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Abstract

In this paper, we introduce a method to get necessary and sufficient stability conditions for
systems governed by 1-D nonlinear hyperbolic partial-differential equations with closed-loop in-
tegral controllers, when the linear frequency analysis cannot be used anymore. We study the
stability of a general nonlinear transport equation where the control input and the measured out-
put are both located on the boundaries. The principle of the method is to extract the limiting
part of the stability from the solution using a projector on a finite-dimensional space and then
use a Lyapunov approach. This paper improves a result of Trinh, Andrieu and Xu, and gives
an optimal condition for the design of the controller. The results are illustrated with numerical
simulations where the predicted stable and unstable regions can be clearly identified.

1 Introduction

Stabilization of systems with Proportional-Integral (PI) controllers has been well-studied in the last
decades as it is the most famous boundary control in engineering applications. The use of PI controllers
in practical applications goes back to the end of the 18th century with the Perier brothers’ pump
regulator [11, Pages 50-51 and figure 231, Plate 26], [7, Chapter 2] and later on with Fleeming
Jenkin’s regulator studied by Maxwell in [18]. Of course these regulators were not yet referred as
PI control but in practice they worked similarly. Mathematically the PI control was studied first
by Minorsky at the beginning of the 20th century for finite-dimensional systems [19]. In the last
decades, the stability of 1-D linear systems with PI control has been well-investigated both for finite-
dimensional systems [2, 1] and infinite-dimensional systems (see for instance [5, 12, 26, 24, 16, 21, 25]
for hyperbolic systems) and is now very well-known. For infinite-dimensional nonlinear systems,
however, only few results are known comparatively, most of them conservative [3, Theorem 2.10], [24].
From a mathematical point of view, dealing nonlinear systems is a challenging and very interesting
issue. From a practical point of view, it can be seen as a necessity as numerous physical systems are
based on infinite dimensional nonlinear models that are sometimes linearized afterward. The intuitive
belief that the stability condition for a nonlinear system should be the same as the stability condition
for its linearized counterpart when close to the equilibrium is wrong in general, as shown for example
in [10].

The reason for this gap in knowledge between linear and nonlinear systems in infinite dimension is
that the main method to obtain the stability of 1-D linear systems with PI control is the frequency (or
spectrum) analysis (e.g. [26]), a powerful tool based on the Spectral Mapping Property which gives,
among other things, the limit of stability from the differential operator’s eigenvalues (e.g. [17, 22, 20]).
This powerful tool is not anymore available when dealing with nonlinear systems. Thus, most studies
use instead a Lyapunov approach that has the advantage of enabling robust results [9, 15] but as a
counterpart is often conservative, meaning that the stability conditions raised are only sufficient and
not necessary. Among the necessary and sufficient condition one can refer for instance to [3, Theorem
2.9]. Another point to mention is that, for nonlinear systems, the exponential stability in the different
topologies are not equivalent [10].
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In this article we introduce a method to get a necessary and sufficient condition on the stability.
We study the general scalar transport equation with a PI boundary controller which was studied in
[24], and in which the authors obtained a sufficient, although conservative, stability condition.

Not only is this equation interesting in itself [8] but it is also interesting as, even if it is the most
simple nonlinear evolution equation, it already has some of the key features of nonlinear hyperbolic
models whose stabilization has been quite studied in the recent years using various methods [14, 3, 13]
This problem has an associated linearized problem where the first eigenvalues making the system
unstable are discrete and in finite number. We first extract from the solution of the nonlinear problem
the part that would be associated to these eigenvalues in the linear case, using a projector on a
finite-dimensional space. In the linearized problem this projected part of the solution is the limiting
factor on the stability and it is therefore natural to think that it can also be the limiting factor in
the non-linear case. Besides, we know precisely the dynamic of this projection and we can control
precisely its decay. Then, a key point is to find a good Lyapunov function for the remaining part of
the solution. As the remaining part of the solution is not the limiting factor, the Lyapunov function
can be conservative with no harm provided that it gives a sufficient condition that goes beyond the
limiting condition corresponding to the projected part.

2 Stability of non-linear transport equation with PI boundary
condition

We are interested with the following problem

∂tz + λ(z)∂xz = 0, (1)

z(0, t) = −kIX(t), (2)

Ẋ = z(L, t), (3)

where λ is a C2 function with λ(0) = λ0 > 0 and kI is a constant. Let T > 0, one can show that
the system is well-posed in C0([0, T ], H2(0, L)) × C2([0, T ]) for initial conditions small enough and
sufficiently regular. More precisely one has [24]

Theorem 2.1. Let T > 0. There exists δ(T ) > 0 such that for any φ0 ∈ H2(0, L) satisfying
|φ0|H2 ≤ δ, the system (1)–(3) with initial condition (φ0, X0) such that

X0 = −k−1
I φ0(0), φ0(L) = k−1

I λ(φ0(0))φ′0(0), (4)

has a unique solution (φ,X) ∈ C0([0, T ], H2(0, L))×C2([0, T ]). Moreover there exists C(T ) > 0 such
that

|φ(t, ·)|H2 ≤ C(T ) (|φ0(·)|H2) . (5)

The interest of this system comes from the fact that it is the most simple nonlinear system with a
proportional integral control. However it already constitutes a challenge and, to our knowledge, the
most advanced result so far is the following result developed in the recent years [24]:

Theorem 2.2. If 0 < kI < λ(0)Π(2 −
√

2)/2L, then the nonlinear system (1)–(3) is exponentially
stable for the H2 norm, where

Π(x) =
√
x(2− x)e−x/2. (6)

Note that Π(2−
√

2)/2 u 0.34. In [24] it is also shown that this result is conservative. In order to
study this system, it is interesting to compare it with the corresponding linear case namely the case
where λ does not depend on z and (1) is replaced by

∂tz + λ0∂xz = 0. (7)

In this case, a necessary and sufficient condition for the stability can be simply obtained from the
frequency analysis, by looking at the eigenvalues of the system (7), (2), (3). It is easy to see that
these eigenvalues satisfy the following equation [24].

kI + %e
%L
λ0 = 0. (8)
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This implies from [6] that the linear system (7), (2), (3) is exponentially stable if and only if

kI ∈
(

0,
πλ0

2L

)
. (9)

In the nonlinear case, it is not possible anymore to use a frequency analysis method. One has to
use other methods, as for instance the Lyapunov method, which is one of the most famous as it
guarantees some robustness of the result. This method was for instance used in [24] to prove Theorem
2.2. However, this method is often conservative as, except in simple cases, it is often difficult to find
the right Lyapunov function leading to an optimal condition. As stated in the introduction, we tackle
this problem by extracting from the solution the part that limits the stability with a projector and
apply our Lyapunov function to the remaining part. Our main result is the following

Theorem 2.3. The nonlinear system (1)–(3) is exponentially stable for the H2 norm if

kI ∈
(

0,
πλ(0)

2L

)
. (10)

The sharpness of this nonlinear result is suggested from the linear condition (9). This sharpness
can also be illustrated by the following proposition

Proposition 2.4. There exists k1 > πλ(0)/2L, such that for any kI ∈ (πλ(0)/2L, k1) the nonlinear
system (1)–(3) is unstable for the H2 norm.

