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Abstract

Wave-to-Wire numerical models being developed for the study of wave energy con-
verters usually make use of linear potential flow theory “IL B, , |j,, B] to describe wave-
structure interaction. This theory is highly efficient from a computational perspective.
However, it relies on assumptions of small wave steepness and small amplitude of motion
around mean positions. Often, maximization of wave energy converters’ energy perfor-
mance implies large amplitude motion ﬂa, EL ], thus contradicting the assumption of
small amplitude motion.

An alternative approach is to linearize the free surface conditions on the instanta-
neous incident wave elevation (Weak-Scatterer approach E]) while the body conditions
are evaluated at the exact body position. Studies of wave energy converters’ dynamic
response using this method are expected to be more accurate, while maintaining a rea-
sonable computational time. With this aim, a Weak-Scatterer code (CN_WSC) was
developed and used to study two submerged wave energy converters. The first is a heav-
ing submerged sphere and the second is a bottom-hinged fully submerged oscillating flap.
They are inspired respectively by the Ceto HE] and WaveRoller “ﬂ] devices.

Initial calculations were performed in linear conditions first to verify the CN_WSC
against linear theory. Subsequently, calculations in nonlinear conditions were performed,
using large wave steepness and amplitude of body motion. In linear conditions, results
of CN_ WSC showed good agreement with linear theory, whereas significant deviations
from linear theory were observed in nonlinear conditions. As amplitude of body motion
increases, linear theory tends to overestimate energy performance in comparison with
weak-scatterer theory. In contrast, with smaller amplitude of motion but larger wave
steepness, the opposite result is obtained: energy performance is underestimated by
linear theory compared to weak-scatterer theory.
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1. INTRODUCTION

The standard numerical tools for modeling and designing wave energy converters
(WECs) rely on linear potential theory @, E, Eg, @, B], and as such are limited to move-
ments of small amplitude around mean positions. However efficiency of WECs relies on
large amplitude motion ﬂa] by design, their resonant frequencies must fall in the wave
excitation range. Linear potential theory has been shown to be insufficient to model
the behavior of WECs in such configurations ﬂ, ] Thus, other numerical approaches
are required. A nonlinear potential-flow model, in the context of a numerical wave-
tank (NWT), was pioneered by Longuet-Higgins and Cokelet “ﬂ] In their work, they
used the mixed Eulerian-Lagrangian (MEL) approach, solving the Laplace equation in
an Eulerian coordinate system, and then advecting the nodes at the mesh boundaries.
Since that time, several wave tanks have been developed, in both two and three dimen-
sions “E, @, IIQ, @] Issues related to the development of NWT have been reviewed
by Tanizawa ﬂﬂ] Recent developments have focused on accelerating three-dimensional
NWT (computational requirements are still large) and address issues of gridding, numer-
ical stability, and accuracy that can be problematic for complex geometries Nﬁ ]

A weakly nonlinear approach, based on the weak-scatterer (WS) approximation, is
expected to be a promising alternative that avoids or reduces the impediments of fully
nonlinar potential-flow codes. Introduced by Pawlowski ﬂﬁ], this class of approximation
is based on linearisation of the free surface conditions on the incident wave elevation,
allowing treatment of nonlinear steep incident waves. The body condition is evaluated
at the exact instantaneous position of the body, allowing large body motions to be taken
into account. The only assumption in the WS approach is that the perturbation potential
is small. Thus, numerical codes based on the WS approach are expected to be accurate in
cases with small to large amplitude body motions, incident waves of arbitrary steepness
and when the perturbed wave is small. The different quantities are then decomposed into
incident and perturbation components, with the incident ones as forcing terms while only
the perturbation ones are solved. The main advantage of this is that the incident wave
does not need to be propagated from a wave-maker, allowing the mesh to be refined
only in the vicinity of the body. Moreover, since the free surface boundary is known
explicitly, the WS method is expected to be more robust and stable than the fully non
linear approach.

