≤i≤n,1≤j≤m, ~δ

(L) = (1− 1δi=−1)1≤i≤n = (1− 1Xi≤Li)1≤i≤n ,

Φ
(U)
m = (ϕj(Ui))1≤i≤n,1≤j≤m, ~δ

(U) = (1δi=1)1≤i≤n = (1− 1Xi≤Ui)1≤i≤n ,

and

(7) Ψm,Z = (〈ϕj , ϕk〉Z)1≤j,k≤m , Ψ̂m,Z = (〈ϕj , ϕk〉n,Z) for Z = U,L.

We have Ψm,Z = E(Ψ̂m,Z) for Z = L,U and

Ψ̂m,L =
1

n
tΦ(L)
m Φ(L)

m , Ψ̂m,U =
1

n
tΦ(U)
m Φ(U)

m .

In the sequel, the norm associated to matrices is the operator norm ‖A‖op defined as the
square-root of the largest eigenvalue of the matrix tAA (or A tA). If A is a square symmetric
and nonnegative matrix (i.e. for all vector ~x, t~x Ax ≥ 0), then ‖A‖op is simply the largest of
the eigenvalues of A, which are all nonnegative.

In particular, Ψm,Z and Ψ̂m,Z are symmetric nonnegative matrices. Indeed, for Z = L,U ,

we have t~a Ψm,Z~a = ‖t‖2Z ≥ 0 where t =
∑m−1

j=0 ajϕj , and t~a = (a0, . . . , am−1); analogously,
t~a Ψ̂m,Z~a = ‖t‖2n,Z ≥ 0.

2.3. Two naive regression estimators. The first idea is to extend the strategy developed in
Brunel and Comte (2009) in presence of case 1 interval censoring. Noticing that

(8) E(1− 1δi=−1|Li) = S(Li)

we can define

(9) Ŝ(L)
m = arg min

t∈Σm
γ(L)
n (t), γ(L)

n (t) =
1

n

n∑
i=1

t2(Li)−
2

n

n∑
i=1

(1− 1δi=−1)t(Li).

This corresponds to the least squares estimator associated with the regression model (8), where
S would be replaced by Sm, the projection of S on Σm and the m explanatory variables would
be (ϕj(Li))1≤i≤n for j = 0, . . . ,m − 1. To understand why the estimator may be suitable, just
compute the expectation of the criterion (which is also its almost sure limit when n tends to
infinity). We have

E(γ(L)
n (t)) = E[t2(L1)]− 2E[E((1− 1X1≤L1)|L1)t(L1)] =

∫
I
t2(x)fL(x)dx− 2E[S(L1)t(L1)]

=

∫
I
(t(x)− S(x))2fL(x)dx−

∫
I
S2(x)fL(x)dx.

Clearly, the resulting term is minimal for t = S and thus, the minimizer of γ
(L)
n is likely to

asymptotically minimize ‖t− S‖2L and to be near of S.
Similarly, relying on the equality E(1δi=1|Ui) = S(Ui), we can set

(10) Ŝ(U)
m = arg min

t∈Σm
γ(U)
n (t), γ(U)

n (t) =
1

n

n∑
i=1

t2(Ui)−
2

n

n∑
i=1

1δi=1t(Ui).

Standard computations analogous to those in linear regression models yield to the following for-

mula, for ~̂a
(Z)
m = t(â

(Z)
0 , . . . , â

(Z)
m−1), Z = L,U , the coordinates of Ŝ

(Z)
m in the basis (ϕj)0≤j≤m−1,

(11) Ŝ(Z)
m (x) =

m−1∑
j=0

â
(Z)
j ϕj(x) with ~̂a(Z)

m =
(
tΦ(Z)
m Φ(Z)

m

)−1
tΦ(Z)
m
~δ(Z)
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where Φ
(Z)
m , ~δ(Z) are defined in (6), provided that tΦ

(Z)
m Φ

(Z)
m is invertible. Note that, if the

bases are compactly supported, their supports IZ for Z = L,U depend on the support of the
Li’s denoted by supp(L) or the one of the Ui’s denoted by supp(U): they are chosen such that
IZ ⊂ supp(Z) for Z = L,U . The estimation spaces are thus Σm(IZ), and the basis should
inherit from the same index, but it is omitted for the sake of readability. For the Laguerre basis,
the support of the basis is fixed, IZ = R+.

We can prove the following results, for the two estimators Ŝ
(L)
m and Ŝ

(U)
m , relying on this

formula:

Proposition 1. For Z = L,U , assume that tΦ
(Z)
m Φ

(Z)
m is invertible almost surely. Let Ŝ

(Z)
m be

the estimator of S on IZ defined by coefficients ~̂a
(Z)
m in the basis ϕ0, . . . , ϕm−1 as given by (11).

Then denoting by SI = S1I , we have

E(‖Ŝ(Z)
m − SIZ‖

2
n,Z) ≤ inf

t∈Σm(IZ)
‖t− SIZ‖

2
Z +

1

4

m

n
.

Remark 1. Note that
∫
IZ
S2(x)fZ(x)dx < +∞, and that inft∈Σm(IZ) ‖t−SIZ‖2Z = ‖S(Z)

m −SIZ‖2Z
where S

(Z)
m is the orthogonal projection of S on Σm(IZ) with respect to the scalar product 〈 · , · 〉Z

where Z = L,U . If moreover S is square-integrable on IZ ∩ supp(Z) and fL and fU are upper

bounded, by f
(L)
max and f

(U)
max respectively, we can recover a standard (non-weighted) L2-norm on

IZ ∩ supp(Z) and get, for the bias term

inf
t∈Σm

‖t− SIZ‖
2
Z ≤ f (Z)

max inf
t∈Σm

‖(t− SIZ )1supp(Z)‖2 ≤ f (Z)
max‖S(Z)

m − SIZ‖
2, Z = L,U,

where S
(Z)
m is the standard orthogonal projection of SIZ on Σm(IZ), S

(Z)
m =

∑m−1
j=0 〈S, ϕj〉ϕj .

Let us also briefly discuss about the invertibility assumption. First, in the case of the his-

togram basis, the matrix tΦ
(Z)
m Φ

(Z)
m is diagonal (indeed in that case, ϕjϕk ≡ 0 for j 6= k). It is

thus invertible if no bin [j/m, (j + 1)/m[ is empty, and then explicit formula for the coefficients
is available (see Section 2.6).

Moreover, asymptotically, for all bases, (1/n) tΦ
(Z)
m Φ

(Z)
m tends to Ψm,Z almost surely, for

Z = L,U , when n tends to infinity. We noticed that t~a Ψm,Z~a = ‖t‖2Z where t =
∑m−1

j=0 ajϕj ,

for Z = L,U . Assume that IZ is compact and fZ is lower bounded on IZ by f
(Z)
0 . Then, for

t 6= 0, ‖t‖2Z ≥ f
(Z)
0 ‖t‖2 > 0, Z = L,U . Therefore, Ψm,Z is invertible, which heuristically means

that tΦ
(Z)
m Φ

(Z)
m is ”asymptotically” invertible.

Now, by using this strategy, we can see that we take separately two parts of the available
information while we would like to take it completely. Moreover, the estimators will clearly
perform well, but only either on the support of L or on the one of U , and not on both. Their
drawback can be easily illustrated, see Figure 1 for different choices of intervals for supp(L) and
supp(U).

2.4. Improved estimator. Here, we explain our further investigations in order to obtain an
estimator on a larger interval, in better accordance with all available date.

2.4.1. First step: estimator of differences. For T (x, y) =
∑

1≤j,k≤m aj,kϕj(x)ϕk(y) belonging to

Σm⊗Σm, we may also consider, as E(1δi=0|Ui, Li) = F (Ui)−F (Li) = S(Li)−S(Ui), the contrast

1

n

n∑
i=1

T 2(Li, Ui)−
2

n

n∑
i=1

1δi=0T (Li, Ui).
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In that way, we would take all the observations into account. However, the resulting estimator
would provide an estimator of the bi-variate function G(x, y) = S(x) − S(y), x < y, without
taking its specific form into account: the underlying function is S(.) and it is univariate. However,
due to the curse of dimensionality, the rate associated to the bidimensional problem would be
bad, or at least worse than what we can expect for a univariate function. Now inserting in
addition the specific form of G , we obtain

γ̃n(t) =
1

n

n∑
i=1

[t(Li)− t(Ui)]2 −
2

n

n∑
i=1

1δi=0[t(Li)− t(Ui)].

