
HAL Id: hal-01766251
https://hal.science/hal-01766251

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multiscale approach for a distributed event-based
Internet of Things

Denis Conan, Léon Lim, Chantal Taconet, Sophie Chabridon, Claire Lecocq

To cite this version:
Denis Conan, Léon Lim, Chantal Taconet, Sophie Chabridon, Claire Lecocq. A multiscale approach
for a distributed event-based Internet of Things. PICOM 2017 : 15th International Conference on Per-
vasive Intelligence and Computing, Nov 2017, Orlando, United States. pp.844 - 852, �10.1109/DASC-
PICom-DataCom-CyberSciTec.2017.142�. �hal-01766251�

https://hal.science/hal-01766251
https://hal.archives-ouvertes.fr

A multiscale approach for a distributed event-based

Internet of Things

Denis Conan, Léon Lim, Chantal Taconet, Sophie Chabridon, and Claire Lecocq

SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay

Télécom SudParis, 9 rue Charles Fourier, 91011 Évry Cedex, France

firstname.lastname@telecom-sudparis.eu

Abstract—The Internet of Things paradigm calls for ex-
changing data among dynamic and heterogeneous producer and
consumer entities at unprecedented scales. The approach used

in this paper to address IoT heterogeneity and scalability is
through the modelling of multiple heterogeneous scales along
dimensions of the application domain. Then, the concepts of scale
and dimension of multiscalability are mapped to the concepts of
scope and graph of scopes of distributed event-based systems,
which have long been recognised as enabling scalable and flexible
communication in a space-, time- and synchronisation- decoupled
way. This multiscale approach for a distributed event-based
Internet of Things enables the modelling of the decentralisation
with human-centred edge computing solutions placing control
at the edges of the IoT by leveraging localised scalability.
Our implementation and experimentations with the MUDEBS
framework show that multiscoping helps to drastically diminish
the number of exchanged messages for both subscriptions and
notifications.

Index Terms—Internet of Things, Multiscale distributed sys-
tem, Distributed event-based system, Content-based routing,
Localised scalability, Scoping, Multiscoping.

I. INTRODUCTION

The Internet of Things (IoT) paradigm calls for exchang-

ing data among dynamic and heterogeneous producer and

consumer entities at unprecedented scales [2], [5]. The pub-

lish/subscribe communication model [13], supported by Dis-

tributed Event-Based Systems (DEBS) [21], [31], has long

been recognised as enabling scalable and flexible commu-

nication in highly distributed systems in a space-, time-

and synchronisation-decoupled way. However, the dynamicity

and heterogeneity characterising the IoT requires additional

mechanisms. This paper addresses IoT heterogeneity and scal-

ability through the modelling of multiple heterogeneous scales

along dimensions of the application domain. This multiscale

approach also enables full decentralisation with human-centred

edge computing solutions [19] placing control at the edges of

the IoT leveraging localised scalability [35]. We discuss in

the following our design choices for a content-based DEBS

solution deployed on an overlay of brokers.

In a DEBS, a producer publishes notifications, possibly

following an advertisement message describing a set of notifi-

cations it is willing to publish, whereas a consumer subscribes

to a set of messages it is interested in. Although producers

initiate the communication, they do not know any consumer. If

a notification matches a subscription, it is delivered to the con-

sumer. Considering the dynamicity and diversity of producers

and consumers, IoT systems are open and it is questionable to

rely on solutions based on subject-based filtering (also called

topic-based filtering) in which subscribers specify explicitly

the topic of interest (via a few words with meta-characters

that match for instance several characters or words) in their

subscriptions [9], [31]. Instead, we adopt the full expressivity

of content-based filters —i.e. they are constraints expressed on

the whole content of notifications [8], [15], [30]. In addition,

in order to stay as open as possible, we prefer using semi-

structured data models à la XML [1], [10], [22] rather than

structured data models that organise notifications as records

of pairs (attribute name,value). The main reason is to inter-

operate with approaches such as sensors as a service and with

information processing approaches such as reasoning with

ontologies where data may be structured with OWL1 (e.g.

SSN2).

DEBS solutions are originally typically implemented as

overlay networks of brokers [31]. The access broker of the

consumer is responsible for installing the subscription filter

on brokers of the overlay network so that notifications that

match the subscription are routed towards the consumer. Next,

broker-less epidemic solutions have been used to disseminate

information with some filtering for decreasing the probability

that they receive information of no interest [14]. The main

issue with this approach is that, even when a peer knows that

its neighbours are not interested in a given notification, it is

difficult to state whether a given neighbour is critical to reach

a consumer. To the best of our knowledge, filtering in broker-

less solutions is topic-based (e.g. [12]).

More recently, DEBS solutions built over peer-to-peer (P2P)

overlay networks have been proposed. As highlighted by [24],

P2P overlay infrastructures represent a promising infrastruc-

ture to implement large-scale content-based DEBS since they

are characterised by self-organisation and are highly flexible

with respect to communication topology changes. Basically,

P2P-based DEBS rely on the assumption that peers may act

both as clients and servers, solving intrinsically the scalability

requirement, as the number of potential servers increases

linearly with the size of the system. However, to the best of

our knowledge, existing P2P-based DEBS solutions assume

either subject-based filtering or content-based filtering with

1https://www.w3.org/OWL
2http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

structured data models. In addition, in the context of the IoT

with edge computing, hosts do not necessarily have the same

capability and should not play the same role: for instance,

some devices cannot communicate with each other due to

NAT. Finally, by considering the P2P overlay infrastructure,

the principle of locality may be violated since data are

routed between peers regardless of their locality. For all of

these reasons, we focus on DEBS solutions based on overlay

networks of brokers and with a semi-structured data model.

DEBS for broad IoT face unprecedented scales in terms

of the volume of exchanged data, number of participants and

communication distance. As many brokers may be involved, a

high quantity of messages may be exchanged when installing

subscription filters and most importantly when routing numer-

ous events from producers to consumers. In this work, we take

benefit from the inherently heterogeneous nature of broad IoT

systems to control and limit the amount of exchanged data.