In Section 3 we introduce a new Lyapunov function that can be seen as a good Lyapunov function
for this system but we show why it still leads to a conservative result. In Section 4 we introduce a
projector to extract from the solution the limiting part for the stability. In Section 5 we prove Theorem
2.3 and Proposition 2.4 using the Lyapunov function and the projector respectively introduced in
Section 3 and Section 4. In Section 6 we illustrate these results with a numerical simulation.

3 A quadratic Lyapunov function

In this section we first introduce a new Lyapunov function for the system (1)–(3). This Lyapunov
function can be seen as a good candidate to study the stability for the H2 norm, but, although it
already gives a sufficient condition relatively close to the linear condition (9), we will show that it is
not enough to achieve the optimal condition (10), which will be the motivation for the next section.
As this part is only here to motivate the method of this paper, we will give a sketch of proof for
a Lyapunov function equivalent to the L2 norm, but the same would apply for a similar Lyapunov
function equivalent to the H2 norm (see Section 5).

Let us define V0 : L2(0, L)× R→ R by

V0(Z,X) :=

∫ L

0

f(x)e−
µ
λ0
xZ2(x)dx+

(∫ L

0

αZdx+ βX

)2

, (11)

where f is a positive C1 function to be determined later on and α and β are non-zero constants to be
determined later on as well. For any (Z,X) ∈ L2(0, L)×R one has from Cauchy-Schwarz inequality:

min{f(x)e−
µ
λ0
x : x ∈ [0, L]}
L

(

∫ L

0

Zdx)2 + α2

(∫ L

0

Zdx

)2

+ 2βαX

(∫ L

0

Zdx

)
+ (βX)

2

≤ V0(Z,X) ≤ C1

(
|Z|2L2(0,L) + βX2

)
.

(12)

Using that for any p > 0, there exists n1 ∈ N∗ such that

(p+ 1)a2 + b2 − 2ab ≥ p

n1

(
a2 + b2

)
, ∀ (a, b) ∈ R2, (13)
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there exists C2 > 0 such that

1

C2

(
|Z|2L2(0,L) + βX2

)
≤ V0(Z,X) ≤ C2

(
|Z|2L2(0,L) + βX2

)
. (14)

Thus, our function V0 is equivalent to the norm on L2(0, L)×R defined by |(Z,X)| =
(
|Z|2L2(0,L) + βX2

)
.

It is therefore enough to find f ∈ C1([0, L], (0,+∞)), α and β such that V0 is exponentially de-
creasing along all C0([0, T ], H2 × R) solutions of system (1)–(3) to prove that the null steady-
state of the system (1)–(3) is exponentially stable for the L2 norm. Let T > 0, and let (z,X)
be a C3([0, T ] × [0, L]) × C3([0, T ]) solution of the system (1)–(3) (we could get the result for
C0([0, T ], H2 × R) later on by density as in [4, Section 4], this will not be done in this section as
it is only a sketch proof). Let us denote V0(z(x, ·), X(t)) by V0(t). Differentiating V0 with respect to
t, using (1), (3) and integrating by parts one has

dV0

dt
=−

[
λ(z(t, x))f(x)e−

µ
λ0
xz2(t, x)

]L
0

+

∫ L

0

λ(0)f ′(x)e−
µ
λ0
xz2(t, x)dx− µ

∫ L

0

f(x)e−
µ
λ0
xz2(t, x)dx

+ µ

∫ L

0

λ0 − λ(z(t, x))

λ0
f(x)e−

µ
λ0
xz2(t, x)dx

+

∫ L

0

f(x)e−
µ
λ0
x ∂λ

∂z
zxz

2 + (λ(z(t, x))− λ(0))f ′(x)e−
µ
λ0
xz2(t, x)dx

+ 2

(∫ L

0

αzdx+ βX(t)

)(
− [αλz]

L
0 +

∫ L

0

α
∂λ

∂z
zxzdx+ βz(t, L)

)
.

(15)

Thus using (2), one has

dV0

dt
= −λ(z(t, L))f(L)e−

µ
λ0
Lz2(t, L)− µ

∫ L

0

f(x)e−
µ
λ0
xz2(t, x)dx+ λ(z(t, 0))f(0)X2(t)k2

I

−
∫ L

0

(−λ(0)f ′(x))e−
µ
λ0
xz2(t, x)dx+ µ

∫ L

0

λ0 − λ(z(t, x))

λ0
f(x)e−

µ
λ0
xz2(t, x)dx

+ 2

(∫ L

0

αzdx+ βX(t)

)
(−αλ0z(t, L) + βz(t, L) −αkIX(t)λ(z(t, 0))− α(λ(z(t, L))− λ0)z(t, L))

+

∫ L

0

f(x)
∂λ

∂z
zxe
− µ
λ0
xz2 + (λ(z(t, x))− λ(0))f ′(x)e−

µ
λ0
xz2(t, x)dx

+ 2

(∫ L

0

αzdx+ βX(t)

)∫ L

0

α
∂λ

∂z
zxzdx.

(16)
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We can now choose β = λ0α. Equation (16) becomes

dV0

dt
= −λ(z(t, L))e−

µ
λ0
Lf(L)z2(t, L)− µ

(∫ L

0

f(x)e−
µ
λ0
xz2(t, x)dx+X(t)2

)

+ (λ(0)f(0)k2
I + µ)X2(t)−

∫ L

0

(−λ(0)f ′(x))e−
µ
λ0
xz2(t, x)dx

− 2

∫ L

0

α2kIλ(0)zX(t)dx− 2α2λ(0)2kIX
2(t)

− 2

∫ L

0

α2kI(λ(z(t, 0))− λ(0))zX(t)dx

− 2α2(λ(z(t, 0))− λ(0))(λ(z(t, 0)) + λ(0))kIX
2(t)

+ (λ(z(t, 0))− λ(0))f(0)k2
IX

2(t)

+ 2

(∫ L

0

αzdx+ βX(t)

)
(−α(λ(z(t, L))− λ0)z(t, L))

+

∫ L

0

f(x)
∂λ

∂z
zxe
− µ
λ0
xz2 + (λ(z)− λ(0))f ′(x)e−

µ
λ0
xz2(t, x)dx

+ 2

(∫ L

0

αzdx+ βX(t)

)∫ L

0

α
∂λ

∂z
zxzdx.

(17)

Using the equivalence between V0 and |z(t, ·)|L2 +|X|, there exists a constant C3 > 0, maybe depending
continuously on µ but positive for µ ∈ [0,∞) such that

µ

(∫ L

0

f(x)e−
µ
λ0
xz2(t, x)dx+X(t)2

)
≥ µC3V0, (18)

and as λ is C1, (17) can be simplified in

dV0

dt
≤− µC3V0 − λ(z(t, L))f(L)e−

µ
λ0
Lz2(t, L)

− I +O
(

(|z(t, ·)|H2 + |X(t)|)3
)
,

(19)

where O(r) means that there exist η > 0 and C > 0, both independent of φ, X, T and t ∈ [0, T ], such
that

(|r| ≤ η) =⇒ (|O(r)| ≤ C1|r|),

and where I is the quadratic form defined by

I := X2(t)
(
2α2λ(0)2kI − λ(0)f(0)k2

I − µ
)

+

∫ L

0

(−λ(0)f ′(x))e−
µ
λ0
xz2(t, x) + 2α2zkIλ(0)X(t)dx.