This contrast has expectation

E[γ̃n(t)] =

∫∫
[t(x)− t(y)−(S(x)−S(y))]2f(L,U)(x, y)dxdy−

∫∫
(S(x)−S(y))2f(L,U)(x, y)dxdy.

Here, we estimate m coefficients, which may be relevant to recover S, except that the function
is determined up to, at least, an additive constant. Now, the expectation can be re-written:

E[γ̃n(t)] = ‖t− S‖2L + ‖t− S‖2U − 2

∫∫
(t− S)(x)(t− S)(y)f(L,U)(x, y)dxdy

−
∫∫

(S(x)− S(y))2f(L,U)(x, y)dxdy.

The first two right-hand-side terms (‖t−SI‖2L + ‖t−SI‖2U ) correspond to norms that we intend
to simultaneously minimize, with I ⊇ IL ∪ IU . The last term does not depend on the function t
and can be omitted. This is why we tried to kill the third term, of cross-product type. Noticing
that ∫∫

(t− S)(x)(t− S)(y)f(L,U)(x, y)dxdy = E[(t− S)(L1)(t− S)(U1)]

and that, by conditioning by (Ui, Li), we have

E[(t(Ui)− 1δi=1)(t(Li)− 1δi 6=−1)] = E[(t(Ui)− S(Ui))(t(Li)− S(Li))] + E[S(Ui)(1− S(Li))]︸ ︷︷ ︸
independent of t

we obtain an adequate term to add to the previous contrast.

2.4.2. New estimator. Thus, we corrected the contrast by replacing γ̃n(t) by

1

n

n∑
i=1

[t(Li)− t(Ui)]2 −
2

n

n∑
i=1

1δi=0[t(Li)− t(Ui)] +
2

n

n∑
i=1

(t(Ui)− 1δi=1)(t(Li)− 1δi 6=−1).

This formula can be rewritten

‖t‖2n,U + ‖t‖2n,L −
2

n

n∑
i=1

1δi=1t(Ui)−
2

n

n∑
i=1

1δi 6=−1t(Li) +
2

n

n∑
i=1

1δi=1.

This is how we obtained our main contrast:

(12) γn(t) = ‖t‖2n,U + ‖t‖2n,L −
2

n

n∑
i=1

1δi=1t(Ui)−
2

n

n∑
i=1

1δi 6=−1t(Li).

where ‖t‖2n,U and ‖t‖2n,L are defined by (5). We note that this contrast appears as the sum of
the two previous ones and we straightforwardly obtain the following result.

Proposition 2. Using the norms defined in (4) and (5), we have

E(γn(t)) = ‖t− S‖2U + ‖t− S‖2L − ‖S‖2U − ‖S‖2L.
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Note that

‖t− S‖2U + ‖t− S‖2L =

∫
(t(x)− S(x))2(fL(x) + fU (x))dx := ‖t− S‖2L+U .

Thus we obtain an estimator of S on I ⊇ IL ∪ IU . This means that if the estimation basis is
compactly supported, the support must be chosen in accordance and is larger than for the two
naive strategies, and for all the bases, the performance of the estimator may be good on this
interval only.
Thus we define our final estimator by

(13) Ŝm = arg min
t∈Σm(I)

γn(t).

Assuming that tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m is invertible, then the estimator can be computed as

Ŝm =

m∑
j=1

âjϕj ~̂am =

 â0
...

âm−1

 =
[
tΦ(L)
m Φ(L)

m + tΦ(U)
m Φ(U)

m

]−1 (
tΦ(L)
m
~δ(L) + tΦ(U)

m
~δ(U)

)
,

where Φ
(Z)
m , ~δ(Z) are defined in (6). This formula shows that the estimator uses all the data and

is not the sum of the first two estimators.
The study of the estimator is more tedious, but it is interesting to see that we can prove the

following result.

Proposition 3. Assume that tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m is invertible almost surely. Then, for any

m ∈ {1, . . . , n}, we have

E
(
‖Ŝm − SI‖2n,U + ‖Ŝm − SI‖2n,L

)
≤ inf

t∈Σm(I)

(
‖t− SI‖2L+U

)
+

5

2

m

n
.

We already noticed that
∫
I S

2(x)(fL(x)+fU (x))dx < +∞. As announced, Proposition 3 shows

that the estimator Ŝm performs well on I∩(supp(L)∪supp(U)) due to the weight function fL+fU ,
I ⊇ IL ∪ IU . In practice, for non localized bases such as Laguerre, the risk of the estimator is
computed on [min(Li),max(Ui)]. Note that the bias is now

inf
t∈Σm(I)

(
‖t− SI‖2U + ‖t− SI‖2L

)
=

∫
(Sm(x)− SI(x))2(fL(x) + fU (x))dx

where Sm is the orthogonal projection of S on Σm(I) with respect to the scalar product 〈., .〉L+
〈., .〉U . Following Remark 1, if fL and fU are bounded by fmax, we get

inf
t∈Σm(I)

(
‖t− SI‖2U + ‖t− SI‖2L

)
≤ 2fmax‖Sm − SI‖2.

However, for compactly supported bases, the support I is larger in the present setting than for
the first two estimators, with the restriction that a hole between the supports of L and U may
prevent the estimator to be computed. Indeed, think of the histogram case, empty bins imply

that diagonal the matrix tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m can not be inverted.

For Laguerre basis, I = R+, but the risk which is controlled corresponds to the risk on
supp(L) ∪ supp(U). In practice, when considering this basis, a hole between the supports of L
and U does not imply any practical problem in the procedure (see Figure 1).
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2.5. Discussion about rates. Inequalities provided in Proposition 1 and Proposition 3 can
allow to compute convergence rates of the estimators.

• Consider the compactly supported bases described in Section 2.1 (such as histograms or
piecewise polynomials). Assume that fL and fU are bounded on the support of the basis. The
results stated in Brunel and Comte (2009), Corollary 3.1 p.8, apply here. They imply that the

method provides convergent estimators Ŝ
(Z)

m
(Z)
opt

, with asymptotic rate n−2α/(2α+1) for α the Besov

regularity of SIZ when SIZ belongs to a Besov ball, and m
(Z)
opt = O(n1/(2α+1)) for Z = L,U , and

the same holds for Ŝm on I. Those rates constitute a generalization of the rate n−1/3 corre-
sponding to α = 1 (rates obtained under Lipschitz type assumptions in Birgé (1999) to rates of

order n−α/(2α+1) for a general regularity α which can be larger than one for trigonometric bases
or piecewise polynomials with degree r ≥ α. It is worth mentioning that Birgé (1999) presents
an estimator reaching an improved rate (within a logarithmic factor) on a compact set and
with an error measured in L1-distance, under a lower bound condition on the joint distribution
f(L,U). It is known (see Comte and Genon-Catalot, 2018) that under a lower bound condition

on fU and fL on I (no hole case), we can extend our bounds to standard L2-risk on the support I.

• For s ≥ 0, the Sobolev-Laguerre space with index s (see Bongioanni and Torrea, 2009) is
defined by:

(14) W s = {θ : R+ → R, θ ∈ L2(R+), |θ|2s :=
∑
k≥0

ksa2
k(θ) < +∞}.

where ak(θ) =
∫
R+ θ(x)`k(x)dx. We define the ball W s(D) by

W s(D) =

{
θ ∈W s

L, |θ|2s =
∞∑
k=0

ksa2
k(θ) ≤ D

}
.

For details on these spaces, and especially for regularity properties of functions in these spaces,
we refer also the reader to Comte et al. (2015), Section 7.2. Now, if fL and fU are upper bounded

on I = R+ and SI belongs to W s(D), then the risks of Ŝ
(Z)
m for Z = L,U and Ŝm can be bounded

by Dm−s + m/(2n). Thus, choosing m of order n1/(s+1) yields a risk less than n−s/(s+1) and
the estimators are therefore convergent. The interest of this basis is that the coefficient do not
require any information on the estimation support; in censoring framework, this is an important
advantage as the support is unknown.

2.6. Histogram case. In the specific case of histogram basis, the matrices Ψm,Z , Z = L,U ,
are diagonal and thus, invertibility conditions are easy to study and explicit formulas for the
estimators can be given.

We take in this section ϕj = hj for j = 0, . . . ,m− 1, see Section 2.1. We define, the following
cardinalities:

Nj := Card{i ∈ {1, . . . , n}, Li ∈ Ij},Mj := Card{i ∈ {1, . . . , n}, Ui ∈ Ij},

and

N ′j = Card{i ∈ {1, . . . , n}, Li ∈ Ij and δi = −1},M ′j = Card{i ∈ {1, . . . , n}, Ui ∈ Ij and δi = 1}.