For example, when a consumer declares an interest in the

transportation information concerning members of the group

of UK supporters going to athletic competitions in Stade de

France in the north of Paris, the brokers may deduce that

some parts of the overlay network are not concerned. In

other words, some sources of heterogeneity (e.g. geographical

heterogeneity, group membership heterogeneity) may delimit

visibility scopes [16] for data distribution, with notifications

being visible only in certain scopes. We therefore combine the

concept of multiscale distributed systems [33] with visibility

scopes to bring into play the concept of multiscoping in a

distributed event-based IoT, and we extend the requirements

of distributed routing accordingly.

The remaining sections of this paper are structured as fol-

lows. Section II describes the multiscale approach we propose,

illustrated on a Smart city scenario. The corresponding mul-

tiscale characterisation (viewpoints, dimensions, and scales)

is defined, the graph of scopes are then derived with the

associated visibility filters. Section III describes the concept

of multiscoping allowing to specify scopes and visibility

filters along multiple dimensions. Section IV summarises the

principles of distributed routing with multiscoping that we im-

plemented in our open source MUDEBS framework. Section V

puts multiscoping in action for purposes of experimenting its

impact on message traffic. Section VI then discusses related

works focusing on scoping approaches enforced by an overlay

of brokers. Section VII concludes the paper and gives some

further research directions.

II. MULTISCALE APPROACH

In order to master the complexity of routing and filtering

notifications in the IoT, our approach builds on the concept

of multiscale distributed systems [33] and implements it using

multiscoping to control notification dissemination in a DEBS.

The word “multiscale” qualifies extremely diverse sys-

tems [7], [18], [25], [33]. Following [33], we consider the

heterogeneity aspect according to several viewpoints and for

each viewpoint several dimensions. For instance, in the ge-

ographical viewpoint, one may consider the administrative

area or the distance dimensions; in the user viewpoint, one

may consider the membership dimension to gather users into

groups. Thereupon, a distributed system is qualified as being

multiscale when the projection of its entities are associated

with different scales in at least one dimension.

We match the system concept of scale to the DEBS concept

of scope. Scopes are used for structuring publish/subscribe

systems by putting the concept of visibility of notifications

forward. Notification visibility limits the set of consumers

that may get access to this notification. We take the definition

presented in [16]: “A scope is an abstraction that bundles a

set of clients (producers and consumers) in that the visibility

of notifications published by a producer is confined to the

consumers belonging to the same scope as the producer; a

scope can recursively be a member of other scopes”.

Thereafter, we abstract the customisability of DEBS with

multiscoping —i.e. filtering is impacted by the visibility of

notifications that are analysed according to several dimensions

of scopes. A client advertises or subscribes providing a filter

that is tagged with a set of scopes, with at most one scope per

dimension. A notification is visible to a client if it is visible

in all the dimensions (cf. Section III).

In Section II-A, we motivate the approach with an illus-

trative scenario. In Section II-B, we detail the multiscale

characterisation obtained for this scenario. Then, we present

in Sections II-C and II-D the benefits of this characterisation

to manage the graph of scopes and to control the routing of

events.

A. Smart city illustrative scenario

In preparation of the possible Olympic games in Paris in a

near future, the city of Paris and the region Île-de-France are

setting up smart services for the million of users of the public

transportation. The services are able to provide customised

applications to each of its users based on privacy requirements,

location, group membership, and public transportation events

(incidents, opportunities, etc.).

The system should provide information sharing function-

alities for groups of users. For instance, supporters of the

United Kingdom team may wish to meet at Stade de France

for the athletics competitions. On the way to Stade de France,

the service proposes to share information such as the current

location of each member of a group, their current means of

transport (e.g., bus line, taxis, subway car, suburban trains),

and forecast arrival time. The group may be joined on-demand

and at any time.

The system should control the dissemination of notifications

crossing administrative areas according to system performance

measurements. In particular, if the monitoring system detects

a sudden deterioration of latencies due to a burst of traffic

in some parts of the overlay network of brokers, the system

should be able to isolate the brokers of some scopes to limit

the quantity of notifications that can span the entire network.

This (visibility) filtering can take into account the execution

context at border crossing brokers and classifying notifications

based on additional information such as priority or provenance.

The system of public cars proposes a service to indicate all

the parking places located at a walking distance from a user,

but this information is of no interest out of a given quarter. For

this purpose the system limits the broadcast of these events to

the concerned quarters.

B. Multiscale characterisation

In order to obtain the relevant scopes for this scenario,

we characterise the multiscale nature of the IoT system in

construction using the MuSCa3 software framework [33],

which follows a model-driven engineering approach [36].

The multiscale concepts, mainly viewpoints, dimensions and

scales are defined in a meta-model. A specific editor guides

the system designer to produce a multiscale characterisation

and leads to a system-specific multiscale vocabulary —i.e. a

model.

The left part of Figure 1 outlines the result of the multiscale

characterisation for the illustrative scenario. The multiscale

framework proposes pre-defined commonly-used viewpoints

and dimensions and allows system designers to define new

ones. We select the pre-existing user and geography view-

points, and we add the public transportation viewpoint. Then,

for each viewpoint, we choose the following dimensions of

interest to characterise the system entities. For the geogra-

phy viewpoint, we select the geographical area dimension,

with the region, department, city, quarter, street, building

scales. For the public transportation viewpoint, we define the

transport organisation dimension that shows the organisation

of the public transports into network companies organised

into intercity, suburban, area, city and dedicated destination

scales. The city scale of the transport organisation dimension

exemplifies a situation in which a node can have several

“parents”, then leading to hierarchies of the form of trees,

but also forests. Finally, for the user viewpoint, we design the

membership dimension, with its hierarchical group scales.