(20)

To ensure the decay of V0, we would like to make this quadratic form in φ and X positive definite with
f > 0. This implies that f is decreasing and kI > 0. If we place ourselves in the limiting favourable
case where I is only semi-definite positive, and f(L) = µ = 0, one has

f ′(x)
(
2α2λ(0)kI − f(0)k2

I

)
= −Lα4k2

I . (21)

Thus f ′ is constant and, as f(L) = 0,

− 2λ(0)α2f(0)kI + f2(0)k2
I + L2α4k2

I = 0. (22)

With λ(0) = λ0, this equation has a positive solution if and only if

4α4k2
I

(
λ2

0 − k2
IL

2
)
≥ 0. (23)
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This is equivalent to |kI | ≤ λ0/L. This is the limiting case, to get I definite positive and V0 expo-
nentially decreasing we would need to add V0,1(t) = V0(zt, Ẋ) and V0,2(t) = V (ztt, Ẍ) to make the
Lyapunov function equivalent to the H2 norm to deal with O(|z(t, ·)|H2 + |X(t)|) as in Section 5, and
we would get the following sufficient condition: kI ∈ (0, λ0/L) which is better that the condition given
by Theorem 2.2, but conservative compared to the necessary condition (9). This motivates the next
section.

4 Extracting the limiting part of the solution

In this section we introduce the projector that will enable us to extract from the solution the limiting
part for the stability. We start by introducing the operator A,

A

(
φ
X

)
:=

(
−λ0φx
φ(L)

)
(24)

defined on the domain D(A) = {(φ,X)T|φ ∈ H2(0, L), X ∈ R, φ(0) = −kIX}. And we note that
looking for solutions to the linearized problem (7), (2), (3) can be seen as looking for solutions
(φ,X)T ∈ C0([0, T ],D(A)) to the differential problem(

φ̇

Ẋ

)
= A

(
φ
X

)
. (25)

As mentioned in Section 2, we know that any eigenvalue % of this projector satisfies (8) which, denoting
%λ−1

0 = σ% + iω% with (σ%, ω%) ∈ R2, is equivalent to

λ0e
σ%L (ω% sin(ω%L)− σ% cos(ω%L)) =kI ,

ω% cos(ω%L) + σ% sin(ω%L) =0.
(26)

Assuming (9), there is a unique solution to (26) that also satisfies ω ∈ (−π/2L, π/2L) [23, Page 22].
We denote by %1 the corresponding eigenvalue. In [23] it was shown that this eigenvalue and its
conjugate are the eigenvalues with the largest real part and are the limiting factor to the stability
in the linear case. Although we do not need this claim in what follows, it explains why we consider
this eigenvalue. We suppose that ω := ω%1

6= 0. The special case ω%1
= 0 is simpler can be treated

similarly (see Remark 1).

We introduce the following projector:

p :=

(
p1

p2

)
∈ L(D(A),Span{e−

%1
λ0
x, e−

%̄1
λ0
x}) (27)

defined by

p1

(
φ
X

)
:=α1

(∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX

)
e−

%1
λ0
x

+ ᾱ1

(∫ L

0

φ(x)e
%̄1
λ0
xdx+ λ0e

%̄1
λ0
LX

)
e−

%̄1
λ0
x,

(28)

p2

(
φ
X

)
:=
α1

%1

(∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX

)
e−

%1
λ0
L

+
ᾱ1

%̄1

(∫ L

0

φ(x)e
%̄1
λ0
xdx+ λ0e

%̄1
λ0
LX

)
e−

%̄1
λ0
L,

(29)

where z̄ stands for the conjugate of z and α1 := %1/(%1L+λ0). Here we used a slight abuse of notation

and the notation e−
%1
λ0
x outside the brackets refers actually to the function x → e−

%1
λ0
x defined on
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[0, L]. One can see that p is real even though %1 is complex, as p is the sum of a function and its
conjugate. Denoting %1λ

−1
0 = σ + iω, the formulation (28)–(29) is equivalent to

p1

(
φ
X

)
=

(∫ L

0

φ(x)eσx cos(ωx)dx+ λ0X(t) cos(ωL)eσL

)(
Re(α1) sin(ωx)e−σx + Im(α1) cos(ωx)e−σx

)
+

(∫ L

0

φ(x)eσx sin(ωx)dx+ λ0X(t) sin(ωL)eσL

)(
Re(α1) cos(ωx)e−σx − Im(α1) sin(ωx)e−σx

)
.

p2

(
φ
X

)
=

(∫ L

0

φ(x)eσx cos(ωx)dx+ λ0X(t) cos(ωL)eσL

)(
Re(

α1

%1
) sin(ωL)e−σL + Im(

α1

%1
) cos(ωx)e−σx

)

+

(∫ L

0

φ(x)eσx sin(ωx)dx+ λ0X(t) sin(ωL)eσL

)(
Re(

α1

%1
) cos(ωL)e−σL − Im(

α1

%1
) sin(ωL)e−σL

)
.

(30)

However in the following, for simplicity, we will keep the complex formulation. We first show that p
commutes with the differential operator A given by (24). Indeed one can check that, with

p1,%1
:= α1

(∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX

)
e−

%1
λ0
x, (31)

one has

p1,%1

(
A

(
φ
X

))
= p1,%1

((
−λ0φx
φ(L)

))
= α1

(
−λ0

∫ L

0

φx(x)e
%1
λ0
xdx+ λ0e

%1
λ0
Lφ(L)

)
e−

%1
λ0
x

= α1

(
−λ0φ(L)e

%1
λ0
L + λ0φ(0) + %1

∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
Lφ(L)

)
e−

%1
λ0
x.

(32)

Using that (φ,X)T belongs to the space {(φ,X) ∈ L2(0, L)×R|φ(0) = −kIX}, together with (8), one
gets that

p1,%1

(
A

(
φ
X

))
=α1%1

(∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX

)
e−

%1
λ0
x

= −λ0

(
p1,%1

(
φ
X

))
x

.

(33)

As %̄1 also verifies (8) we get the same for p1,%̄1 , which is defined as p1,%1 in (31) with %1 instead of %1.
Thus from (28) and (31)

p1

(
A

(
φ
X

))
=

(
A

(
p

(
φ
X

)))
1

. (34)

Then from (8) and (29), one easily gets that, for any (φ,X) ∈ L2(0, L)×R, p2((φ,X)T) = −k−1
I p1((φ,X)T)(0),

thus p

(
φ
X

)
∈ D(A) and

p

(
A

(
φ
X

))
= A

(
p

(
φ
X

))
. (35)

Now, we show that p is a projector, meaning that p ◦ p = p. To avoid overloading the computations,
we denote

d1 = α1

(∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX

)
, (36)

and d̄1 is defined similarly with %̄1 instead of %1. Therefore one has

p1

(
p

(
φ
X

))
= α1

(∫ L

0

d1 + d̄1e
(
%1
λ0
− %̄1λ0

)xdx +λ0e
%1
λ0
L

(
d1
e−

%1
λ0
L

%1
+ d̄1

e−
%̄1
λ0
L

%̄1

))
e−

%1
λ0
x

+ ᾱ1

(∫ L

0

d̄1 + d1e
(
%̄1
λ0
− %1λ0

)xdx +λ0e
%̄1
λ0
L

(
d1
e−

%1
λ0
L

%1
+ d̄1

e−
%̄1
λ0
L

%̄1

))
e−

%̄1
λ0
x.