Then 〈ϕj , ϕk〉n,U = 0 if j 6= k and (m/n)Mj if j = k. So Ψ̂m,U = (m/n)diag(M1, . . . ,Mm).

Analogously Ψ̂m,L = (m/n)diag(N1, . . . , Nm). They are invertible if no Mj is null for the first
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one, no Nj is null for the second one. The estimator Ŝm relies on the inversion of Ψ̂m,L + Ψ̂m,U

and is therefore possible if Mj and Nj are never simultaneously null. We obtain

â
(L)
j =

1√
m

Nj −N ′j
Nj

=
1√
m

(
1−

N ′j
Nj

)
, â

(U)
j =

1√
m

M ′j
Mj

, âj =
1√
m

Nj −N ′j +M ′j
Mj +Nj

.

It is worth underlining that the last estimator in not the sum of the estimators (L) and (U), and
it appears that all these estimators are different from Birgé’s proposal. We explain in section
6.3 in what sense the estimator built from γ̃n may be more related to it.

3. Model selection

We propose here a model selection strategy for the estimator Ŝm, that is a data driven way
of selecting m from the data in a coherent way. Part of the tools we use here are inspired from
the work on standard regression function estimation described developed in Comte and Genon-
Catalot (2018). They allow us to provide a generalization of the method presented in Brunel and
Comte (2009) for interval censoring case I, and dedicated to the case of compactly supported

bases. Note that a similar procedure would be possible for Ŝ
(Z)
m , Z = L,U , we experiment it

numerically in section 4, but do not give theoretical details.
To take into account both compactly and non compactly supported bases, we define the

random collection of models as follows:

(15) M̂n =

{
m ∈ N \ {0},m(‖(Ψ̂m,L + Ψ̂m,U )−1‖2op ∨ 1) ≤ 4c

n

log(n)

}
,

where

c =

(
6 ∧ 1

‖fL + fU‖∞

)
1

48c2
ϕ

,

with cϕ defined in (3). The theoretical (deterministic) counterpart is the set random sets Mn

defined by

(16) Mn =

{
m ∈ N \ {0},m(‖(Ψm,L + Ψm,U )−1‖2op ∨ 1) ≤ c

n

log(n)

}
.

We propose to select the model following the rule:

(17) m̂ = arg min
m∈M̂n

[γn(Ŝm) + pen(m)]

with pen(m) = κm/n, and κ a numerical constant. The constant κ is calibrated on preliminary
simulation experiments, and then fixed for the rest of the procedures. Relying on results stated
in Comte and Genon-Catalot (2018), we can obtain the following result.

Theorem 1. Consider a nested collection of models (Σm)m∈Mn with models satisfying (3) and
Mn defined by (16), and the estimator defined by (12)-(13) and (17). Then there exists a value
κ0 > 0, such that ∀κ ≥ κ0,

E
[
‖Ŝm̂ − SI‖2L+U

]
≤ C inf

m∈Mn

(
inf
t∈Σm

‖SI − t‖2L+U +
m

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on fL, fU , c.

The above inequalities show that the estimator makes an automatic bias-variance tradeoff,

with a data driven selection criterion. The performance of Ŝm̂ is valid on an interval which is

larger than if Ŝ
(Z)
m had been considered, for Z = L or U . The loss of the procedure lies in the

multiplicative constants C (the nearer of 1, the better), and in the restriction on the collection
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Figure 1. True survival curve (black solid line) SI for Model 1 and Laguerre

basis estimators with sample size n = 1000 : Ŝ
(L)
m̂L

(red dashed line) built on

supp(L), Ŝ
(U)
m̂U

(black longdashed line) built on supp(U) and Ŝm̂ (blue dotdashed

line) built on I = [0, 4] on two different scenarios : on the left, scenario 1 with
supp(L) = [0, 3], supp(U) = [0, 4], on the right, scenario 4 with supp(L) = [0, 1],
supp(U) = [2, 4].

given in (15) and (16), which must leave the optimal choice reachable. We discuss this in the
next remark.

Remark 2. If the basis has compact support I and fU and fL are lower bounded on I by f0,
then we can prove

(18) max(‖Ψ−1
m,U‖

2
op, ‖Ψ−1

m,L‖
2
op) ≤ 1/f2

0 and ‖(Ψm,L + Ψm,U )−1‖2op ≤ 4/f2
0 .

Thus, under such assumptions, it turns out that condition (16) reduces to the set of models
m such that m ≤ Cn/ log(n), which is a very weak constraint. This implies that the adaptive
estimator automatically reaches the best possible rate on Besov-type regularity spaces (see the
end of Sections 2.3 and 2.4) on the domain determined by the support of the basis.

In the case of non compactly supported bases, such as the Laguerre basis which works very
well for survival function estimation, condition (16) imposes a real restriction on the collection
of models. For optimality issues, theoretical examples and illustrations, we refer to Comte and
Genon-Catalot (2018).

4. Simulation study

Our aim is to compare our new penalized estimator, built using the Laguerre basis, with
other competitors. We consider the log-concave Nonparametric Maximum Likelihood Estimator
(NPMLE) of Anderson-Bergman and Yu (2016) implemented using the logconPH R package
and the unconstrained NPMLE implemented using the prodlim R package.

We have to choose the constant κ in the penalty term and a preliminary rough calibration
over some models shows that a range of values between 2 and 4 would suit. We take κ = 4 which
is the largest value of the range, possibly corresponding to over-penalization but also ensuring
stability of the estimators.

We simulated K = 100 samples of size n = 300 and n = 1000 from the following event time
distributions :
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• Model 1 : X ∼ Weibull(a, b) the survival function is S(x) = exp(−(x/b)a) with the shape
parameter a = 2 and scale parameter b = 2 corresponding to a log-concave distribution.
• Model 2 : X ∼ Weibull(a, b) with shape parameter a = 0.5 and scale parameter b = 2

corresponding to a non log-concave distribution.
• Model 3 : X is distributed as a Beta′(α, β) a beta prime distribution or a beta of type

II with survival function S(x) =
∫ +∞
x uα−1(1 + u)−α−β/(B(α, β))du for x ≥ 0 where

B(α, β) =
∫ 1

0 t
α−1(1 − t)β−1dt is the beta function with α = 5 and β = 2 two shape

parameters.
• Model 4 : X = 6Z with Z ∼ Beta(2, 5) a standard beta distribution admitting the

density function f(x) = Γ(a + b)/(Γ(a)Γ(b))xa−1(1 − x)b−1 for 0 ≤ x ≤ 1 with shape
parameters a = 2 and b = 5.

Note that Model 1 and 4 correspond to log-concave distributions while Model 2 and 3 do not.
We also investigate different schemes for the distribution of the inspection times L and U :

• scenario 1 : L ∼ U([0, 3]) and U = L+ U([0, 1]).
• scenario 2 : L ∼ U([0, 1]) and U = L+ U([0, 3]).
• scenario 3 : L,U ∼ U([0, 4]) with the constraint 0 ≤ U − L ≤ 0.1 so that the times L

and U can be very close to each other.
• scenario 4 L ∼ U([0, 1]) and U ∼ U([2, 4]). In this case, there is a hole between 1 and 2.

This scenario makes sense in the context of diseases with a long-distance follow-up care.

We illustrate how model selection performs for histogram and Laguerre bases on Figure 2.
But we choose to compare only our Laguerre estimator with competitors because histogram esti-
mators need additional conventions in scenario 4. Nevertheless, it behaves well on an estimation
interval without empty bins as shown in Figure 4 (left).