C. From the multiscale characterisation to the graph of scopes

In its centre, Figure 1 shows graphs of scopes for the chosen

dimensions. The scopes are instances of the scales defined in

the model. For instance, the Versailles scope is an instance

of the City scale (model level) for the geographical area

dimension. For each dimension, we translate the hierarchy of

scale instances into a hierarchy of scopes: Each scope has

superscopes (parent scopes) and subscopes (children scopes).

The right part of Figure 1 presents the distributed ar-

chitecture of an overlay network of brokers settled by an

administrator for a given infrastructure deployment. In each

dimension, a broker “belongs” to zero, one or several scope

areas (cf. Sections IV and V for the construction of the scope

areas with the JoinScope action). For instance, in dimension

d2, the Roissy area scope is managed by the brokers B10,

B11, and B13. These scope areas are either built statically

at deployment time or dynamically on demand when a client

wants to produce or consume notifications in a scope that is

3https://fusionforge.int-evry.fr/www/musca/

not already known by its access broker. Let us illustrate the

dynamic extension of a scope area. When initially deployed,

and since there is no client, the brokers are not aware of the

groups of the membership dimension. And this is so even

if the graph of scopes is fixed (i.e., the decomposition into

subgroups is stable). Then, the overlay network of brokers

managing the uk scope evolves: when a member of the group

moves or connects to a broker that does not belong to the

uk scope, the given broker joins the scope and the JoinScope

action may lead to other brokers joining the scope to extend

the scope area of the uk scope.

D. From scopes to filters

The scopes are used to limit the dissemination of notifica-

tions inside one or a restricted number of scope areas. This

limitation is performed through the means of visibility filters

associated with the edges of the graphs of scopes. Each edge

of the graphs of scopes is associated with a content-based

visibility filter to filter out outgoing notifications from the

subscope to the superscope, plus another visibility filter for

filtering out the incoming notifications from the superscope to

the subscope. These filters are installed at border crossing bro-

kers, precisely at those knowing both of the involved scopes.

The visibility filters may be installed by 1) the administrator

of the infrastructure for all the system services, or 2) system

services from the point of view of the producers.

Firstly, visibility filters may be installed by system admin-

istrators. For instance, the administrator may install visibility

filters at brokers B9 and B13 to control the traffic burst

due to too numerous events produced during competitions

at Stade de France and confine their dissemination to the

Seine et marne scope. The filter may state by whatever means

which ones come from official sources of information (or using

many more resources, which notifications are potential dupli-

cates), and filter out unofficial (and duplicate) notifications

before forwarding them to the brokers of the Ile de france

scope.

Secondly, visibility filters may be installed by system ser-

vices. For instance, the group communication service can

provide an option for producers to indicate whether their noti-

fications should be kept in the scope of their production only

(that information is included in every notification). The service

can implement a content-based visibility filter that filters out

outgoing notifications when the content of the notification

indicates that the notification is declared as “producer-scope

only”. Finally, the service associates the visibility filter with

the subscope-superscope relation of edges of the graph of

scopes of the membership dimension so that they are installed

at the border crossing brokers when the client joins a group.

Clearly, these visibility filters target only scalability. They can

be complemented with privacy management as proposed by

MUDEBS with attribute-based access control [29].

In addition, it is noticeable that if the data model of some

of the notifications includes the production scope, clients

can use this information in advertisement and subscription

filters for that kind of notifications. For instance, assume that

X

Z

Y

W

Yvelines(Yv)

Versailles (ve)

Quarter

Street

Building

<<scale>>

<<scale>>

<<scale>>

<<scale>>

<<scale>>

<<scale>>

Château de Versailles (cv)

ve
cv

ro

sm

Yv if

Seine−et−Marne (sm)

Roissy−en−France (ro)

Region

City

Department

Île−de−France (if)

B5 B9

B7

B8

B7

B12

B13

B4

B6

B3

B10 B11

B1

B2

B14Xabi Will
Ysé Zoé

⊤

⊥

dimension geographical area (d1)

viewpoint geography

X

Z

Y

W

Suburban
<<scale>>

Area
<<scale>>

Dedicated
<<scale>>

City
<<scale>>

Intercity
<<scale>>

*

*

*

*

im

np

ro

wp

ph

st

Île−de−France Mobility (im)

Roissy area(ro)

SNCF−TGV (st)

or

Orlyval
Western Paris (wp)

Phébus Versailles (ph)

Northern Paris (np)

(or) B5 B9

B7

B8

B7

B12

B13

B4

B6

B3

B10 B11

B1

B2

B14

Ysé Zoé
WillXabi

n

⊥

⊤

viewpoint public transportation

dimension transport organization (d2)

X

Z

Y

W

uk

st
ac

ot
Supporters of the UK Olympian team

Stade−de−France (st)
At the stadium

Attending the
competitions (ac)

On transit to
the airport (ot)* subgroupGroup

<<scale>>

B5 B9

B7

B8

B7

B12

B13

B4

B6

B3

B10 B11

B1

B2

B14Xabi Will
Ysé Zoé

⊥

⊤
dimension membership (d3)

viewpoint user

Fig. 1: Multiscale characterisation and DEBS with multiscoping: dimensions, scales, and scopes

the notifications that serve to the announcement of newly

freed parking places contain the scope of the producer in

the geographical area dimension. Then, clients searching for

parking places in their vicinity can specify in their subscription

filter that the scope of the producer must match their quarter.

III. DEBS WITH MULTIPLE GRAPHS OF SCOPES

In this section, we give an overview of the underlying

concepts of multiscoping that organises multiple graphs of

scopes in MUDEBS4 [27], [28].

A. Graph of scopes of a dimension

We complement the API of regular DEBS with the man-

agement of scopes. Before advertising or subscribing, system

administrators “partition” the system into scopes by tagging

brokers. This is done through the new JoinScope action.

When clients submit an advertisement or a subscription, they

can specify the scopes, at most one per dimension. Thus,

their notifications are forwarded only in these scopes: This

is the role of distributed routing to limit the dissemination

(cf. Section IV).