Several WS flow solvers have been developed in the past: SWAN-4 Hﬁ], LAMP-4 “ﬂ]
and WISH @] Their fields of study were however mainly focused on ship with forward
speed, which can indeed be considered as slender bodies. As a consequence, the scattered
waves and motion responses are small and the assumptions of the WS approximation are
fulfilled. In this article, the aim is to investigate whether the WS method can improve
numerical modeling of WECs.

The development of this new solver is based on the experience gained by the authors in
the 90’s in developing a three-dimensional time domain boundary integral equation (BIE
solver for linear, second-order and fully nonlinear wave-body interaction problems ,
@, @, @] In particular, although higher order BIE solvers are available, the choice of a
linear, isoparametric BIE solver based on triangular elements has been maintained. This



solution method presents some important advantages, namely the capacity to express
the surface integrals in a purely analytic form, and very good efficiency (typically, the
ratio of number of unknowns to number of elements is approximately 0.5). In addition,
it is possible to apply efficient mesh generation schemes that originate from the finite
element community, which is considered to be key to practical applications. Analytical
expressions for the influence coefficients, initially unpublished @], have been completely
redeveloped by the first author during his PhD work, and are presented in Appendix A
of this paper.

Comparisons with a fully nonlinear flow solver have been carried out for a submerged
body in forced motions @] In the present paper, we extend this to the case of freely
moving bodies, which requires new equations and numerical implementations to calculate
the motion of the body. The Implicit method, introduced by Tanizawa “ﬁ] and based on
the solution of a second Boundary Value Problem (BVP) for the time derivative of the
velocity potential, was chosen to solve the complex implicit problem of the body motion
calculations. We have developed a new expression for the BVP body condition, which
unifies the two expressions previously given by Tanizawa “ﬁ] and Cointe @] ; the details
are presented in [29].

First, WS theory is recalled. The numerical implementations are then introduced,
namely the boundary element method, the time-marching scheme and the fluid /structure
interaction method. Finally, the method is applied to two submerged WECs, using the
Ceto“ﬂ] and WaveRollerEﬂv] systems as examples. For the purpose of verification, results
are initially compared to linear theory in linear conditions. Simulations in nonlinear
conditions, with large amplitude motions and large steepness incident wave, are then
conducted.

2. METHODS

2.1. Potential flow theory

Assuming a fluid to be incompressible and inviscid with irrotational flow, its flow
velocity derives from a velocity potential ¢ which satisfies the Laplace Eq.:

V%S(x,y, Z’t) =0 (1)

in the fluid domain, D. The boundary of the fluid domain is 0D =TI" = I';,UI', UL',, UT'y,
see Fig[Il
In the general case, without forward speed, it can be shown @] that the velocity



Figure 1: Domain definition : boundaries and reference frames

potential is the solution of the following boundary value problem (BVP):

V=0 in the fluid domain D
1

% = —gn— §V¢ -Vo on the free surface, I'fg

0 0

a1 _ —¢ —Vo¢-Vn on the free surface, I'f,

ot 0z 2)

0

99 =Vp-n on the body, I'y

on

0

—¢ = ¢g on the seabed, I'y

on

¢ —0 on boundaries far from the body, I',

The free surface elevation is denoted by the single-valued variable 1, which means that
wave overturning cannot be handled. ¢ is the gravitational acceleration, V; the body



velocity and n the normal vector pointing outwards from the fluid. ¢q is the velocity
potential of the incoming waves.

Using Green’s Second Identity along with the Rankine source, it can be shown that
the resolution of the 3D Laplace equation in the fluid domain can be reduced to a surface
integral equation, on its boundaries.

2.2. The weak-scatterer approximation

The WS approximation relies on the decomposition of the velocity potential and
the free surface elevation (¢,7) into the incident (¢g,n0) and the perturbation (¢p,n,)
components, see Fig

¢ = ¢0+¢p
3
{77 = No+m ()
Zy — =Nty
— Mo

Figure 2: Weak-Scatterer decomposition and definition of the different wave elevation components

The perturbation components are generated by the interaction of the body with the
incident (undisturbed) flow. They include diffraction and radiation effects. In the WS
approximation, the perturbation components are assumed to be small compared to the
incident components.Since the incident components can be considered as forcing terms,
only the perturbation components are solved. Thus, the incident wave does not need to
be generated using a wave maker on an outer boundary, and propagated with the flow
solver. This allows us to refine the free surface mesh only close to the body, which would
not have been possible if the incident wave have had to be propagated across the whole
computational domain.