To assess the numerical performance of our penalized Least Squares estimator and its com-
petitors, we compute the Average Mean Squared Error over a grid. We define a grid t1, · · · , t100

of 100 equispaced points on I = [min(Li),max(Ui)]. It is not always possible to evaluate the
value of the NPMLE on the right of the interval, as for any product-limit estimator, it is biased
and does not go to zero if the greatest observed value of Ui corresponds to δi = 1. So we made
the choice to shorten the grid at the upper bound of the last step of the NPMLE. Roughly
speaking, the grid is shrunken at max(Ui, δi = 1) instead of max(Ui). This choice is rather in
favour of the NPMLE but does not degrade significantly the results for the other estimators as
far as we see in preliminary trials. For each generated sample, we compute the Mean Squared
Error for each estimator, on the truncated grid described above. Then, we average over the
100 replicated samples of size n = 300 or n = 1000. The values of the Average Mean Squared
Error AMSE×10−3 are presented in Table 1 in Appendix A. We also report the median error
in parenthesis. Model 1 and 4 match with log-concave distributions and as expected the log-
concave estimator of Anderson-Bergman and Yu gives the best results whatever the scenario for
the inspection times is. However, our Least Squares estimator challenges the NPMLE especially
for scenario 3 and 4. When the distribution is not log-concave with Model 2 and 3, the Anderson-
Bergman and Yu estimator has always the worst error. Our Least Squares estimator seems to
be less performant than the NPMLE for Model 2 and n = 300 but performs definitely better in
scenario 4. Even if it performs a little worse in mean for some models, the Least Squares esti-
mator built with Laguerre basis has no important failure, contrary to both NPMLE estimators.
In fact, on Figure 4, we illustrate typical bad behaviours of both constrained/unconstrained
NPMLEs: the log-concave estimator is very bad for non log-concave distribution (Figure 4, left)
while the unconstrained NPMLE performs badly for scenario 4 (Figure 4, right) when there is a
hole between the supports of L and U . So the Least Squares estimator seems to be overall the
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Figure 2. Model selection for mean squares estimators : Collection of estimators

Ŝ
(Z)
m for m = 1, · · · , 12 (cyan plain line) and selected estimator (blue dotdashed

line) for a sample of size n = 300 with histogram basis (left) for Model 1, scenario
1 and with Laguerre basis (right) for Model 2, scenario 2. True survival curve SI
(black solid line).

most reliable. This fact is also illustrated on Figure 3 with bundles of estimators for Model 2
and 4. The boxplots on Figure 5 and 6 also confirm this fact. Except a small number of extreme
error values (which means that model selection failed), the Least Squares estimator appears to
be a quite good compromise for any distribution type of the event time and for any support of
the inspection times.

Remark 3. A drawback of our estimation procedure is that it doesn’t build a strict estimator of a
survival function. In fact, the penalized estimator may start at a value different of 1 and may fail
to be monotone. As it is consistent, this does not happen for large enough sample sizes. However,
we propose an a posteriori transformation to correct these two facts. We compute first the

original penalized estimator Ŝm̂. Then, we reevaluate the coefficients of our penalized estimator
by adding a constraint in the least squares contrast to make the estimator be equal to 1 at the
origin. The constrained least squares contrast can be expressed with the Lagrange multiplier
γn(t) − λ(t(0) − 1). From a computational point of view, the procedure is straightforward and
leads to a smooth correction of the estimator. We do not investigate the theoretical properties of
the resulting constrained estimator, but a study of its properties can be found in another context
in Comte and Dion (2017). Finally, the procedure of Chernozhukov et al. (2009) available in the
R-package Rearrangement allows to overcome the possible problem of monotony and can be
applied without degrading the rate of the original estimator. These corrections are applied to
the estimators plotted in Figures 1-4.

5. Application to a real dataset

In this section we study a dataset from Melbye et al. (1984). In this dataset, a cohort of
homosexual men from two cities in Denmark has been examined for HIV-antibody positivity
on six different dates: December 1981, April 1982, February 1983, September 1984, April 1987,
and May 1989. The dataset comprises a total of 297 people who have been tested at least once.



13

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3. Bundles of 25 estimators : Anderson-Bergman and Yu estimators
(red dotted) and Laguerre basis estimators (blue dashed), Model 3 (Left) and
Model 4 (Right) for n = 300 at the top and n = 1000 at the bottom, all in
scenario 2.
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Figure 4. True survival function SI on I = [0, 4] (black solid line), Anderson-
Bergman and Yu estimator (red dotted), our least squares estimators with La-
guerre basis (blue dashed) and histogram basis (blue dotdashed) and NPMLE
estimator (green step line) for Model 2 in scenario 1 on the left and Model 1 in
scenario 4 on the right.
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Figure 5. Average Mean Squared Error for sample size n = 300. From top to
bottom Model 1 to 4, from left to right Scenario 2 to 4.

Among all these people, 26 were diagnosed with infection at the first examination date (which
corresponds to δi = −1), 39 were diagnosed with infection at another examination date (which
corresponds to δi = 0) and 232 were examined without HIV infection (which corresponds to
δi = 1). See also Becker and Melbye (1991) and Carstensen (1996) for more informations on the
dataset.

Our new estimator with Laguerre basis is applied to the dataset using calendar time as the
time scale. In order to deal with the high time values of the dataset which may cause numerical
difficulties, we rescale the observations for the estimator computations. The rescaled sample
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Figure 6. Average Mean Squared Error for sample size n = 1000. From top to
bottom Model 1 to 4, from left to right Scenario 2 to 4.

(L′i, U
′
i)1≤i≤n is obtained by applying the transformation t 7→ (t−min(Li))/(max(Ui)−min(Li)

to the original data (Li, Ui)1≤i≤n. Then, the final curve is plotted in its original scale.
From the collection of models defined in (15), only four different models are allowed. Plots of

the different estimators for each of these models are presented in Figure 7. Setting κ = 4 as in the
simulation studies, our selection procedure chooses the modelm = 2. As an alternative procedure
to choose the correct model, we also used the R Capushe package based on slope heuristics (see
Baudry et al., 2012): both the data-driven slope estimation and the dimension jump algorithms
lead to the same model selection (m = 2). The corresponding estimator is displayed in Figure
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8 along with two competitors: the NPMLE implemented from the prodlim package and the
Anderson-Bergman and Yu estimator implemented from the logconPH package. As described
in Remark 3, the constrained version of our estimator is also displayed in Figure 8. Since 26
patients were diagnosed with infection at the first examination date, we chose to interpret the
unconstrained version of our estimator. This estimator seems to be in accordance with the
NPMLE, while providing a smoothed estimation of the survival function. On the other hand
the Anderson-Bergman and Yu estimator provides very different survival estimates: for instance,
it estimates to 35.4% the chance of being HIV negative among Danish homosexual men in 1986
and to 2.7% the chance of being HIV negative in 1990. On the contrary, the NPMLE and
our estimator respectively estimate to 78.1% and 79.1% the chances of being HIV negative in
1986 and to 71.7% and 64.1% the chances of being HIV negative in 1990. It seems that the
Anderson-Bergman and Yu method is not adapted to this dataset because it implicitly assumes
that the time distribution is log-concave while our estimator works for more general survival
distributions. As a result, our method provides much more realistic survival estimates than
their method.
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Figure 7. Our survival estimate of HIV infection using Laguerre basis. Black
solid line corresponds to m = 1, blue dashed line to m = 2, red dotted to m = 3
and green dotdash to m = 4. Our selection procedure chooses the model m = 2.

6. Proofs

6.1. Proof of Proposition 1. Let Π
(L)
m denote the orthogonal projection (for the scalar product

in Rn) on the subspace { t(t(L1), . . . , t(Ln)), t ∈ Σm} of Rn and let Π
(L)
m S be the projection of

t(S(L1), . . . , S(Ln)). Then by Pythagoras,

‖Ŝ(L)
m −SIL‖

2
n,L = ‖Π(L)

m S−SIL‖
2
n,L+‖Ŝ(L)

m −Π(L)
m S‖2n,L = inf

t∈Σm(IL)
‖t−SIL‖

2
n,L+‖Ŝ(L)

m −Π(L)
m S‖2n,L.
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Figure 8. Survival estimates of HIV infection using the NPMLE (green solid
line), our estimator with Laguerre basis after model selection with m = 2 (blue
dashed line for the original estimator and blue dotted for the constrained estima-
tor) and the log-concave estimator from Anderson-Bergman and Yu (red dotted
line).

By taking the expectation of the above formula, we have

(19) E[‖Ŝ(L)
m − SIL‖

2
n,L] ≤

∫
t∈Σm(IL)

‖t− SIL‖
2
L + E

[
‖Ŝ(L)

m −Π(L)
m S‖2n,L

]
.

Now, we compute and bound E
[
‖Ŝ(L)

m −Π
(L)
m S‖2n,L

]
. We have

~̂
S

(L)

m :=

 Ŝ
(L)
m (L1)

...

Ŝ
(L)
m (Ln)

 = Φ(L)
m
~̂a(L)
m = Φ(L)

m ( tΦ(L)
m Φ(L)

m )−1 tΦ(L)
m
~δ(L).