As depicted in Figure 1, the edges of the graphs of scopes,

one graph per dimension, are the scales (translated into scopes

in a DEBS) plus the clients —i.e. a client advertising or

subscribing “in” a scope is linked to the scope. The vertices

define the partial order relationship “is subscope of” from

4https://fusionforge.int-evry.fr/www/mudebs/index.html

children scopes to parent scopes (noted ⊳, with its transitive

closure
∗

⊳), and the inverse relation “is superscope of” (noted

⊲, with its transitive closure
∗

⊲). As shown in Figure 1, for

the sake of convenience, we introduce the two specific scopes

⊥ (bottom) and ⊤ (top) such that the graph of scopes of a

dimension contains at least ⊥ and ⊤, and such that ⊥ is a

subscope of any other scope of the graph and ⊤ is a superscope

of any other scope of the graph. By construction, the sets of

scopes of different dimensions do not intersect, except for ⊥
and ⊤.

Edge directions in the graph indicate scope membership but

notifications can travel in both directions. However, before

“going through” a scope boundary, a notification must match

a visibility filter established between the two scopes. Like

forwarding filters5, visibility filters are content-based. The act

of applying a visibility filter is called visibility matching. This

way, virtually speaking, notifications are “passed along” from

scope to scope by matching visibility filters.

The following rules determine the set of eligible direct

subscopes and superscopes to which a notification is visible.

Firstly, when published, a notification is made visible to the

scopes the producer belongs to. This rule is applied recursively

to make outgoing notifications visible to all further super-

scopes. Secondly, when an incoming notification is visible

5This is the routing filter in classical DEBS without scoping that serves
to forward a notification to a destination neighbouring broker or connected
client.

within a scope, it is visible to all its children. This rule is

applied recursively to make notifications visible to further

children. Consequently, outgoing notifications are visible to all

the superscopes and to all the sibling scopes. A path of scopes

that connects producer X to consumer Y is called a visibility

path and is decomposed into two, possibly empty, parts: an

upward part and a downward part such that X
∗

⊳ K ∧ K
∗

⊲ Y .

For instance, as depicted in the graph of scopes of the

public transportation dimension, notification n published in

the Phébus Versailles scope is visible to the consumers in the

Roissy area scope (because ph
∗

⊳ im ∧ im
∗

⊲ ro) but is not

visible to the consumers in the SNCF-TGV scope (because

im 6
∗

⊲ st).

B. Visibility in several dimensions

In order to structure the overlay of network brokers ac-

cording to several dimensions, we consider more than one

graph of scopes. So, when submitting an advertisement or

a subscription, a client provides a set of scopes, at most

one per dimension. More precisely, Φf is a set of scope

paths, each scope path containing initially only one scope.

When publishing, a producer indicates the identity of the

advertisement filter f and the notification is tagged with Φf .

Therefore, each filter f is a triple (idf , rf ,Φf), where idf
is the identifier of the filter (noted f in brief), rf is the

forwarding filter function of f and Φf is a set of scope paths

associated to f (one path per dimension).

We now denote X ΦX,f

n
 ΦY,f ′

Y the visibility of notifica-

tion n produced by producer X and matching the forwarding

filter of advertisement filter f to consumer Y that subscribes

to subscription filter f ′. Since it is not reasonable to let

designers specify a scope for every dimension of the multiscale

characterisation, we use the specific scope ⊥ in advertisements

to indicate that ⊥ should be used for every dimension not

explicitly stated in the advertisement. In other words, the

producer is imposing no constraint on the routing of the

notification for that dimension. Similarly, we use the specific

scope ⊤ in subscriptions to indicate that ⊤ should be used

for every dimension not explicitly stated in the subscription.

In other words, the consumer wants to be notified regardless

the scope of the notification for that dimension. Therefore,

notification n published by client X through advertisement

filter f is visible to client Y through subscription filter f ′ if

and only if n is visible from X to Y in all the dimensions

appearing in Φf ∪ Φf ′ \ {(⊥), (⊤)}, with X being replaced

by ⊥ when (s) /∈ Φf ∧(⊥) ∈ Φf , and with Y being replaced

by ⊤ when (s) /∈ Φf ′ ∧(⊤) ∈ Φf ′ .

In conclusion, a distributed event-based system with multi-

scoping exhibits only traces satisfying the following require-

ments: (safety) (1) A client receives only notifications it is

currently subscribed to; (2) A client receives only notifications

that have been previously published by other clients and from

which they are visible; (3) If the filter of the publication call

does not belong to the active advertisements of the publishing

client or if the notification does not match the filter specified in

the publication call, the notification should not be delivered to

any client; (4) A client receives a notification at most once; and

(liveness) (5) A client eventually receives every notification

that is visible to it and that matches some forwarding filters

of its subscriptions.

In the next section, we complement the requirements with

the distributed routing of notifications from producers to

consumers.

IV. DISTRIBUTED ROUTING WITH MULTISCOPING

For the sake of simplicity, MUDEBS implements the simple

routing approach with advertisements. Brokers broadcast the

subscriptions in the overlay network of brokers and keep local

the advertisements of their local clients. Techniques such as

covering-based routing [8] could also be added to MUDEBS.

We now describe how the flooding of subscriptions and the

routing of notifications are constrained by scopes.

At first, administrators partition the system into scopes by

tagging brokers through the JoinScope actions. More precisely,

the role of administrators is to invoke JoinScope actions at

specified brokers to project each scope graph onto the network

of brokers in order to delimit scope “areas” and so that

the membership relation superscope and subscope between

scopes are preserved. Afterwards, a client can request for the

membership to some scopes that its access broker is not aware

of; the access broker then calls the corresponding JoinScope

action. When the JoinScope action is called at broker B with

the argument s ⊳ t, B updates its knowledge of the graph of

scopes and sends a 〈joinscope〉 message to the neighbouring

brokers that know t but do not know s so that (1) every future

notification n tagged with scope s is forwarded to brokers in

scope t if n matches the visibility filter of the relationship

s ⊳ t, and (2) the reception of a notification n tagged with

scope t is forwarded to B and then to the brokers of the

scope “area” of scope s if n matches the visibility filter of the

relationship t ⊲ s.