The free surface equations can then be linearized on the instantaneous position of
the incident wave, which is explicitly known. Since the position of the free surface is
independent of the solution, the WS approach is then more robust than the fully non
linear approach, in which the free surface position is one of the unknowns.

2.2.1. Incident wave model

In the WS method, the free surface boundary conditions are linearized on the position
of the incident free surface. This means that the incident wave model has to fulfill the
nonlinear free surface boundary conditions. The chosen model is thus the nonlinear
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Figure 3: Free surface elevation from stream function solution in deep water for different steepness,
from m] x is the non-dimensional wavelength, while 7 is the wave elevation.

solution given by the stream function theory of Rienecker and Fenton ﬂﬁ] Based on
Fourier series, the incident field calculations can be obtained accurately and quickly, for
very steep waves, up to the theoretical limit of wave-breaking, see Fig 3l Only regular
waves are considered in this study.A coupling with a High Order Spectral (HOS) “ﬁ]
method may be carried out to take into account more complex nonlinear incident waves
(irregular sea states with possible directional spreading).

2.2.2. Free-surface boundary conditions
The fully nonlinear kinematic and dynamic free surface conditions, applied at the
exact position of the free surface at z =1, are:

on _ 99

5 = 5.~ VeV (4)
¢ 1
5= Ve Vo—gn (5)

In order to make the Mixed Euler-Lagrange (MEL) approach “ﬁ] simpler, the free
surface nodes are allowed to move only vertically. It is imposed that they follow the

incident wave position: a node of coordinates (x,y,z = no(x,y,t)) moves vertically to

(z,y,z =no(x,y,t+dt)) with a velocity v = %z. The corresponding derivation operator

1S

Do. 0  Ono 0

=—+ = 6
Dt 01 0t 02 (6)
D 0

0:11 _ 8_773 Intro-
ducing the WS decomposition in the kinematic free surface boundary condition, Eq. (),
yields

Noting that the wave elevation 7 is independent of z, this leads to

Iy _ O 9

ot ——E+£(¢p+¢o)—V(¢p+¢0)'v(77p+770),OHZZU($,y):770+77p (7)



A Taylor expansion on the perturbation component 7, (which is small compared to
7o) is applied at the incident free surface position, in order to obtain the WS kinematic
free surface condition. The higher order components (1712), QSI%, Tp-¢p, €tc.) are neglected.

n ¢
B—tp = a—;—v%'vﬁo—v%'vﬁp

92 oV
+1p < 3;@0 - ajo 'V770> ,on z =1y (8)

The same operations are successively applied to the dynamic free surface equation,
to obtain its WS version:

Dy, Ong 0
PRt = —om Ve, Voot GG
O%dy  OVey B
_77p <8Zat + az : V¢0> ) on z = 770 (9)

2.2.8. Body boundary condition
The body condition in the boundary value problem, Eq. 2] is:
9¢
an
According to the WS approximation, the wetted surface of the body takes into account
the instantaneous incident wave elevation. Introducing the WS decomposition, Eq.(B]),
in the body condition yields:

(x) = Vi(x)-n (10)

0 0
%(x) = —%(X) + Vy(x) -n  on the wetted surface of the body, Ty (11)
n n
The boundary condition on the seabed is similar, with a zero boundary velocity:

Opp, . O¢o
n =g, ™
2.2.4. Far-field condition

Far from the origin of the perturbation (the WECs), the perturbation components
must vanish:

on the seabed, I'y (12)

{Zp : 8 , when r — oo (13)
P

Our numerical domain is bounded by a vertical cylinder control surface, I'y,. The
incident wave is expected to go through this surface:

d9 . . O
%(x) = %(x) ,on I'y, (14)
leading to the boundary condition:
9% _ 0 ,only (15)

on
while the control surface is assumed sufficiently far from the body so that the normal
velocity of the perturbation velocity potential is negligible. A numerical beach was also
applied to ensure this last condition, see section 3.3l