(37)
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Integrating and using (8), one has

p1

(
p

(
φ
X

))
= α1

(
d1L+ λ0d̄1

e(
%1
λ0
− %̄1λ0

)L − 1

%1 − %̄1
−λ0

kI
%1

(
−d1

kI
− d̄1

kI

))
e−

%1
λ0
x

+ ᾱ1

(
d̄1L+ λ0d1

e(
%̄1
λ0
− %1λ0

)L − 1

%̄1 − %1
− λ0

kI
%̄1

(
−d1

kI
− d̄1

kI

))
e−

%̄1
λ0
x

=α1

(
d1L+ λ0

d1

%1
+ λ0d̄1

e(
%1
λ0
− %̄1λ0

)L − 1

%1 − %̄1
+ λ0

d̄1

%1

)
e−

%1
λ0
x

+ ᾱ1

(
d̄1L+ λ0

d̄1

%̄1
+ λ0d1

e(
%̄1
λ0
− %1λ0

)L − 1

%̄1 − %1
+ λ0

d1

%̄1

)
e−

%̄1
λ0
x.

(38)

But, still from (8), observe that

e(
%1
λ0
− %̄1λ0

)L − 1

%1 − %̄1
=

(
−kI%1

)(
− %̄1

kI

)
− 1

%1 − %̄1
= − 1

%1
, (39)

and recall that α1 = %1/(%1L+ λ0), thus

p1

(
p

(
φ
X

))
= d1e

− %1λ0
x + d̄1e

− %̄1λ0
x = p1

(
φ
X

)
. (40)

Besides we have from (8) and (29)

p2

(
p

(
φ
X

))
= −kIp1

(
p

(
φ
X

))
(0)

= −kIp1

(
φ
X

)
(0) = p2

(
φ
X

)
.

(41)

Therefore p ◦ p = p. As p is a linear application, this implies in particular that

p

((
φ
X

)
− p

(
φ
X

))
= 0. (42)

Thus, let (φ,X)
T ∈ D(A), if we define φ1 = p1(φ,X)T, X1 := p2(φ,X)T and φ2 := φ − φ1 and

X2 := X −X1, one has from (42) and (28), as α1 6= 0∫ L

0

φ2(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX2 =

∫ L

0

φ2(x)e
%̄1
λ0
xdx+ λ0e

%̄1
λ0
LX2 = 0. (43)

Thus ∫ L

0

φ2(x)
(
e
%1
λ0

(x−L) − e
%̄1
λ0

(x−L)
)
dx = 0. (44)

Or equivalently, denoting as previously %1λ
−1
0 = σ + iω,∫ L

0

φ2(x)eσ(x−L) sin(ω(x− L))dx = 0. (45)

Remark 1. � In the special case ω = 0, we can define p similarly as previously but with α1 = ᾱ1 =
1/2 instead. Then (35) still holds, but, as %1 = %̄1, p is now a projector on the one-dimensional

space Span{e−
%1
λ0
x} and is defined by

p1((φ,X)T) =

(∫ L

0

φ(x)e
%1
λ0
xdx+ λ0e

%1
λ0
LX

)
e−

%1
λ0
x, (46)

and p2((φ,X)T) = %−1
1 p1((φ,X)T)(L). Nevertheless (45) still holds and is straightforward. In-

deed, we can still define (φ1, X1)T = p((φ,X)T) and (φ2, X2) = (φ−φ1, X−X1), and, as ω = 0,
(45) holds directly.
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� Note that, when ω 6= 0, (43) contains two equations, as p is a projector on a space of dimension
2. Therefore another relation can be inferred from (43) in addition to (45), namely∫ L

0

φ2(x)eσ(x−L) cos(ω(x− L))dx = −λ0X2. (47)

However this relation will not be used in the following.

5 Exponential stability analysis

In this section we use the results of the above sections to prove Theorem 2.3. We first separate the
solution of the system in a projected part and a remaining part using the projector defined in Section
4. Then we use the Lyapunov function defined in Section 3 to deal with the remaining part.

Proof of Theorem 2.3. Let T > 0 and let φ be a solution to the nonlinear system (1)–(3). We suppose
in the following that

|φ(t, ·)|H2 ≤ ε, ∀ t ∈ [0, T ], (48)

with ε ∈ (0, 1) to be chosen later on. This assumption can be done as we are looking for a local result
with respect to the perturbations (i.e. the initial conditions), and, from (5), for any ε > 0 there exists
δ > 0 such that if |φ0|H2 ≤ δ then (48) holds. Let us assume in addition that φ ∈ C3([0, 1] × [0, T ])
(we will relax this assumption later on using a density argument). Using the last section, we define
the following functions (

φ1(t, x)
X1(t, x)

)
= p

(
φ(t, x)
X(t)

)
, (49)(

φ2(t, x)
X2(t, x)

)
=

(
φ(t, x)
X(t)

)
−
(
φ1(t, x)
X1(t)

)
. (50)

We expect to have extracted from (φ,X) the limiting factor for the stability that is now contained in
(φ1, X1). The function (φ1, X1) is a simple projection on a space of finite dimension, it has therefore
a simple dynamic and is easy to control, while we will use our Lyapunov function introduced earlier in
Section 3 to deal with (φ2, X2). In other words we will consider the following total Lyapunov function

V (t) = V1(t) + V2(t), (51)

where V1 is a Lyapunov function for (φ1, X1) to be defined and V2(t) = V2,1(t) +V2,2(t) +V2,3(t), with
V2,k(t) = V0(∂k−1

t φ2(t, ·), ∂k−1
t X(t)). Recall that the definition of V0 is given in (11).

Remark 2. Note that, strictly speaking, this Lyapunov function can be expressed as a functional on
time-independent functions belonging to H2(0, L) × R, using for instance the following notations for
(φ,X) ∈ H2(0, L)× R:

Ẋ := φ(t, L), Ẍ := −λ(φ(L))∂xφ(L),

∂tφ := −λ(φ)∂xφ, ∂
2
t φ := −λ′(φ) (∂xφ)

2 − λ(φ)∂2
xφ.

(52)

Of course these notations correspond to the time-derivatives of the functions when (X,φ) is time-
dependent and a solution of (1)–(3). The same remark will apply later on for the definition of V1

given by (56).

Let us look at φ1. From the definition of p1 given by (28), p1 = p1,%1 + p1,%̄1 where p1,%1 is given
by (31) and p1,%̄1

is given by the same definition with %̄1 instead of %1. Similarly p2 = p2,%1
+ p2,%̄1

with

p2,%1((φ,X)T) =
p1,%1((φ,X)T)(L)

%1
, (53)

and p2,%̄1
defined similarly but with %̄1 instead of %1. Therefore we can define(

φ%1
(t, x)

X%1
(t)

)
:= p%1

(
φ(t, x)
X(t)

)
:=

(
p1,%1

(φ,X)T(t, x)
p2,%1

(φ,X)T(t, L)

)
, (54)
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and we can define its conjugate (φλ̄1, Xλ̄1)T similarly. Thus we can decompose (φ1, X1)T in(
φ1(t, x)
X1(t)

)
=

(
φ%1

(t, x)
X%1

(t)

)
+

(
φ%̄1

(t, x)
X%̄1

(t)

)
. (55)

Let us now define V1(t) by

V1(t) :=

∫ L

0

|φ%1
(t, x)|2 + |∂tφ%1

(t, x)|2 + |∂2
t φ%1

(t, x)|2dx

+ |X%1(t)|2 + |Ẋ%1(t)|2 + |Ẍ%1(t)|2.
(56)

There exists ε1 ∈ (0, 1) such that for ε < ε1, one has

1

2
min(1, λ4

0)
(
|φ%1 |2H2 + |X%1

|2 + |Ẋ%1
|2 + |Ẍ%1

|2
)

≤ V1 ≤ 2 max(1, λ4
0)
(
|φ%1
|2H2 + |X%1

|2 + |Ẋ%1
|2 + |Ẍ%1

|2
)
,

(57)

and therefore

|φ1|2H2 + |X1|2 + |Ẋ1|2 + |Ẍ1|2

≤ 4|φ%1 |2H2 + 4|X%1 |2 + 4|Ẋ%1 |2 + 4|Ẍ%1 |2

≤ 8 max(1, λ4
0)V1.