Visibility matching is a test that precedes any subscription

or advertisement matching. Before forwarding a notification

to a given destination D —i.e. a neighbouring broker or

a local client— the receiving broker B verifies whether a

visibility path associated with that notification can be built

in the direction of D. The verification must be done not only

according to the point of view of the producer for satisfying

the constraints of the producer, but also according to the point

of view of the consumer for satisfying the constraints of the

consumer. Let Φn be the set of scope paths associated with

the notification, and Φs be the set of scope paths associated

with the subscription. From the point of view of the producer,

a visibility path should exist for each dimension d in the set

of dimensions associated with Φn. Similarly, from the point

of view of the consumer, a visibility path should exist for each

dimension d in the set of dimensions associated with Φs.

In a dimension, the routing of a notification follows

a visibility path that is computed as the concatenation

of the scope path of the notification and the scope

path of the subscription as follows. At broker B, a

scope path pp = (X, s1, s2, . . . , sh, . . . , si, . . . , sj)d in

sj

sl

si

X Y

sk

allowed configuration (a)

s1

si

s1 sl

sk

X Y

allowed configuration (b)

sj

Y

s1 sl

sksi

sj

unallowed configuration (d)

X

X Y

sj

si

sl

sk

allowed configuration (c)

sl

Y

X

sh sl

sg

s1

unallowed configuration (e)

sksi

sj

sp

pp

Fig. 2: Construction of a visibility path during routing

Φn \ {(⊥), (⊤)} can be used to construct a visibil-

ity path vp = (X, s1, s2, . . . , si, . . . , sj , . . . , sl−1, sl, Y)
from X to Y if there exists a scope path sp =
(Y, sl, sl−1, . . . , sk, . . . , sj , . . . , si)d in Φs \ {(⊥), (⊤)} such

that sj+1 is an eligible next-hop scope of sj . In other words,

there exists a suffix of pp that is a prefix of the reverse path6 of

sp such that the rule “eligible next-hop scope” can be applied.

Figure 2 depicts the three allowed configurations a, b, and c,
and the unallowed configurations d and e. pp is surrounded

by a dashed line and sp is surrounded by a continuous line. In

configurations a and b, (si...sj) is in the upward part of vp and

sj+1 is an eligible next-hop scope of sj . In the configurations

c and d, (si...sj) is in the downward part of vp and sj+1 is

an eligible next-hop scope of sj . In the configurations d and

e, (si...sj) is in the downward part of vp, but sj+1 is not an

eligible next-hop scope of sj . Therefore, the construction of

vp with pp and sp in configurations a, b, and c is allowed, but

is not allowed in configurations d, and e.

V. DEBS WITH MULTISCOPING IN ACTION

The objective of scoping DEBS with one or multiple graphs

of scopes is to limit the installation of subscription filters as

well as the dissemination of notifications. In this section, we

evaluate the impact of multiscoping on the overall message

traffic with different topologies of overlay networks of brokers.

The comparison is with “no scoping” and monoscoping —i.e.

scoping with one graph of scopes.

The overall message traffic depends upon the way the

projection of the graphs of scopes onto the overlay network of

brokers is performed. Hence, we start with some rules for the

projection of the graphs of scopes onto the graph of brokers

before presenting the experiments.

A. Projection of the graphs of scopes onto the graph of brokers

The projection is specific to application domains, but we

can provide indications of how it can be done. Administrators

partition the system into scope areas by tagging brokers with

the JoinScope action. Of course, when misused, this latter

functionality may degrade the overall performance of the

6
sp is reversed because it has been built during the broadcasting of the

subscription starting from the access broker Θ of the consumer, thus Θ being
the first element of sp.

system. We propose the following rules of thumb for building

the scope areas. Let Gd = (Vd, Ed) be a graph of scopes:

• Rule1: |Ed| JoinScope actions are necessary.

• Rule2: The calls JoinScope(t ⊳ ⊤) are the first calls to

perform. The choice of the brokers for these calls may

have a great impact on performance.

• Rule3: Consider the “root” t such that a call Join-

Scope(t ⊳ ⊤) has already been executed at broker Bm.

Assume that there is a client C with a scope path such

that X = k1 ⊳ k2 . . . ki ⊳ ki+1 . . . kn−1 ⊳ kn = t, and

such that there exists a path of network links (θ(X) =
B1, B2, . . . Bj , . . . Bm). Before calling JoinScope(ki ⊳
ki+1) at broker Bj , a call JoinScope(ki+1 ⊳ ki+2) at

broker Bj′ with 1 6 j 6 j′ 6 m should be performed.

Rule1 stems from the fact that a graph of scopes is projected

onto the network of brokers by adding edges one after the

other. Rule2 is specified in order to consider the top-down

construction so that the edges at the top level are built first.

The use of Rule3 in conjunction with Rule2 preserves the

superscope and subscope relationships between scopes.

B. Overlay topologies of brokers and graphs of scopes

We use the GT-ITM Tool [20] to generate three overlay

topologies Net16, Net52 and Net100 composed of 16, 52,

and 100 nodes, respectively. Figure 3 depicts for instance the

topology used for 52 brokers. Each overlay topology has one

transit domain built upon x = 4 nodes that form a ring. There

are on average y = 3 connected graphs —i.e. stub domains—

per transit node, without any extra transit-stub or stub-stub

edges. Each stub domain has on average
|Neti|−x

y×x
nodes, where

i ∈ {16, 52, 100}. After the generation of the topology by

GT-ITM, we adapt the connections between nodes inside each

stub domain so that each stub domain contains a ring. For

instance, in Figure 3, we identify the four transit nodes a–d.

The transit node a is connected to three stub domains, where

(a, a1), (a, a2) and (a, a3) are transit-stub edges.

For all the topologies, there is one client per broker and

the client plays both the roles of producer and consumer.