2.2.5. Summary: boundary value problem

The BVP for the velocity potential resulting from the BIE and the previous boundary
conditions can thus be described as:

( A¢, = 0 in the fluid domain, D
Dy, Onp O
—g)fp = —gnp,— V- Vo + %%r on the free surface,
o OV
—_ .V T¢s:2=
Mp (328t + 5, ¢o> fs 12 =10
% - % — Vo,V — Vo -V, on the free surface,
0?¢g  OVo 16
+77p<az20_ azO'V%) Lps:2=m0 (16)
a¢p _ 8¢0
= T + Vp(x) n on the body, I'
a¢p _ o
o = T on the seabed, I'y
% = 0 on the control surface, I'y,
\ on

2.8. Hydrodynamic Force and Body Motions
2.3.1. Equations of motion
The body motion equations are obtained according to Newton’s law:

be - FH+M'g+ZFext
, 1 (17)
0 =To-S -+ [T $+T0- 8| -6, = My(Fp)+ X My (Ferr)

where M and I are the mass and inertia matrices, X; and 0, are the acceleration in
translation and rotation of the center of gravity of the body in the global reference
frame, Fy and M, (Fp) and F,; and My(F,;) are respectively the hydrodynamic and
external (Power Take-Off (PTO), mooring, viscous damping, etc.) forces and moments
applied on the body at its center of gravity, and S is the rotation matrix based on the
Euler angles:

cos(#)cos(yp) —sin(yp) O

S = | cos(#)sin(v)) cos(yp) 0O (18)
—sin(#) 0 1

Q =tz + Oy, + oxg =S - O, (19)

where €2 is the body rotational vector according to the Euler angles ( 6 = (w 6 go))
(see Fig@).
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Figure 4: Euler angles (¢, 0, ¢) with their corresponding vectors

The hydrodynamic force and moment are obtained by integrating the hydrodynamic
pressure on the wetted body surface (normal vector pointing outwards from the fluid).

The pressure p is given by Bernoulli’s equation, and expressed relatively to the at-
mospheric pressure p, : p = p — pg. Moreover, the free surface pressure is supposed to
be zero: 5 .

p=—p <a—‘f + V6 V6 gz) (20)

The velocity potential is known on the body, as the solution of the BVP. Its local
derivatives are computed using a B-spline approximation of the potential, while the
normal velocity is given by the body condition. The velocity potential time derivative is
a priori not known on the body and needs to be computed.

2.8.2. Velocity Potential Time Derivative

For a body undergoing prescribed motion, the equations of motion, and thus the
hydrodynamic loads, do not need to be computed to carry on the simulation. Since the
velocity potential is known on the body at each time-step, a finite difference scheme can
be used in post-processing, to estimate its time derivative and from this the induced
body loads.

For a body undergoing free motion, this scheme is not accurate enough and can
lead to instabilities [33]. Another approach has been chosen, based on the solution of a
second BVP for the velocity potential time derivative, which also satisfies the Laplace
equation @]

A¢:0:>A%:O,inD (21)

The BVP for the time derivative of the velocity potential is similar to that for the ve-
locity potential. The boundary conditions are mixed: Neumann for the material bound-

aries (body, seabed and numerical control surfaces) and Dirichlet for the free-surface.
D0z¢p

integration of the free-surface elevation, we can get the partial time derivative of the

Since the material derivative is already calculated on the free-surface for the time



velocity potential using Eq. (@)

ngp
T
90y _ Docty 0 09,
ot Dt ot 0z

=0 in the fluid domain, D

on the free surface, I'ts : 2z = 19

82¢p 62¢0

=— X - h T 22
Y 3n3t+x n+q on the body, I'y (22)
8¢ & o

=— th bed, T’
ondt ondt Of Phe seabed, Ld
0%¢ :

= on the numerical tank walls, T",
onot

where X is the acceleration vectors in translation of the node considered and ¢ represents
advection due to the motion of the body. Two different expressions for ¢ have been
derived by Cointe @] and Tanizawa Hﬁ] by developing the Neumann condition on moving
boundaries using two different kinds of acceleration: respectively, acceleration of the body
and acceleration of a fluid particle sliding on the body. The two expression were shown
to be equivalent in @] and a new expression, unifying them, is recalled here:

g = (Q-s1) (g—¢ —2(x- sz)> — (92 -s2) (%ﬁ —2(x- S1)—>

) (35 ) ) ()
roen (55 + 55+ () 5) @)

where s; and sy are the local coordinate vectors and (R, R2) denote the local curvature
along the respective local vectors.