We set Ξ
(L)
m = Φ

(L)
m ( tΦ

(L)
m Φ

(L)
m )−1 tΦ

(L)
m and note that is corresponds to the matrix of the

orthogonal projection Π
(L)
m . Therefore

Π(L)
m S = Ξ(L)

m S(L) where S(L) = t(S(L1), . . . , S(Ln)).

Therefore, denoting by ~ε(L)(L) = t(ε(L)(L1), . . . , ε(L)(Ln)), where ε(L)(Li) = 1−1δi=−1−S(Li),
we get

‖Ŝ(L)
m −Π(L)

m S‖2n,L = ‖Ξ(L)
m ~ε(L)(L)‖2n,L =

1

n
t~ε(L)(L) tΞ(L)

m Ξ(L)
m ~ε(L)(L) =

1

n
t~ε(L)(L)Ξ(L)

m ~ε(L)(L).
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Now,

E
[
~ε(L)(L)Ξ(L)

m ~ε(L)(L)
]

=
∑

1≤i,k≤n
E
(
ε(L)(Li)ε

(L)(Lk)[Ξ
(L)
m ]i,k

)
=

n∑
i=1

E(ε(L)(Li)
2[Ξ(L)

m ]i,i)

=

n∑
i=1

E(S(Li)(1− S(Li))[Ξ
(L)
m ]i,i)

≤ 1

4

n∑
i=1

E([Ξ(L)
m ]i,i) =

1

4
E
(

Tr(Ξ(L)
m )
)
.

Indeed Ξ
(L)
m is a symmetric positive matrix, so that txΞ

(L)
m x > 0 for all vector x, and thus its

diagonal coefficients are positive. Now Tr(Ξ
(L)
m ) = Tr(( tΦ

(L)
m Φ

(L)
m )−1 tΦ

(L)
m Φ

(L)
m ) = Tr(Im) = m.

Thus

E
[
‖Ŝ(L)

m −Π(L)
m S‖2n,L

]
≤ 1

4

m

n

and plugging this in (19) gives the result of Proposition 1 for Ŝ
(L)
m . The same ideas give the

result for Ŝ
(U)
m . 2

6.2. Proof of Proposition 3. We start by the contrast decomposition: let t, t′ ∈ Σm, then

γn(t)− γn(t′) = ‖t− SI‖2n,U + ‖t− SI‖2n,L − (‖t′ − SI‖2n,U + ‖t′ − SI‖2n,L)

−2νn,U (t− t′)− 2νn,L(t− t′),(20)

where

νn,U (t) =
1

n

n∑
i=1

t(Ui)(1δi=1 − S(Ui)), νn,L(t) =
1

n

n∑
i=1

t(Li)(1δi 6=−1 − S(Li)).

Writing that γn(Ŝm) ≤ γn(Sm) for any Sm ∈ Σm, we get

‖Ŝm−SI‖2n,U +‖Ŝm−SI‖2n,L ≤ ‖Sm−SI‖2n,U +‖Sm−SI‖2n,L+2νn,U (Ŝm−Sm)+2νn,L(Ŝm−Sm).

Denoting by ε(L)(Li) = 1δi 6=−1 − S(Li) and ε(U)(Ui) = 1δi=1 − S(Ui), the inequality writes

E
[
‖Ŝm − SI‖2n,U + ‖Ŝm − SI‖2n,L

]
≤ E

[
‖Sm − SI‖2n,U + ‖Sm − SI‖2n,L

]
+

2

n
E

[
n∑
i=1

(
ε(L)(Li)(Ŝm − Sm)(Li) + ε(U)(Ui)(Ŝm − Sm)(Ui)

)]
≤ ‖Sm − SI‖2U + ‖Sm − SI‖2L

+
2

n
E

[
n∑
i=1

(
ε(L)(Li)Ŝm(Li) + ε(U)(Ui)Ŝm(Ui)

)]
︸ ︷︷ ︸

:=T

(21)

Let us set

(22) Θm = tΦ(L)
m Φ(L)

m + tΦ(U)
m Φ(U)

m .

As we have
T = ( t~ε(L)(L)Φ(L)

m + t~ε(U)(U)Φ(U)
m )Θ−1

m ( tΦ(L)
m
~δ(L) + tΦ(U)

m
~δ(U))

we find

E(T) = E
(

( t~ε(L)(L)Φ(L)
m + t~ε(U)(U)Φ(U)

m )Θ−1
m ( tΦ(L)

m ~ε(L)(L) + tΦ(U)
m ~ε(U)(U))

)
.
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We get

(23) E(T) := E(TL) + E(TU ) + E(TL,U )

where, by using that E[(ε(L)(Li))
2|Li] = S(Li)(1 − S(Li)) and E[(ε(U)(Ui))

2|Ui] = S(Ui)(1 −
S(Ui)),

TL =
n∑
i=1

S(Li)(1− S(Li))[Φ
(L)
m Θ−1

m
tΦ(L)
m ]i,i, TU =

n∑
i=1

S(Ui)(1− S(Ui))[Φ
(U)
m Θ−1

m
tΦ(U)
m ]i,i

and

TL,U =

n∑
i=1

S(Ui)(1− S(Li))[Φ
(L)
m Θ−1

m
tΦ(U)
m + Φ(U)

m Θ−1
m

tΦ(L)
m ]i,i.

Let us denote by ‖~x‖22,d = x2
1 + · · · + x2

d the euclidean norm of a vector ~x of Rd and by ~ei,d
the i-th canonical basis vector in Rd, that is the d-dimensional vector with all coordinates null
except the i-th which is equal to 1. Then we have, for Z = L,U ,

[Φ(Z)
m Θ−1

m
tΦ(Z)
m ]i,i = t~ei,nΦ(Z)

m Θ−1
m

tΦ(Z)
m ~ei,n = ‖Θ−1/2

m
tΦ(Z)
m ~ei,n‖22,n ≥ 0,

where Θ
−1/2
m is a matrix symmetric square root of Θ−1

m . Thus for Z = L,U , we have

E(TZ) ≤ 1

4
E

(
n∑
i=1

[Φ(Z)
m Θ−1

m
tΦ(Z)
m ]i,i

)
=

1

4
E(Tr(Φ(Z)

m Θ−1
m

tΦ(Z)
m )) =

1

4
E(Tr(Θ−1

m
tΦ(Z)
m Φ(Z)

m )).

It follows that

(24) E(TL + TU ) ≤ 1

4
E(Tr(Θ−1

m ( tΦ(L)
m Φ(L)

m + tΦ(U)
m Φ(U)

m ))) =
1

4
Tr(Im) =

m

4
.

Now we prove that TL,U ≤ m. Let us set D2 = diag(d2
1, . . . , d

2
n) with d2

i = S(Ui)(1− S(Li)).
We have

TL,U = Tr
(
D2(Φ(L)

m Θ−1
m

tΦ(U)
m + Φ(U)

m Θ−1
m

tΦ(L)
m )
)

= Tr
(

Θ−1
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )

)
.

Let us denote by Θm,D := tΦ
(L)
m D2Φ

(L)
m + tΦ

(U)
m D2Φ

(U)
m . We remark that, for any vector ~x ∈ Rm,

we have
t~x t(D(Φ(L)

m − Φ(U)
m ) (D(Φ(L)

m − Φ(U)
m )~x = ‖D(Φ(L)

m − Φ(U)
m )~x‖22,n ≥ 0

and the term is also equal to

t~x t(D(Φ(L)
m − Φ(U)

m )) (D(Φ(L)
m − Φ(U)

m ))~x = t~x t
(

Θm,D − ( tΦ(U)
m D2Φ(L)

m + tΦ(L)
m D2Φ(U)

m )
)
~x.

Setting ~x = Θ
−1/2
m ~y, we get

t~y Θ−1/2
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )Θ−1/2

m ~y ≤ t~y Θ−1/2
m Θm,DΘ−1/2

m ~y.

Choosing ~y = ~ei,m and summing up the terms over i, we obtain that

Tr
(

Θ−1
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )

)
= Tr

(
Θ−1/2
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )Θ−1/2

m

)
≤ Tr

(
Θ−1/2
m Θm,DΘ−1/2

m

)
= Tr

(
Θm,DΘ−1

m

)
.