Before advertising, subscribing, and publishing, each client

obtains the set of scopes known by its access broker. For each

combination of scopes, with at most one scope per dimension,

b1

a2

4b

d1

d2

c3

2c

1c

1a

3a

b2
3b

a

b

d

c

Fig. 3: Topology of the overlay of brokers Net52

the client advertises a filter with a forwarding filter that always

returns true and with a visibility filter associated with the

corresponding set of scope paths (at most one singleton scope

path per dimension). Next, the client does the same with a call

to subscribe. Finally, the client publishes one notification per

advertisement filter.

If not stated otherwise, we assume that each graph of

scopes is a hierarchy with 3 levels (without counting the

levels corresponding to the clients and to the specific scopes

⊤ and ⊥). The projection of the graphs of scopes follows

Rule1, Rule2 and Rule3. In addition, let s1, s2, s3, s4 and s5
be five scopes such that s1 6= ⊤ is the root of the graph

such that s1 ⊲ s2 ⊲ s4 and s1 ⊲ s3 ⊲ s5: i) action

JoinScope(s1 ⊳ ⊤) is called at broker d in the transit domain,

ii) action JoinScope(s2 ⊳ s1) is called at neighbouring broker

c in the transit domain, iii) action JoinScope(s4 ⊳ s2) is

called at stub domain node d1 ((d1, d2) is a transit-stub edge),

iv) action JoinScope(s3 ⊳ s1) is called at the neighbouring

broker a in the transit domain, and so on. When considering

two or more graphs of scopes, we take the next transit node

of c to be the broker at which action JoinScope(t1 ⊳ ⊤) is

called, where t1 plays the same role as s1.

Finally, if not stated otherwise, all the visibility filters return

true .

C. Dissemination of subscriptions

System administrators can control the calls to the JoinScope

actions so that some parts of the overlay network of brokers

have no knowledge of the scopes of a certain dimension

(as exemplified in the third dimension of Figure 1). In the

following, we call a subset of brokers that manages the scopes

of a dimension a “partition”.

Scenario 1: Increasing the number of partitions. Every

graph of scopes is projected onto a set of stub domains that

are connected directly to the same transit node. We study in

this scenario the intersection of partitions. Let D1, D2, and

D3 be the three dimensions considered. In experiment P1,

no partition intersect: D1 is present in broker d, and in stub

domains of d1 and d2; D2 is present in broker a, and in stub

domains of a1, a2, and a3; D3 is present in broker c, and

in stub domains of c1, c2, and c3. In experiment P2, the two

partitions D1 and D2 intersect: they spread over the same

brokers (a, d, and those of stub domains of a1, a2, a3, d1 and

d2). In experiment P3, the three partitions intersect.

Metric. The following metric is computed: the average number

of 〈subscribe〉 messages per call to Subscribe. For each ex-

periment P1 to P3, we compare the results with the case of no

scoping —i.e. as if the clients specify ⊥ in their advertisements

and ⊤ in their subscriptions.

Results. In Figure 4, we observe that in the three experiments

P1, P2 and P3, the number of messages exchanged is less than

56% compared to the case of no scoping. In addition, using

multiscoping is efficient to drastically diminish the number of

〈subscribe〉 messages: a 22% of decrease when using a second

dimension, and a 36% of decrease when using two additional

dimensions. In the next section, we study the impact of the

projection of the graphs of scopes onto the topology with the

placement of clients.

D. Dissemination of notifications

In the rest of the experiments, we do not “partition” the

overlay network according to dimensions, but study the benefit

of using visibility filters and of mixing several dimensions. The

solution is evaluated with respect to i) the number of brokers,

ii) the number of graphs of scopes, and iii) the level at which

visibility filters always return false. We conduct the following

series of experiments.

Scenario 2: Increasing the number of brokers and chang-

ing the level at which visibility filters return false. The size

of the overlay network is successively increased by considering

the three topologies Net16, Net52, and Net100. Only one

graph of scopes is considered. We study the impact of the

placement of visibility filters that return false: i) all the

visibility filters return true, ii) all the visibility filters at level 1

(L1) return false (and only these filters), iii) all the visibility

filters at level 2 (L2) return false (and only these filters), and

iv) all the visibility filters at level 3 (L3) return false (and only

these filters). The results are expressed using percentages: the

experiment used as the reference is the “no scoping” one.

Scenario 3: Increasing the number of dimensions and

changing the level at which visibility filters return false. For

a given topology, namely Net52, the number of dimensions is

successively increased (1, 2 and 3 graphs of scopes).

Metrics. The following metrics are computed: the average

number of 〈notification〉 messages per call to Publish, the

average number of brokers involved per call to publish, and

the average size of the routing table of brokers —i.e. entries

with forwarding or visibility filter.

Results. In Figure 5, we observe that the number of

〈notification〉 messages with false visibility filters at L1 is

the least important, and is the most important at L3. In

0

20

40

60

80

100

55

33

19P
e
r
c
e
n
ta

g
e

(
%

)

P1 P2 P3

Fig. 4: Number of 〈subscribe〉
messages per call to Subscribe,

three graphs of scopes, Net52.

16 brokers 52 brokers 100 brokers
0

20

40

60

80

100

63 60 61
66

74 7777

91
95

P
e
r
c
e
n

ta
g

e
(
%

)

L1 L2 L3

Fig. 5: Number of 〈notification〉
messages per call to Publish, one

graph of scopes.

0

20

40

60

80

100

41

58

84

P
e
r
c
e
n

ta
g
e

(
%

)

L1 L2 L3

Fig. 6: Number of 〈notification〉
messages per call to Publish, three

graphs of scopes, Net52.

experiment L3, the clients that are connected to brokers that

are the borders of the topology are isolated. The clients that

are connected to brokers that are situated in the transit domain,

that are transit-stub domain nodes, etc. are linked through

visibility paths. Therefore, isolating clients that are at the

borders is meaningful as long as the number of clients that are

“in the centre” is not high. Since there is one client per broker

in all the experiments, the number of messages exchanged in

L3 is the most important. In addition, the difference between

L1 and L2, and L2 and L3 with the Net16 topology are smaller

than the ones with the Net52 and Net100 topologies. This is

because the number of duplicate forwarding paths increases

with the size of the network.