2.3.3. Implicit method

As seen in the previous sections, solution of the equations of motion depends on
the calculation of the hydrodynamic force (Eq. (I7)), which in turn depends on the
calculation of the velocity potential time derivative that is found by solving the solution
of the second BVP (Eq. (22)). However, the body boundary condition of this BVP
requires knowledge of the acceleration of the body. This leads to an implicit problem,
which can be solved using the Implicit method introduced by Tanizawa ﬂﬂ] and Van

Daalen “ﬂ] for this purpose. The BVP is extended to include the equations of motion
and hydrodynamic force calculation, which are then solved simultaneously. % and ad’
on the body are then solutions of this extended BVP, as is the body motion.

Several other methods have been proposed, including the 1nd1rect method, the mode
decomposition method, and the iterative method seegiﬁ The Implicit method
requires solving only one additional BVP, compared to up to six for the other methods.

Thus, it is expected to be more computationally efficient.

10



3. NUMERICAL IMPLEMENTATION

3.1. Solution of the BIE

The collocation method is used to solve the BVP. The BIE is thus applied to a set
of nodes, x;, on the boundaries. For given elements j and a field point [, the BIE can be
decomposed into two integrals:

I,i(x) = S//%(xl)G(x,xl)df (24)

T = [ [ ot X ar )
Sj

T3

v Cj

X1 u T2
Figure 5: Linear discretization on an element S; = (z1, 22, x3): definition of the variables v and v

Linear triangular elements are used, via an isoparametric parametrization, describing
both the geometry and the spatial variation of the unknowns (see Fig 0.

fix) = fi(x1) +ulf(x2) = fi(x1)) + o(fj(xs) = fi(x1))
= fikxa) + Vs(f) - x5 (26)
where x¢ is the position vector of the center of gravity G of the element S; =
X1XoX3), I's = X — X@g; and V,(f;) represents the surface gradient of f;, which can be
j j j 8 J

calculated from the derivatives of f; along v and v. C; is the contour of the element.
Using this discretization, the two integrals can be written as (see AppendixA):

folo}
Lx) = |a / / G, x)dl’ — % SIE %(xz) (27)
S; j on

i
_ X x _ ¢(x1)
I,,(x)= A// %df - j{G(X, xX)rAdl | Z| - | o(x2) (28)
s; ¢ ¢(x3)

11



- - [ fx)
+ xgx - ¥ and ¥ is an operator such that ¥ - | f(x2) | = Vs(f)-
f(x3)

Analytical solutions for the surface integrals have been given by Guevel “ﬁ] Analytic
solutions for the contour integrals with Rankine sources were obtained by considering the
contributions of each edge of the triangular panel (see AppendixA).

To calculate influence coefficients in cases where the field point is far from the in-
fluencing panel, asymptotic solutions for each integral have been developed to speed up
calculations ﬂﬁ]

The BIE applied to the set of nodes, with the collocation methods, results in the
following linear system to solve, for a point ¢ on the boundary:

where Z =

oI~

Gij0(j) = Hijon(j) (29)

where ¢ and ¢, are the velocity potential and normal velocity vectors. The matrix

G includes all integrals of Green’s function (Eq. (27))), as well as the solid angle terms

along the diagonal, and H includes all integrals of the normal derivative of Green’s

function (Eq. ([28)). These matrices are called influence matrices. The iterative method

GMRES (Generalized Minimal RESsidual method) @] is used to solve the resulting
system efficiently.