Now, let λ be an eigenvalue of Θm,DΘ−1
m , associated to a nonzero eigenvector ~x, ~x ∈ Rm, we

have

Θ−1
m Θm,D~x = λ~x ⇒ Θm,D~x = λΘm~x⇒ t~xΘm,D~x = λ t~xΘm~x.
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It is easy to see that t~xΘm,D~x ≥ 0 and t~xΘm~x > 0 as Θm is assumed to be invertible, and thus

λ =
t~xΘm,D~x
t~xΘm~x

=
t~z1D

2~z1 + t~z2D
2~z2

t~z1~z1 + t~z2~z2

where ~zk = Φ
(Z)
m ~x ∈ Rn where k = 1 for Z = L and k = 2 for Z = U . It follows that

λ =

∑n
i=1 d

2
i ([~z1]2i + [~z2]2i )∑n

i=1([~z1]2i + [~z2]2i )
≤ 1

since ∀i, d2
i ≤ 1. Now the trace of a square m×m matrix which has all its eigenvalues less than

1 (and is diagonalizable), is less than m. This implies that

(25) TL,U ≤ m.
Gathering (23), (24) and (25), we get that

2

n
E(T) ≤ 5

2

m

n

and plugging this in (21), we obtain, for any Sm ∈ Σm,

E
[
‖Ŝm − SI‖2n,U + ‖Ŝm − SI‖2n,L

]
≤ E

[
‖Sm − SI‖2n,U + ‖Sm − SI‖2n,L

]
+

5

2

m

n
.

Now, using that E
[
‖Sm − SI‖2n,Z

]
= ‖Sm − SI‖2Z for Z = L,U , we obtain the result of Propo-

sition 3. 2

6.3. Complement about histogram. In fact, Birgé’s proposal also involve the following car-
dinalities

Qj,k := Card{i ∈ {1, . . . , n}, Li ∈ Ij and Ui ∈ Ik},
Q′j,k = Card{i ∈ {1, . . . , n}, Li ∈ Ij , Ui ∈ Ik and δi = 0}.

The estimator defined with γ̃n would involve such coefficients. Indeed, it relies on the inversion
of a matrix with diagonal coefficients equal to (m/n)(Mj +Nj − 2Qj,j) and non diagonal terms
equal to −(m/n)Qj,k. In other words, a matrix equal to

Ψ̃m = (m/n) (Diag(M1 +N1, . . . ,Mm +Nm) + Q) ,

where Q = (Qj,k)1≤j,k≤m. Note that Q is triangular as Qj,k = 0 if j > k and thus Ψ̃m is
triangular. Therefore, it is invertible as soon as its diagonal coefficients are non zero. The
computation of the ”difference estimator” would also involve all the specific coefficients defined
in Birgé (1999). More precisely, if we denote by Q′j,• :=

∑
kQ
′
j,k =

∑m
k=j Q

′
j,k and Q′•,k :=∑

j Q
′
j,k =

∑k
j=1Q

′
j,k, the ”difference estimator” would lead to compute [Ψ

(3)
m ]−1(

√
m/n)(Q′j,• −

Q′•,j)1≤j≤m. But the link is not clear and Birgé’s proposal includes adaptation while we would
propose a second step.

6.4. Proof of Theorem 1. The result is mainly a particular case of Theorem 2.1 of Comte and
Genon-Catalot (2018), in a simpler case of bounded noise. This is why we only present here a
sketch of proof.

The main tools in the proof of Comte and Genon-Catalot (2018) are the Talagrand Inequality
and Tropp’s (2015) matricial Bernstein Inequality. Both still apply here. For Talagrand, we
loose the independence property of the noise, but get a simplified setting due to the boudedness
property of ε(L)(Li) = 1δi 6=−1 − S(Li) and ε(U)(Ui) = 1δi=1 − S(Ui). For Tropp’s Inequality, it
allows to have here the following fundamental Lemma:
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Lemma 1. Let (L1, U1), . . . , (Ln, Un) be i.i.d. such that the densities fU and fL are bounded,

supx∈I fZ(x) := ‖fZ‖∞ < +∞ for Z = L,U . Let the basis be such that ‖
∑m−1

j=0 ϕ2
j‖∞ ≤ c2

ϕm.
Then, for all u > 0,

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 2m exp

(
− n u2/2

2c2
ϕ [(‖fL‖∞ + ‖fU‖∞) + u/3]

)
.

The proof is the same as the proof of Proposition 2.2 in Comte and Genon-Catalot (2018) with
here the bound c2

ϕm/n in (26) replaced by 2c2
ϕm/n and the bound on νn(Sm), c2

ϕ‖f‖∞m/n
replaced by 2c2

ϕ(‖fL‖∞ + ‖fU‖∞)m/n.

This result is useful to study the set Ωn defined by

(26) Ωn = ∩m∈MnΩm with Ωm =

{∣∣∣∣∣ ‖t‖2n‖t‖2L+U

− 1

∣∣∣∣∣ ≤ 1

2
, ∀t ∈ Σm(I) \ {0}

}
.

where ‖t‖2n = ‖t‖2n,L + ‖t‖2n,U . Indeed Lemma 7.2 in Comte and Genon-Catalot (2018) can be
written here as follows:

Lemma 2. Under the assumptions of Theorem 1, P(Ωc
n) ≤ c/n4 where c is a positive constant.

To understand the link between Lemma 1 and Lemma 2, we mention that the main point of
the proof is the equality

P

(
∃t ∈ Σm(I),

∣∣∣∣∣ ‖t‖2n‖t‖2L+U

− 1

∣∣∣∣∣ ≤ 1

2

)

= P

(
sup

t∈Σm(I),‖t‖L+U=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Li) + t2(Ui)− E(t2(Li) + t2(Ui))]

∣∣∣∣∣ > 1

2

)
,

and the bound

sup
t∈Σm(I),‖t‖L+U=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Li) + t2(Ui)− E(t2(Li) + t2(Ui))]

∣∣∣∣∣ ≤ ‖Ψ−1
m ‖op‖Ψ̂m −Ψm‖op.

Let us start the proof of Theorem 1 in a simplified context: we consider the estimator Ŝm
with m̂ selected in the non random collectionMn and the empirical norm for the risk. The step
from this to the effective random collection is given in the proof of Theorem 2.1 of Comte and
Genon-Catalot (2018) and the last step to get a risk bound in term of integral norm weighted
by fL + fU in Corollary 2.1 therein. The starting point is the contrast decomposition (20). We
use this to write that, for all m ∈Mn, for all Sm ∈ Σm(I):

γn(Ŝm̂) + pen(m̂) ≤ γn(Sm) + pen(m).

We get

‖Ŝm̂ − SI‖2n,U + ‖Ŝm̂ − SI‖2n,L ≤ ‖Sm − SI‖2n,U + ‖Sm − SI‖2n,L + pen(m)

+2νn,U (Ŝm̂ − Sm) + 2νn,L(Ŝm̂ − Sm)− pen(m̂).(27)

Define

νn(t) = νn,L(t) + νn,U (t) =
1

n

n∑
i=1

[
ε(L)(Li)t(Li) + ε(U)(Ui)t(Ui)

]
and recall that E(‖t‖2n) = E(‖t‖2n,L) + E(‖t‖2n,U ) = ‖t‖2L+U =

∫
t2(x)(fL(x) + fU (x))dx.
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In the following, we write Σm for Σm(I), for sake of brevity. Taking expectation of (27) yields

E
(
‖Ŝm̂ − SI‖2n

)
≤ ‖Sm − SI‖2L+U + pen(m)

+2E

(
‖Ŝm̂ − Sm‖L+U sup

t∈Σm+Σm̂,‖t‖L+U=1
|νn(t)|

)
− E(pen(m̂))

≤ ‖Sm − SI‖2L+U + pen(m) +
1

4
E(‖Ŝm̂ − Sm‖2L+U )

+4E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)

)
− E(pen(m̂)),

where we use that 2|ab| ≤ (1/4)a2 + 4b2 for all real numbers a, b. Now we bound separately the
terms on Ωn and Ωc

n where Ωn is defined by (26). We get

E
(
‖Ŝm̂ − SI‖2n1Ωn

)
≤ ‖Sm − SI‖2L+U + pen(m) +

1

4
E
(
‖Ŝm̂ − Sm‖2n1Ωn

)
+4E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)

)
− E(pen(m̂)).

Thus
1

2
E
(
‖Ŝm̂ − SI‖2n1Ωn

)
≤ 3

2
‖Sm − SI‖2L+U + pen(m)

+4E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)− p(m, m̂)

)
+

+ E(4p(m, m̂)− pen(m̂))

Then we can apply Talagrand inequality to get the Lemma:

Lemma 3. Under the assumptions of Theorem 1, we have

E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)− p(m, m̂)

)
+

≤ c

n

where p(m,m′) = 2(m+m′)/n.