(58)

Differentiating V1 one has

dV1

dt
=

∫ L

0

2Re (∂tφ%1
φ%̄1

) + 2Re
(
∂2
t φ%1

∂tφ%̄1

)
+ 2Re

(
∂3
t φ%1

∂2
t φ%̄1

)
dx

+ 2Re
(
Ẋ%1

X%̄1

)
+ 2Re

(
Ẍ%1

Ẋ%̄1

)
+ 2Re

(...
X%1

Ẍ%̄1

)
.

. (59)

From (28), (29), and (49)(
∂tφ%1

(t, x)

Ẋ%1(t)

)
= p%1

(
∂tφ(t, x)

Ẋ(t)

)
= p%1

(
A1

(
φ(t, x)
X(t)

))
, (60)

where A1 is now defined for any (φ,X)T ∈ D(A) by

A1

(
φ
X

)
:=

(
−λ(φ)φx
φ(L)

)
= A

(
φ
X

)
+

(
(λ0 − λ(φ))φx

0

)
. (61)

Observe that the commutation property (34) still holds with p%1 instead of p, and that p%1 is still a
linear operator, thus(

∂tφ%1(t, x)

Ẋ%1
(t)

)
= A

(
p%1

(
φ(t, x)
X(t)

))
+ p%1

(
(λ0 − λ(φ)) ∂xφ(t, x)

0

)
=

(
−λ0(φ%1

)x(t, x)
φ%1

(t, L)

)
+

(
α1e
− %1λ0

x ∫ L
0

(λ0 − λ(φ))∂x(φ(t, x))e
%1
λ0
xdx

α1

%1
e−

%1
λ0
L ∫ L

0
(λ0 − λ(φ))∂x(φ(t, x))e

%1
λ0
xdx

)

= %1

(
φ%1

(t, x)
X%1

(t)

)
+

(
α1e
− %1λ0

x ∫ L
0

(λ0 − λ(φ))∂x(φ(t, x))e
%1
λ0
xdx

α1

%1
e−

%1
λ0
L ∫ L

0
(λ0 − λ(φ))∂x(φ(t, x))e

%1
λ0
xdx

)
.

(62)
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Besides, let k ∈ {0, 1, 2}, as λ is C1, integrating by parts and using (2),∣∣∣∣∣
∫ L

0

(λ0 − λ(φ))∂kt ∂x(φ(t, x))e
%1
λ0
xdx

∣∣∣∣∣
=
∣∣∣(λ0 − λ(φ(t, L)))∂kt φ(t, L)e

%1
λ0
L − (λ0 − λ(φ(t, 0)))∂kt φ(t, 0)

−
∫ L

0

%1

λ0
(λ0 − λ(φ(t, x)))∂kt φ(t, x)e

%1
λ0
x

− λ′(φ(t, x))φt(t, x)∂kt φ(t, x)e
%1
λ0
xdx

∣∣∣
≤
∣∣∣e %1λ0

x
∣∣∣
0

%1

λ0

(∫ L

0

|λ0 − λ(φ(t, x))− λ′(φ(t, x))φt(t, x)|2 dx

)1/2

×

(∫ L

0

|∂kt φ(t, x)|2dx

)1/2

+O
(∣∣∂kt φ(t, L)

∣∣ |φ(t, L)|+ |∂kt φ(t, 0)||φ(t, 0)|
)

≤C0

(
|∂kt φ(t, L)||φ(t, L)|+ |∂ktX||X|+ (|φ|0 + |φx|0)

∣∣∂kt φ∣∣L2

)
,

(63)

where | · |0 denotes the C0 norm or equivalently the L∞ norm and C0 is a constant independent of
φ that depends only on λ, %1, L and kI . Thus, using (63) with k = 0, and noting that |φ|0 + |φx|0
can be bounded by |φ|H2 from Sobolev inequality, the last term of (62) is a quadratic perturbation
that can be bounded by

(
|φ|2H2 + |X|2 + φ(t, L)2

)
. One can do similarly with the second and third

time-derivative noticing that(
∂2
t φ

Ẍ

)
=

(
−λ0∂x(∂tφ)
∂tφ(t, L)

)
+

(
−λ′(φ)φtφx + (λ0 − λ(φ))∂x(∂tφ)

0

)
(
∂3
t φ...
X

)
=

(
−λ0∂x(∂2

t φ)
∂2
t φ(t, L)

)

+

−λ′′(φ)(φt)
2φx − 2λ′(φ)φtφtx − λ′(φ)φttφx
+(λ0 − λ(φ))∂x(∂2

t φ)
0

 ,

(64)

and noticing that all the quadratic terms in φ involve at most a second derivative in φ. Thus as λ is
C2, all the quadratic terms belong to L1 and their L1 norm can be bounded by |φ|2H2 . The L1 norm

of the third order derivative can be bounded by (|φ|H2 + |Ẍ|2 + (∂ttφ(t, L))2) using (63) and k = 2.
Therefore, noting from (28) that |∂kt φ1(t, L)| ≤ 2|%̄1||∂ktX%1

|,

dV1

dt
=2Re(%1)λ0

∫ L

0

|φ%1 |2 + |∂tφ%1 |2 + |∂2
t φ%1 |2dx+ 2Re(%1)

(
|X%1(t)|2 + |Ẋ%1(t)|2 + |Ẍ%1

(t)|2
)

+O
(
|φ%1
|H2

(
|φ|2H2 + |X%1

|2 + |Ẋ%1
|2 + |Ẍ%1

|2 + |X|2 + |Ẋ|2 + |Ẍ|2
))

+ C(|φ%1
|H2 + |X%1

|)(φ2
2(t, L) + (∂tφ2)2(t, L) + (∂2

t φ2)2(t, L)),

(65)

where C is a positive constant that only depends on λ, %1, kI , L. As Re(%1) < 0 from (10) and (8),

dV1

dt
≤− 2|Re(%1)|min(λ0, 1)V1

+O
(

(|φ%1 |H2 + |φ2|H2 + |X%1 |+ |Ẋ%1 |+ |Ẍ%1 |+ |X2|+ |Ẋ2|+ |Ẍ2|)3
)

+ C(|φ%1
|H2 + |X%1

|)(φ2
2(t, L) + ∂tφ

2
2(t, L) + ∂2

t φ
2
2(t, L)).