In Figure 6, the same phenomenon can be observed.

Nonetheless, the number of exchanged messages is less impor-

tant: for example, the percentage is 91 in the experiment L3
with one dimensions and 84 in the experiment L3 with three

dimensions. This results from the mixing of several dimen-

sions, as already observed in Scenario 1 for the 〈subscribe〉
messages.

VI. RELATED WORKS

The concept of scope in [17] allows to organize a DEBS

with a graph of scopes. This corresponds to what we can call

monoscoping where only one scope graph is used at a time.

[32] defines “divisions” as different sets of scopes (finance,

makerting, production...). Divisions are subsumed into a global

graph such that each division is represented by a top-level

scope that is a subscope of the root scope of the global graph.

This scope hierarchy does not allow to distinguish divisions

as clearly as we propose with the concept of dimension. In

addition, the root scope is different from the virtual scope

⊤ in two ways: 1) the root scope is the superscope of only

top-level scopes whereas ⊤ is a superscope of every scope,

2) the root scope is defined as the “authority” scope that

has access to notifications published inside a division and

forwards to another division whereas ⊤ is not considered as

a central authority. Indeed, in our solution, ⊤ is specified in

order to ease the use of multiscoping, not for a global control

of the visibility between dimensions. In addition, we do not

require advertisements and subscriptions to be tagged for every

dimension, thus allowing interoperability with scope-agnostic

applications.

With Self-Organizing Broker Overlay [3], the authors pro-

pose to dynamically reorganise the overlay topology by

avoiding pure forwarders involved in the routing but having

no clients. The principle is to have a connection between

brokers that match similar events. Brokers therefore run a

self-organising algorithm in order to measure the similarity

of interest with another broker. The filtering is content-based

and a structured data model is used. In the context of the IoT

wih edge computing, we rather consider another organisation

where brokers have different roles: e.g. border brokers versus

inner brokers, or proximity brokers versus brokers in Cloudlets

or in Clouds.

Similarly to [3], the authors of [23] propose techniques

for rewiring the broker overlay in order to avoid involving

pure forwarder brokers. The solution introduces the notion of

“subscription anchor” used to store subscription information

in brokers’ routing tables. From the perspective of a broker,

an anchor for a subscription is a broker located up to ∆
hops closer to the issuing subscriber (the anchor of a local

subscriber points to the broker itself). Then, the authors present

the anchor placement algorithm to propagate subscriptions —

i.e. to build the overlay. We can notice that, as highlighted

by [4], a bad placement may result in a high number of

messages being propagated between brokers. Some optimi-

sations are proposed to address this problem: by connecting

subscribers with similar subscriptions to the same brokers [11],

or by linking publications and their expected subscribers to the

same brokers [26]. Again, we are in favor of a more distributed

solution in which brokers are present for example to manage

visibility filters.

VII. CONCLUSION

We advocate that the high potential of the Internet of

Things can be reached only with applications built following

fully decentralised software architectures enabling decoupled

communication among dynamic and heterogeneous produc-

ers and consumers. Decoupling is required in time, space

and synchronisation and should not be limited by physical

constraints. Therefore such application software architectures

should be deployed on highly distributed infrastructures like

with edge computing and not on centralised systems such

as clouds [19]. Distributed event-based systems are a good

candidate for providing decoupled communication as required

by the IoT. However, the unprecedented scales envisioned in

the IoT call for additional features.

This paper instantiates the semantically rich localised scal-

ability concept [35] through a multiscale approach where

multiple dimensions of multiple viewpoints may be modelled.

Communication may then take place among geographically

close entities, entities sharing common interests or entities with

any kind of application-defined relationship without having to

know each other in a direct way. A multiscale characterisation

step allows to specify a graph of multiple scopes providing

multiscoping and limiting event dissemination to some parts

of the IoT. We propose an implementation of multiscoping

in the MUDEBS framework that relies on content-based

filtering with a semi-structured data model and we measure

its performance gain on event dissemination. First experiments

on micro-benchmarks show that multiscoping is efficient to

drastically diminish the number of 〈subscribe〉 messages (a

decrease of 45%, 67% and 81% when using 1, 2 and 3

dimensions).

Future research directions concern the enforcement of qual-

ity of service where our multiscale approach enables flexi-

ble and locality-aware QoS management as well as multi-

level QoS management [6]. We are also investigating high-

availability solutions such as in [34]. We promote a flexible

approach in which the brokers self-reorganise to arrange

redundant communication paths.

REFERENCES

[1] M. Altınel and M. Franklin, “Efficient Filtering of XML Documents for
Selective Dissemination of Information,” in Proc. of VLDB, 2000, pp.
53–64.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito, “Efficient
Publish/Subscribe Through a Self-Organizing Broker Overlay and its
Application to SIENA,” The Computer Journal, vol. 50, no. 4, Jul. 2007.

[4] R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J.-F. Pineau, M. Pasin,
E. Rivière, and S. Weigert, “StreamHub: A Massively Parallel Architec-
ture for High-Performance Content-Based Publish/Subscribe,” in Proc.

7th ACM DEBS, Jul. 2013.
[5] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A Survey of

Context Data Distribution for Mobile Ubiquitous Systems,” ACM CS,
vol. 44, no. 4, Aug. 2012.

[6] P. Bellavista, A. Corradi, and A. Reale, “Quality of Service in Wide
Scale Publish-Subscribe Systems,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1591–1616, Third Quarter 2014.

[7] G. Blair and P. Grace, “Emergent Middleware: Tackling the Interoper-
ability Problem,” IEEE Internet Comput., vol. 16, no. 1, Jan. 2012.