Therefore ∀m,m′, 4p(m,m′) − pen(m′) ≤ pen(m) provided that pen(m) = κm/n with
κ ≥ 8. Thus we get, ∀m ∈Mn, ∀Sm ∈ Σm

E
(
‖Ŝm̂ − SI‖2n1Ωm

)
≤ 3‖Sm − SI‖2L+U + 4pen(m) +

2c

n
.(28)

On the other hand, we need to propose a rough bound for ‖Ŝm̂−SI‖2n in order to control this
term on the set Ωc

n. To that aim, we prove the Lemma

Lemma 4. Under the Assumption of Theorem 3, for all m ∈ Mn, ‖Ŝm − SI‖2n ≤ 18, almost
surely.

It follows from Lemma 4 and Lemma 2, that

(29) E
(
‖Ŝm̂ − SI‖2n1(Ωn)c

)
≤ 3
√

2P[(Ωn)c] ≤ c∗

n
,

where c∗ is a constant. Gathering (28) and (29) gives the first step of the result. 2

Proof of Lemma 3. We obtain the result by applying the following Theorem:
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Theorem 2. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H and
v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v. Then for

all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−

√
2bC(α)

√
α

7
nH
M

)
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .

By density arguments, this result can be extended to the case where F is a unit ball of a linear
normed space, after checking that f → νn(f) is continuous and F contains a countable dense
family.

For our process, we first note that, the collection of models being nested Σm + Σm′ = Σm∨m′ .
Let ϕ̄j be a linear transformation of the basis (ϕj)j orthonormal with respect to the scalar
product weighted by fU + fL (by Gramm-Schmidt orthonormalisation), then

E

(
sup

t∈Σm+Σm′ ,‖t‖L+U=1
ν2
n(t)

)
≤

m∨m′∑
j=1

E(ν2
n(ϕ̄j)) =

1

n

m∨m′∑
j=1

Var
(
ϕ̄j(L1)ε(L)(L1) + ϕ̄j(U1)ε(U)(U1)

)

≤ 2

n

m∨m′∑
j=1

E
(
ϕ̄2
j (L1)(1δ1 6=−1 − S(L1))2 + ϕ̄2

j (U1)(1δ1=1 − S(U1))2
)

≤ 2

n

m∨m′∑
j=1

E(S(L1)(1− S(L1))ϕ̄2
j (L1) + S(U1)(1− S(U1))ϕ̄2

j (U1))

≤ m ∨m′

2n
≤ m+m′

2n
:= H2,

using that x(1 − x) ≤ 1/4 for any x ∈ [0, 1] and E(ϕ̄2
j (U1) + ϕ̄2

j (L1)) = 1 by definition of ϕ̄j .
Next,

sup
t∈Σm+Σm′ ,‖t‖L+U=1

Var
(
t(L1)ε(L)(L1) + t(U1)ε(U)(U1)

)
≤ 2 sup

t∈Σm+Σm′ ,‖t‖L+U=1
E
(
t2(L1) + t2(U1)

)
= 2 := v.

Lastly,

sup
t∈Σm+Σm′ ,‖t‖L+U=1

sup
(x,u)∈R+×R+

|ε(L)(x)t(x) + ε(U)(u)t(u)| ≤ 2 sup
t∈Σm+Σm′ ,‖t‖L+U=1

sup
x∈R+

|t(x)|.

For t =
∑m−1

j=0 ajϕj , we have ‖t‖2U+L = t~aΨm~a = ‖
√

Ψm~a‖2m, where ~a = t(a0, a1, . . . , an). Thus,
for any m,

sup
t∈Σm,‖t‖U+L=1

sup
x
|t(x)| ≤ cϕ

√
m sup
‖
√

Ψm~a‖2,m=1

‖~a‖m

≤ cϕ
√
m sup
‖~u‖m=1

|‖
√

Ψ−1
m ~u‖2,m = cϕ

√
m

√
‖Ψ−1

m ‖op.
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Using the definition of Mn, we have

√
m

√
‖Ψ−1

m ‖op ≤
(
m‖Ψ−1

m ‖2op

)1/4
m1/4 ≤

(
c

n

log(n)

)1/4

m1/4.

Now, we get a bound similar to the one in Comte and Genon-Catalot (2018) (with kn = 2) and

M1 = 2cϕ

(
c

n

log(n)

)1/4

(m ∨m′)1/4.

Therefore, applying Talagrand inequality recalled in Theorem 2 gives

E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)− p(m, m̂)

)
+

≤
∑

m′∈Mn

E

(
sup

t∈Σm+Σm′ ,‖t‖L+U=1
ν2
n(t)− p(m,m′)

)
+

≤
∑

m′∈Mn

C1

n

(
e−C2(m∨m′) +

(m ∨m′)1/2

n1/2
e−C3(n(m∨m′))1/4

)

≤ C4

n
,

for Ci, i = 1, . . . , 4 constants and p(m,m′) = 4H2 (α = 1/2). This ends the proof. 2

Proof of Lemma 4. First recall that ‖Ŝm̂ − SI‖2n = ‖Ŝm̂ − SI‖2n,L + ‖Ŝm̂ − SI‖2n,U and we
prove that the first term is bounded by 3, the other term being similar. Now we consider the
euclidean norm and recalling the definition of the estimator and of Θm, we have, for any m ≤ n:

n ‖Ŝm − SI‖2n,L = ‖Φ(L)
m Θ−1

m ( tΦ(L)
m
~δ(L) + tΦ(U)

m
~δ(U))− ~SI(L)‖22,n

≤ 3[‖Φ(L)
m Θ−1

m
tΦ(L)
m
~δ(L)‖22,n + ‖Φ(L)

m Θ−1
m

tΦ(U)
m
~δ(U)‖22,n + ‖~SI(L)‖22,n]

with ~SI(L) = t(SI(L1), . . . , SI(Ln)). Now we prove that each of the three terms is smaller

than or equal to n. Clearly, this is true for ‖~SI(L)‖22,n = S2
I (L1) + · · · + S2

I (Ln) ≤ n. Next, by
definition of the operator norm, it follows that

‖Φ(L)
m Θ−1

m
tΦ(L)
m
~δ(L)‖22,n ≤ ‖Φ(L)

m Θ−1
m

tΦ(L)
m ‖2op‖~δ(L)‖22,n.

Since Φ
(L)
m Θ−1

m
tΦ

(L)
m is a symmetric positive definite matrix, its operator norm corresponds to its

largest eigenvalue. Let λ be any eigenvalue of Φ
(L)
m Θ−1

m
tΦ

(L)
m associated with an eigenvector ~x:

Φ
(L)
m Θ−1

m
tΦ

(L)
m ~x = λ~x. Multiplying both sides by tΦ

(L)
m , we get, for ~y = tΦ

(L)
m ~x, tΦ

(L)
m Φ

(L)
m Θ−1

m ~y =

λ~y, which means that λ is an eigenvalue of tΦ
(L)
m Φ

(L)
m Θ−1

m . Now setting ~z = ( tΦ
(L)
m Φ

(L)
m )−1/2~y

where S1/2 is a symmetric square root of a symmetric matrix S, we obtain that λ is also an
eigenvalue of

( tΦ(L)
m Φ(L)

m )1/2Θ−1
m ( tΦ(L)

m Φ(L)
m )1/2 =

[
Idm + ( tΦ(L)

m Φ(L)
m )−1/2( tΦ(U)

m Φ(U)
m )( tΦ(L)

m Φ(L)
m )−1/2

]−1
,

where Idm is them×m identity matrix. ClearlyM := ( tΦ
(L)
m Φ

(L)
m )−1/2( tΦ

(U)
m Φ

(U)
m )( tΦ

(L)
m Φ

(L)
m )−1/2

is symmetric positive definite and is diagonalizable in an orthonormal basis as diag(a1, . . . , am)
with ai > 0 for i = 1, . . . ,m. In this basis (I + M)−1 is equal to (1/(1 + a1), . . . , 1/(1 + am)),

and all these eigenvalues are in (0, 1). Therefore λ ≤ 1 and thus ‖Φ(L)
m Θ−1

m
tΦ

(L)
m ‖2op ≤ 1. Conse-

quently, using that all the coordinates of ~δ(L) belong to [−1, 1], we get the second bound

‖Φ(L)
m Θ−1

m
tΦ(L)
m
~δ(L)‖22,n ≤ ‖~δ(L)‖22,n ≤ n.