(66)

The first term will imply the exponential decay, while the two other terms will be compensated using
V2.
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Let us now look at V2. From (1)–(3), (8), (29), (50), and (62), (φ2, X2) is a solution to the following
system

∂tφ2 + λ(φ)∂xφ2 = (λ0 − λ(φ))∂xφ1 + p1

((
(λ0 − λ(φ))∂xφ

0

))
φ2(t, 0) = −kIX2(t)

Ẋ2 = φ2(t, L).

(67)

Thus acting similarly as in Section 3, (15)–(19), and using (63), we have

dV2,1

dt
≤− µC3V2,1 − λ(φ(t, L))f(L)e−

µ
λ0
Lφ2

2(t, L)−X2
2 (t)

(
2α2λ(0)2kI − λ(0)f(0)k2

I − µ
)

−
∫ L

0

(−λ(0)f ′(x))e−
µ
λ0
xφ2

2(t, x)dx+ 2α2kIλ(0)φ2X(t)dx

+O

((
|φ%1
|H2 + |X%1

|+ |φ2|H2 + |X2|+ |Ẋ2|+ |Ẍ2|
)3
)

+ C2,1|φ|0
∣∣φ2

2(t, L)
∣∣ ,

(68)

where C2,1 is a positive constant independent of φ and X. If we look now at the quadratic form in X2

and φ2 that appears, we can see that it is exactly the same as previously in (20). However, since φ2

is the complementary of φ1 in φ, we now have an additional information on φ2 given by (45). Thus,
denoting again this quadratic form by I, recalling that λ(0) = λ0, and using (45) we have

I =

∫ L

0

(−λ0f
′(x))e−

µ
λ0
xφ2

2(t, x)dx+ 2α2kIλ0X(t)

∫ L

0

φ2(1− κθ(x))dx

+X2(t)
(
2α2λ2

0kI − λ0f(0)k2
I − µ

)
≥ inf
x∈[0,L]

(−λ0f
′(x))e−

µ
λ0
L

(∫ L

0

φ2
2(t, x)dx

)

− 2α2kIλ0|X(t)|

(∫ L

0

φ2
2dx

)1/2(∫ L

0

(1− κθ(x))2dx

)1/2

+X2(t)
(
2α2λ2

0kI − λ0f(0)k2
I − µ

)

(69)

where
θ(x) := eσ(x−L) sin(ω(x− L)) (70)

and κ is a constant that can be chosen arbitrarily. As the right-hand side is now a quadratic form in
|φ2|L2 and X, a sufficient condition for I to be positive is

inf
x∈[0,L]

(−λ0f
′(x))e−

µ
λ0
L (2α2λ2

0kI − λ0f(0)k2
I − µ

)
>
(
α2kIλ0

)2(∫ L

0

(1− κθ(x))2dx

)
.

(71)

Of course we have all interest in choosing κ such that it minimizes the integral of (1 − κθ(x))2. We
have ∫ L

0

(1− κθ(x))2dx = κ2

(∫ L

0

θ2(x)dx

)
− 2κ

(∫ L

0

θ(x)dx

)
+ L. (72)

This is a second order polynomial in κ thus, assuming ω 6= 0, its minimum is

L+

(∫ L
0
θ(x)dx

)2

(∫ L
0
θ2(x)dx

)2

(∫ L

0

θ2(x)dx

)
− 2

(∫ L
0
θ(x)dx

)
(∫ L

0
θ2(x)dx

) (∫ L

0

θ(x)dx

)

= L−

(∫ L
0
θ(x)dx

)2

(∫ L
0
θ2(x)dx

) .
(73)
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Choosing such κ, and f ′ constant, condition (71) becomes

e−
µ
λ0
Lλ0

f(0)− f(L)

L

(
2α2λ2

0kI − µ− λ0f(0)k2
I

)
−
(
α2kIλ0

)2
L

1−

(∫ L
0
θ(x)dx

)2

(
L
∫ L

0
θ2(x)dx

)
 > 0.

(74)

which is equivalent to

− λ2(0)k2
If

2(0) +
(
2α2λ2

0kI − µ+ f(L)λ0k
2
I

)
λ0f(0)− (2α2λ2

0kI − µ)λ0f(L)

− e
µ
λ0
L (α2kIλ0

)2
L2

1−

(∫ L
0
θ(x)dx

)2

L
(∫ L

0
θ2(x)dx

)
 > 0.

(75)

We place ourselves in the limiting case, when µ = 0 and f(L) = 0. As the left-hand side is a second
order polynomial in f(0), there exists a positive solution f(0) to the inequality if and only if1−

(∫ L
0
θ(x)dx

)2

L
(∫ L

0
θ2(x)dx

)
 k2

IL
2 < λ2

0. (76)

Under assumption (10) we can show that this is always verified, this is done in the Appendix. When
ω = 0, taking again f ′ constant and the limiting case where f(L) = 0 and µ = 0, I is definite positive
provided that

− λ2(0)k2
If

2(0) +
(
2α2λ2

0kI − µ+ f(L)λ0k
2
I

)
λ0f(0)

− (2α2λ2
0kI − µ)λ0f(L)− e

µ
λ0
L (α2kIλ0

)2
L2 > 0.

(77)

There exists a positive solution f(0) to this inequality if and only if

k2
I <

(
λ0

L

)2

, (78)

but, as %1 is real and kI is positive, kI = −(λ0/L)(%1L/λ0)e−%1L/λ0 < λ0/L, thus (78) is satisfied.
Thus, by continuity, there always exists µ1 > 0 and f positive such that I > 0 and therefore

dV2,1

dt
≤− µ1C3V2,1 − (λ(φ(t, L))f(L)e−

µ
λ0
L − C2,1|φ|0)φ2

2(t, L)

+O

((
|φ%1
|H2 + |X%1

|+ |φ2|H2 + |X2(t)|+ |Ẋ2(t)|+ |Ẍ2(t)|
)3
)
.

(79)

Let us now deal with V2,2 and V2,3. Observe that from (67), one has for φ2 ∈ C3,

∂2
t φ2 + λ(φ)∂x(∂tφ2) =(λ0 − λ(φ))∂2

txφ1 − p1

((
(λ0 − λ(φ))∂2

txφ− λ′(φ)∂tφ∂xφ
0

))
− λ′(φ)∂tφ∂xφ1 − λ′(φ)∂tφ∂xφ2,

∂3
t φ2 + λ(φ)∂x(∂2

t φ2) =(λ0 − λ(φ))∂3
ttxφ1 − λ′(φ)∂2

t φ∂xφ1 − 2λ′(φ)∂tφ∂
2
txφ1

− λ′′(φ)(∂tφ)2∂xφ1

− p1

((
(λ0 − λ(φ))∂3

ttxφ− λ′′(φ)(∂tφ)2∂xφ− 2λ′(φ)∂tφ∂
2
txφ− λ′(φ)∂2

ttφ∂xφ
0

))
− 2λ′(φ)∂tφ∂txφ2 − λ′(φ)∂2

t φ∂xφ2 − λ′′(φ)(∂tφ)2∂xφ2.