[8] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and Evaluation of a
Wide-area Event Notification Service,” ACM TOCS, vol. 19, no. 3, pp.
332–383, Aug. 2001.

[9] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1489–1499, Oct. 2002.

[10] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient filtering
of XML documents with XPath expressions,” in Proc. 22nd IEEE ICDE,
Mar. 2002, pp. 235–244.

[11] A. Cheung and H.-A. Jacobsen, “Design and Evaluation of a Wide-area
Event Notification Service,” ACM TOCS, vol. 28, no. 4, Dec. 2010.

[12] C. Esposito, A. Castiglione, F. Palmieri, M. Ficco, and K.-K. Choo,
“A Publish/Subscribe Protocol for Event-Driven Communications in the
Internet of Things,” in Proc. 14th IEEE PICom, Aug. 2016, pp. 376–383.

[13] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many
Faces of Publish/Subscribe,” ACM CS, vol. 35, no. 2, Jun. 2003.

[14] P. Eugster, R. Guerraoui, A. Kermarrec, and L. Massoulie, “Epidemic
information dissemination in distributed systems,” Computer, vol. 37,
no. 5, pp. 60–67, May 2004.

[15] E. Fidler, H. Jacobsen, G. Li, and S. Mankovski, “The PADRES
Distributed Publish/Subscribe System,” in Proc. of the International

Conference on Feature Interactions in Telecommunications and Software
Systems, 2005, pp. 12–30.

[16] L. Fiege, M. Cilia, and B. Mhl, “Publish-subscribe grows up: Support
for management, visibility control, and heterogeneity,” IEEE Internet
Comput., vol. 10, no. 1, pp. 48–55, Jan. 2006.

[17] ——, “Publish-subscribe grows up: Support for management, visibility
control, and heterogeneity,” IEEE Internet Comput., vol. 10, no. 1, pp.
48–55, Jan. 2006.

[18] M. Franklin, S. Jeffery, S. Krishnamurthy, and F. Reiss, “Design Con-
siderations for High Fan-in Systems: The HiFi Approach,” in Proc. 2nd

Conference on Innovative Data Systems Research, Jan. 2005.
[19] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,

A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-
centric Computing: Vision and Challenges,” ACM SIGCOMM Comput.

Commun. Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015. [Online].
Available: http://doi.acm.org/10.1145/2831347.2831354

[20] GT-ITM Tool, “Modeling Topology of Large Internetworks,” College of
Computing, Georgia Tech, http://www.cc.gatech.edu/projects/gtitm/.

[21] A. Hinze, K. Sachs, and A. Buchmann, “Event-Based Applications and
Enabling Technologies,” in Proc. 3rd ACM DEBS, Jul. 2009, pp. 1–15.

[22] S. Hou and H. Jacobsen, “Predicate-based Filtering of XPath Expres-
sions,” in Proc. 22nd IEEE ICDE, Apr. 2006.

[23] R. Kazemzadeh and H.-A. Jacobsen, “Opportunistic Multipath For-
warding in Content-based Publish/Subscribe Overlays,” in Proc. 13th

ACM/IFIP/USENIX Middleware, Montreal, Quebec, Canada, Dec. 2012,
pp. 249–270.

[24] A.-M. Kermarrec and P. Triantafillou, “XL Peer-to-Peer Pub/Sub Sys-
tems,” ACM CS, vol. 46, no. 2, Nov. 2013.

[25] M. Kessis, C. Roncancio, and A. Lefebvre, “DASIMA: A Flexible Man-
agement Middleware in Multi-Scale Contexts,” in Proc. 6th International

Conference on Information Technology: New Generations, 2009.
[26] W. Li, S. Hu, J. Li, and H.-A. Jacobsen, “Community Clustering for

Distributed Publish/Subscribe Systems,” in Proc. IEEE Cluster, Sep.
2012, pp. 81–89.

[27] L. Lim and D. Conan, “Distributed Event-Based System with Multi-
scoping for Multiscalability,” in Proc. 9th Middleware Workshop on
Middleware for Next Generation Internet Computing, Bordeaux, France,
Dec. 2014.

[28] ——, “Poster: Concept of Multiscoping for Distributed Event-based
Systems,” Jun. 2015, pp. 348–351.

[29] L. Lim, P. Marie, D. Conan, S. Chabridon, T. Desprats, and A. Man-
zoor, “Enhancing Context Data Distribution for the Internet of Things
using QoC-awareness and Attribute-based Access Control,” Annals of
Telecommunications, vol. 71, no. 3/4, pp. 121–132, 2016.

[30] G. Mühl, “Generic Constraints for Content-Based Publish/Subscribe,” in
Proc. 9th CoopIS, ser. Lecture Notes in Computer Science, vol. 2172,
Trento, Italy, Dec. 2001, pp. 211–225.

[31] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen, “The information Bus:
An Architecture for Extensible Distributed Systems,” in Proc. 14th ACM

SOSP, Dec. 1993, pp. 58–68.
[32] H. Parzyjegla, “Engineering Publish/Subscribe Systems and Event-

Driven Applications,” Ph.D. dissertation, University of Rostock, Ger-
many, 2012.

[33] R. Rottenberg, S. Leriche, C. Taconet, C. Lecocq, and T. Desprats,
“MuSCa: A Multiscale Characterization Framework for Complex Dis-
tributed Systems,” in Proc. 3rd Workshop on Model Driven Approaches

in System Development, Sep. 2014.
[34] P. Salehi, C. Doblander, and H.-A. Jacobsen, “Highly-available content-

based publish/subscribe via gossiping,” in Proceedings of the 10th ACM

International Conference on Distributed and Event-based Systems, ser.
Proc. 10th ACM DEBS. ACM, 2016, pp. 93–104. [Online]. Available:
http://doi.acm.org/10.1145/2933267.2933303

[35] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,”
IEEE Personal Communications, vol. 8, no. 4, pp. 10–17, Aug. 2001.

[36] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006. [Online].
Available: http://dx.doi.org/10.1109/MC.2006.58