25

For the last term, we also start with

‖Φ(L)
m Θ−1

m
tΦ(U)
m
~δ(U)‖22,n ≤ ‖Φ(L)

m Θ−1
m

tΦ(U)
m ‖2op‖~δ(U)‖22,n.

Here the matrix Φ
(L)
m Θ−1

m
tΦ

(U)
m is not symmetric and thus

‖Φ(L)
m Θ−1

m
tΦ(U)
m ‖2op = λmax(Φ(L)

m Θ−1
m

tΦ(U)
m Φ(U)

m Θ−1
m

tΦ(L)
m ),

where λmax(A) stands for the largest eigenvalue of a matrix A and ‖A‖2op = λmax(tAA). As

previously an eigenvalue of Φ
(L)
m Θ−1

m
tΦ

(U)
m Φ

(U)
m Θ−1

m
tΦ

(L)
m is also an eigenvalue of(

Idm + tΦ(U)
m Φ(U)

m ( tΦ(L)
m Φ(L)

m )−1
)−1(

Idm + tΦ(L)
m Φ(L)

m ( tΦ(U)
m Φ(U)

m )−1
)−1

,

as both matrices are equal (note that tΦ
(U)
m Φ

(U)
m ( tΦ

(L)
m Φ

(L)
m )−1 is the inverse of tΦ

(L)
m Φ

(L)
m ( tΦ

(U)
m Φ

(U)
m )−1).

Consider a basis in which the first one is diagonal and of the form Diag(a1, . . . , am), then the
whole matrix is of the form Diag(1/[(1 + a1)(1 + a−1

1 )], . . . , 1/[(1 + am)(1 + a−1
m )]), that is the

eigenvalues are less that 1 as soon as the ai’s are positive. Now let a be an eigenvalue with ~x

associated eigenvector, that is tΦ
(U)
m Φ

(U)
m ( tΦ

(L)
m Φ

(L)
m )−1~x = a~x. Then tΦ

(U)
m Φ

(U)
m ~y = a tΦ

(L)
m Φ

(L)
m ~y

and taking the scalar product with ~y yields

t~y tΦ(U)
m Φ(U)

m ~y = a t~y tΦ(L)
m Φ(L)

m ~y

that is ‖Φ(U)
m ~y‖22,n = a‖Φ(L)

m ~y‖22,n. Thus a ≥ 0. Lastly a 6= 0 because of invertibility assumptions.

We obtain that ‖Φ(L)
m Θ−1

m
tΦ

(U)
m ‖2op ≤ 1 and thus

‖Φ(L)
m Θ−1

m
tΦ(U)
m
~δ(U)‖22,n ≤ n.

Therefore, gathering the three bounds n for the euclidean norms gives the bound 9 for the
empirical norm and ends the proof.

6.5. Proof of Inequality (18). We already mentioned that t~vΨm,Z~v =
∫
I v

2(x)fZ(x)dx for

Z = L,U and v(x) =
∑m−1

j=0 vjϕj(x) where ~v = t(v0, . . . , vm−1). Thus if ∀x ∈ I, fZ(x) ≥ f0, we

get for any vector ~v ∈ Rd,

t~vΨm,Z~v ≥ f0

∫
I
v2(x)dx = f0

m−1∑
j=0

v2
j .

As a consequence, for any vector ~v ∈ Rd,

t~v(Ψm,L + Ψm,U )~v ≥ 2f0

∫
I
v2(x)dx = 2f0

m−1∑
j=0

v2
j .

all eigenvalues of Ψm,L + Ψm,U are larger than 2f0 and therefore, as they are all positive, the
largest eigenvalue of (Ψm,L + Ψm,U )−1 is smaller that 1/(2f0). 2
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Appendix A. Numerical results

We give in Table 1 the numerical results corresponding to the simulations and boxplots of
Section 4. We add the mean squared errors computed for the empirical survival function evalu-
ated with the whole sample Xi, as a benchmark or a kind of ”oracle” estimator which represents
the best we could obtain if we had observed directly the X ′is without censoring, instead of the
intervals [Li, Ui].

size n
Event time Models

Weibull(2, 2) Weibull(0.5, 2) Beta′(5, 2) Beta(5, 2)

In
sp

ec
ti

o
n

ti
m

e
S
ce

n
ar

io

sc. 1 :
L ∼ U [0, 3],
U = L+ U [0, 1]

300

MC 3.49 (3.32) 7.75 (10.9) 6.47 (2.65) 2.67 (2.50)
AndYu 0.80 (0.57) 16.9 (16.6) 16.6 (16.8) 0.87 (0.69)
NPMLE 2.51 (2.38) 2.92 (2.53) 2.99 (2.45) 2.71 (2.56)
oracle 0.38 (0.30) 0.74 (0.52) 0.51 (0.39) 0.42 (0.29)

1000

MC 1.46 (0.67) 1.23 (1.09) 1.66 (1.49) 1.76 (2.10)
AndYu 0.24 (0.18) 15.9 (15.8) 16.7 (16.8) 0.27 (0.20)
NPMLE 0.99 (0.94) 1.08 (1.02) 1.29 (0.98) 0.98 (0.95)
oracle 0.11 (0.10) 0.18 (0.14) 0.15 (0.11) 0.13 (0.09)

sc. 2 :
L ∼ U [0, 1],
U = L+ U [0, 3]

300

MC 3.28 (3.08) 7.43 (9.30) 5.67 (1.96) 2.35 (2.15)
AndYu 1.02 (0.77) 17.4 (17.1) 13.6 (13.9) 0.81 (0.63)
NPMLE 3.69 (3.19) 2.80 (2.32) 3.88 (3.19) 3.22 (2.88)
oracle 0.42 (0.34) 0.73 (0.43) 0.50 (0.40) 0.43 (0.31)

1000

MC 2.36 (3.13) 1.01 (0.96) 1.63 (1.54) 2.23 (2.22)
AndYu 0.35 (0.27) 16.8 (16.6) 1.53 (15.4) 0.32 (0.24)
NPMLE 1.45 (1.42) 1.19 (1.02) 1.78 (1.48) 1.34 (1.24)
oracle 0.12 (0.10) 0.18 (0.14) 0.15 (0.11) 0.13 (0.09)

sc. 3 :
L,U ∼ U [0, 4],
U ≥ L and
U − L ≤ 0.1

300

MC 3.71 (3.46) 5.14 (2.97) 4.43 (2.01) 2.86 (2.65)
AndYu 1.25 (0.97) 15.1 (14.9) 15.7 (15.8) 1.37 (1.01)
NPMLE 4.09 (3.58) 4.04 (3.63) 3.54 (3.32) 4.17 (3.95)
oracle 0.40 (0.30) 0.67 (0.53) 0.52 (0.38) 0.45 (0.34)

1000

MC 1.17 (0.63) 1.30 (1.22) 1.56 (1.46) 1.44 (1.99)
AndYu 0.36 (0.31) 14.8 (14.7) 14.9 (15.1) 0.39 (0.31)
NPMLE 1.41 (1.36) 1.51 (1.47) 1.47 (1.41) 1.46 (1.33)
oracle 0.11 (0.10) 0.17 (0.13) 0.20 (0.13) 0.15 (0.11)

sc. 4 :
L ∼ U [0, 1],
U ∼ U [2, 4]

300

MC 3.49 (3.33) 2.68 (1.44) 2.18 (1.79) 2.45 (2.31)
AndYu 1.39 (0.95) 14.7 (14.5) 13.6 (13.4) 1.00 (0.69)
NPMLE 13.0 (11.9) 3.43 (3.06) 6.51 (5.66) 11.7 (10.0)
oracle 0.48 (0.38) 0.81 (0.48) 0.47 (0.31) 0.41 (0.30)

1000

MC 0.87 (0.64) 1.09 (0.97) 1.71 (1.61) 0.94 (0.49)
AndYu 0.53 (0.33) 14.3 (14.2) 13.9 (14.0) 0.46 (0.31)
NPMLE 9.76 (0.81) 1.71 (1.48) 4.48 (4.05) 8.95 (7.42)
oracle 0.11 (0.09) 0.18 (0.14) 0.15 (0.11) 0.12 (0.09)

Table 1. Average Mean Squared Error AMSE ×10−3 and Median in parenthesis
for our penalized Least Squares estimator built with Laguerre basis (MC), the
log-concave Anderson-Bergman and Yu’s NPMLE (AndYu), the unconstrained
NPMLE (NPMLE) and the ”oracle” empirical survival function.