(80)

and

∂tφ2(t, 0) = −kIẊ2(t), ∂2
t φ2(t, 0) = −kIẌ2(t),

Ẍ2 = ∂tφ2(t, L),
...
X2 = ∂2

t φ2(t, L).
(81)
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From (63), p1((λ0 − λ(φ))∂3
ttxφ) can be bounded by (|φ|2H2 + |Ẍ|2 + (∂2

ttφ(t, L))2) and, from (28),
∂ttxφ1 is proportional to ∂ttφ1. Thus, as all the other terms in the right hand sides are quadratic
perturbations and include at most a second order derivative, the L1 norm of the right-hand sides can
be bounded by (|φ%1 |2H2 +|φ2|2H2 +|X%1 |2 +|X2|2 +|Ẋ2|2 +|Ẍ2|2 +φ2(t, L)+(∂tφ(t, L))2 +(∂2

ttφ(t, L))2),
which is small compared to the first-order term in the left-hand sides. Therefore we have, as previously

dV2,k

dt
≤ −µC3V2,k − λ(φ(t, L))f(L)e−

µ
λ0
L(∂kt φ2)2(t, L)

− (∂ktX2)2(t)
(
2α2λ(φ(t, 0))2kI − λ(φ(t, 0))f(0)k2

I − µ
)

−
∫ L

0

(−λ0f
′(x))e−

µ
λ0
x(∂kt φ2)2(t, x) + 2α2kIλ(φ(t, 0))∂kt φ2X(t)dx

+O

((
|φ%1
|H2 + |X%1

|+ |φ2|H2 + |X2(t)|+ |Ẋ2(t)|+ |Ẍ2(t)|
)3
)

+ C2,k|φ|0
∣∣(∂k−1

t φ2)(t, L)
∣∣2 , for k = 2, 3,

(82)

where C2,k are positive constants independent of φ and X. Besides, from (45),∫ L

0

∂k−1
t φ2(t, x)

(
eσ(x−L) sin(ω(x− L))

)
dx = 0, for k = 2, 3. (83)

Thus we can perform exactly as for V2,1 and consequently

dV2,k

dt
≤ −µC3V2,k −

(
λ(φ(t, L))f(L)e−

µ
λ0
L − C2,k|φ|0

) ∣∣∂k−1
t φ2(t, L)

∣∣2
+O

((
|φ%1 |H2 + |X%1 |+ |φ2|H2 + |X2|+ |Ẋ2|+ |Ẍ2|

)3
)
, for k = 2, 3,

(84)

thus, from (79) and (84),

dV2

dt
≤ −µC3V2 −

3∑
k=1

(
λ(φ(t, L))f(L)e−

µ
λ0
L − C2,k|φ|0|∂k−1

t φ|L2

) ∣∣∂k−1
t φ2(t, L)

∣∣2
+O

((
|φ%1
|H2 + |X%1

|+ |φ2|H2 + |X2|+ |Ẋ2|+ |Ẍ2|
)3
)
.

(85)

This implies from (51) and (66) that

dV

dt
≤ −min (2Re(%1), 2Re(%1)λ0, µ)V

−
(
λ(φ(t, L))f(L)e−

µ
λ0
L − C4|φ|H2

)(
|φ2(t, L)|2 + |∂tφ2(t, L)|2 +

∣∣∂2
t φ2(t, L)

∣∣2)
+O

((
|φ%1
|H2 + |X%1

|+ |X%̇1
|+ |Ẍ%1

|+ |φ2|H2 + |X2(t)|+ |Ẋ2(t)|+ |Ẍ2(t)|
)3
)
.

(86)

But from (14) and (57), V is equivalent to the norm
(
|φ%1
|H2 + |X%1

|+ |X%̇1
|+ |Ẍ%1

|+ |φ2|H2 + |X2(t)|

+ |Ẋ2(t)|+ |Ẍ2(t)|
)2

. Besides, we have from (31), (56), and using Cauchy-Schwarz inequality

V1(t) ≤

∫ L

0

|α1e
− %1λ0

x|2dx+

∣∣∣∣∣α1e
%1
λ0
L

%1

∣∣∣∣∣
2
 3∑
k=1

∣∣∣∣∣∣
(∫ L

0

e2%1xdx

)1/2(∫ L

0

∂kt φ
2dx

)1/2

+ ∂ktXe
%1
λ0
L

∣∣∣∣∣∣
2

≤ C5

(
|φ(t, ·)|2H2

+ |X(t)|2 + |Ẋ(t)|2 + |Ẍ(t)|2
)
,

(87)

where C5 is a constant that does not depend on X or φ. Also, from (14), (87) and noting that
φ2 = φ− φ1 and X2 = X −X1,

V2(t) ≤ C2

(
|φ2(t, ·)|2H2

+ |X2(t)|2 + |Ẋ2(t)|2 + |Ẍ2(t)|2
)

≤ C6

(
|φ(t, ·)|2H2

+ |X(t)|2 + |Ẋ(t)|2 + |Ẍ(t)|2
)
.

(88)
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This implies that(
|φ%1 |H2 + |X%1 |+ |X%̇1 |+ |Ẍ%1 |+ |φ2|H2 + |X2(t)|+ |Ẋ2(t)|+ |Ẍ2(t)|

)
= O

(
|φ|H2 + |X|+ |Ẋ|+ |Ẍ|

)
.

(89)

But from (2)–(3) and Sobolev inequality,(
|φ|H2 + |X|+ |Ẋ|+ |Ẍ|

)
= O (|φ|H2) . (90)

Therefore, from (86), (89)–(90), and (48), there exists γ > 0 and ε2 ∈ (0, ε1] such that for any
ε ∈ (0, ε2), one has

dV

dt
≤ −γV. (91)

This shows the exponential decay for V . It remains now only to show that it also implies the ex-
ponential decay for (φ,X) in the H2 norm. Observe first that from (87)–(88) and (90) there exists
C7 > 0 independent of φ and X such that

V (t) ≤ C7|φ(t, ·)|H2 ,∀ t ∈ [0, T ]. (92)

And from (14), (58), and (91),

|φ(t, ·)|H2 + |X(t)|+ |Ẋ(t)|+ |Ẍ(t)|
≤ 4 max(1, λ2

0)V1(t) + C2V2(t)

≤ max(4, 4λ2
0, C2)e−γtV (0).

(93)

Thus, there exists C8 > 0 independent of φ and X such that

|φ(t, ·)|H2 ≤ C8e
−γt (|φ(0, ·)|H2) . (94)

So far φ is assumed to be of class C3, however since this inequality only involves the H2 norm of φ,
this can be extended to any solution (φ,X) ∈ C0([0, T ], H2(0, L)) × C1([0, T ]) of the system (1)–(3)
(see for instance [4] for more details). This concludes the proof of Theorem 2.3.

We now prove Proposition 2.4, which follows rapidly from the proof of Theorem 2.3.

Proof of Proposition 2.4. From (113) in the Appendix, one can see that (76) still holds with kI =
πλ0/2L. Thus by continuity there exists k1 > πλ0/2L such that for any kI ∈ (πλ0/2L, k1) (76) still
holds and consequently the quadratic form I given by (69) is still definite positive. Suppose now by
contradiction that the system is stable for the H2 norm. Then for any ε > 0, there exists δ1 > 0 such
that for any initial condition (φ0, X0) ∈ H2(0, L) × R such that (|φ0|H2 + |X0|) ≤ δ1 and satisfying
the compatibility condition X0 = −k−1

I φ0(0) and φ(L) = k−1
I λ(φ0(0))φ′0(0), the associated solution

(φ,X) is defined on [0,+∞) and

(|φ|H2 + |X|) ≤ ε, ∀ t ∈ [0,+∞). (95)

Let Θ > 0, from (65) and (85), using that I > 0,

dV1 −ΘV2

dt
≥ 2Re(%1) min(λ0, 1)V1 + µΘC3V2

+
(

Θf(L)λ0e
−µ L

λ0 − C9(1 + Θ)
(
|φ|H2 + |X|+ |Ẋ|+ |Ẍ|

))(k=3∑
k=1

∣∣(∂k−1
t φ2)(t, L)

∣∣2)

+O

((
|φ%1
|H2 + |X%1

|+ |φ2|H2 + |X2(t)|+ |Ẋ2(t)|+ |Ẍ2(t)|
)3
)
,

(96)

where C9 is a constant independent of φ and X. We can choose (φ0, X0) satisfying the compatibility
conditions and Θ > 0 such that c := (V1 −ΘV2)(0) > 0, and (|φ0|H2 + |X0|) ≤ δ with δ to be chosen.
Actually Θ only depends on the ratio between V1 and V2 thus it can be made independent of δ by
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simply rescaling |φ0|H2 and |X0|. Using (96) and (90) there exists γ2 > 0 and ε > 0 such that, if
(|φ|H2 + |X|) ≤ ε, then

dV1 −ΘV2

dt
≥ γ2(V1 −ΘV2). (97)

Thus, from (95) and the stability hypothesis, we can choose δ > 0 such that (97) holds. This implies
that

(V1 −ΘV2)(t) ≥ ceγ2t, ∀ t ∈ [0,+∞), (98)

which contradicts (95). This ends the proof of Proposition 2.4.

Remark 3. This last proof is limited by the limit value of kI for which I is not positive definite
anymore. This is due to the fact that we have only extracted the first limiting eigenvalues from
the solution. It is natural to think that we could apply the same method to extract a finite number
of eigenvalues instead and separate (φ,X) in (φ1, X1), its projection on a n-dimensional space, and
(φ2, X2). Then we would deduce more constraints like (45) on (φ2, X2), which would increase the upper
bound of kI for which I defined in (69) is definite positive, and thus the bound k1 for which Proposition
(2.4) holds, and maybe, by increasing this number of eigenvalues, prove that this proposition holds for
arbitrary large k1.

6 Numerical simulations

In this section we give a numerical simulation that illustrates Theorem 2.3 and Proposition2.4.

Figure 1: Example of numerical simulations of φ(t, 0) with respect to t varying between 0 and 10 for
various values of kI between 0.1kI,c to 2kI,c, where kI,c = πλ0/2L is the critical value of Theorem
2.3 and Proposition 2.4. The black line represents the trajectory for kI = kI,c. On the left kI is
larger and the system is unstable, and on the right kI is smaller and the system is stable. The system
parameters are chosen such that λ(x) = 1 +x, λ0 = L = 1, and φ0(x) = 0.1 on [0, L/2] and φ0(L) = 0
so that φ0 satisfies the compatibility conditions (4) for any kI ∈ [0.1kI,c, 2kI,c]. The simulations are
obtained by a finite-difference method.

7 Conclusion

In this article we studied the exponential stability of a general nonlinear transport equation with
integral boundary controllers and we introduced a method to get an optimal stability condition through
a Lyapunov approach, by extracting first the limiting part of the stability from the solution using
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a projector on a finite-dimension space. We believe that this method could be used for many other
systems and could be useful in the futur as, for many nonlinear systems governed by partial differential
equations, the stability conditions that are known today are only sufficient and may still be improved.

In this section we prove (76) under assumption (10). Note that this is equivalent to(∫ L
0
θ(x)dx

)2

L
(∫ L

0
θ2(x)dx

) > 1− λ2
0

k2
IL

2
. (99)

By definition of %1 (see Section 4) and (26), we have

σ = − ω

tan(ωL)
, (100)

and using (26) and (100)
λ0

kIL
= − sin(ωL)

ωL
e

ωL
tan(ωL) . (101)

Condition (99) thus becomes(∫ L
0
θ(x)dx

)2

L
(∫ L

0
θ2(x)dx

) +
sin2(ωL)

(ωL)2
e2 ωL

tan(ωL) − 1 > 0. (102)

From (8) and the definition of θ given by (70), we have∫ L

0

θ(x)dx =
ω

σ2 + ω2
. (103)

Using (100), (∫ L

0

θ(x)dx

)2

=
sin4(ωL)

ω2
. (104)

Similarly we have∫ L

0

θ2(x)dx =
σe−2σL(σ cos(2ωL)− ω sin(2ωL)) + (ω2 + σ2)− σ2 − e−2σL(σ2 + ω2)

4σ(σ2 + ω2)
. (105)

Therefore, using again (100) and the fact that (1 + tan−2(ωL)) = sin−2(ωL),

∫ L

0

θ2(x)dx =

 cos2(ωL)
sin2(ωL)

e2 ωL
tan(ωL) (cos2(ωL) + sin2(ωL))− e2 ωL

tan(ωL) 1
sin2(ωL)

+ 1

−4ω sin−2(ωL)

 tan(ωL)

=
(e2 ωL

tan(ωL) − 1)

4ω
sin2(ωL) tan(ωL).

(106)

Therefore using (104) and (106), condition (102) becomes

4 sin2(ωL)

(ωL) tan(ωL)(e2 ωL
tan(ωL) − 1)

+
sin2(ωL)

(ωL)2
e2 ωL

tan(ωL) − 1 > 0, (107)

which is equivalent to (
2

2ωL
tan(ωL)

(e
2ωL

tan(ωL) − 1)
+ e

2ωL
tan(ωL)

)
sin2(ωL)

(ωL)2
− 1 > 0. (108)

Note that, under assumption (10) and from the definition of %1, ωL ∈ (−π/2, π/2), which implies
that 2(ωL)/ tan(ωL) ∈ (0, 2). Hence, let us study the function g : X → (2X/(eX − 1) + eX) on (0, 2).
Taking its derivative one has

g′(X) =
(eX − 1)(2 + eX(eX − 1))− 2XeX

(eX − 1)2
. (109)
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Taking again the derivative of the numerator of the right-hand side of (109), one has

((eX − 1)(2 + eX(eX − 1))− 2XeX))′ =(eX − 1)(eX(eX − 1) + e2X)

+ eX(2 + eX(eX − 1))− 2eX − 2XeX .
(110)

Thus using that X < eX − 1 on (0,+∞) and in particular on (0, 2), we get

((eX − 1)(2 + eX(eX − 1))− 2XeX))′ > (eX − 1)(eX(eX − 1) + 2e2X − 2eX) > 0. (111)

Hence g′ is non-decreasing on (0, 2). But, from (109), g′(0) = 0, therefore g is non-decreasing on (0, 2).
As limX→0 g(X) = 3, we have(

2

2ωL
tan(ωL)

(e2 ωL
tan(ωL) − 1)

+ e2 ωL
tan(ωL)

)
sin2(ωL)

(ωL)2
− 1 ≥ 3

sin2(ωL)

(ωL)2
− 1, (112)

and, as x→ sin(x)/x is positive and decreasing on [0, π/2], we have(
2

2ωL
tan(ωL)

(e2 ωL
tan(ωL) − 1)

+ e2 ωL
tan(ωL)

)
sin2(ωL)

(ωL)2
− 1 ≥ 12

π2
− 1 > 0. (113)

Hence (108) holds and therefore condition (99) holds as well. This ends the proof of (76) under
assumption (10).
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