Some of the vertices may be located at an intersection between surfaces with non-
continuous normal vectors (for instance, vertices at the intersection of the free surface
and the body surface, or on sharp corners for non-smooth body geometries). They require
special treatment, to take into account the different conditions (Dirichlet/Neumann or
different normal velocity and normal definition). All the boundary conditions on these
particular points are applied by duplicating nodes. For a given geometrical location,
several boundary conditions are enforced, to arrive at different solutions.

The continuity of the potential at the intersection is checked to ensure the validity of
the BVP solution.

3.2. Code acceleration

Three techniques have been developed to reduce the number of unknowns in the
calculation of the influence matrices (and hence the calculation time): partial calculation
of the influence matrices; symmetries; and open domain.

e Partial calculation involves calculating the influence matrices only on sub-domains
that have changed during the previous time step. A fixed boundary during the
simulation does not need to have its auto-influence matrices updated at each time
step.

e Two symmetries are implemented, one vertical along the (xOz) plane, and the
other horizontal on the bottom (for flat sea bottoms). The two symmetries can be
used concurrently. By cutting the number of mesh elements by a factor two, the
calculation time for the influence coefficients is also cut by a factor of two, whilst
the calculation time for solving the linear system is cut by a factor four.

12



e Simulations in open domain are also possible, by considering numerical control
surfaces to be sufficiently far from the body, so that the perturbation dies out
before reaching these boundaries. A classic numerical beach is used to enforce this
last condition.

More details concerning these features can be found in @]

3.3. Numerical beach

We implemented a classic numerical beach @], based on elongation of the elements
on the free surface and the addition of virtual pressure terms in the free surface equations.
For the fully nonlinear free surface equations, for example, the method yields:

0¢ 1
i —977—§V<75'V¢+V¢
p 96 (30)
ar _ 9P ys.
ot 0z V- Vit
For circular domains, the damping variable v varies as
v(r) = )
T - aw )\ T = T'O - e (31)
vir) = 0 r <Trp

«a and [ are parameters that adjust the virtual pressure loads and the width of the
numerical beach to the perturbation, respectively, and R, is the external radius delimiting
the free surface in the horizontal plane. a = 0.7 and 8 ~ 1 were found to be optimal.

3.4. Local derivative calculations

Spatial derivatives are present in the free surface equation, but also in the g-term of
the body condition for the time derivative of the velocity potential BVP (Eq. (23])). The
second-order derivatives are also required in this calculation. The local derivatives given
by the linear discretization are constant on each element, requiring a special scheme
for the evaluation of the second-order derivatives. Following M], a higher order B-
Splines approximation has been implemented, allowing easy calculation of the first- and
second-order local derivatives as well as better precision than achieved by the linear
discretization, resulting in a low CPU-time cost. Virtual nodes are used to cope with
discontinuities in the plane of symmetry.

3.5. Time Integration

A fourth-order Runge-Kutta scheme with a constant time step is used for time-
marching . The velocity potential and wave elevation on the free surface are advanced in
time using equations Eq. (8) and Eq. ([@). The body position and velocity are advanced
simultaneously using the body motion equation Eq. (I7). The algorithm implies the
solution of the BVP for four different mesh configurations during each time step. This
theoretically leads to four calculations of the influence matrices.

13



In practice, it has been observed that it is possible to keep the geometry (free surface
and body) during the four substeps of the RK4. This is referred to as geometry-locked-
RK4 [13], and results in only one calculation of the influence matrices per time-step.
A time convergence of the normal and geometry-locked-RK4 showed that, for a given
accuracy, the geometry-locked-RK4 leads to a significant reduction in computational
time. Thus, the modified scheme is used in the following.

4. Validation : simulation of a submerged heaving WEC

In this section, the results of the CN_WSC for free-body motions are verified at
first in linear conditions (i.e. small amplitudes of body motion and wave steepness).
Linear potential flow theory is used as a reference, thanks to the open source software
Nemoh ] Subsequently, nonlinear conditions (i.e. large amplitudes of body motion
and wave steepness) are studied and differences with linear theory are highlighted. The
stiffness of the power take-off is tuned to the wave excitation, to obtain a mechanical
resonance. A Fourier analysis is applied to the motion time history, and the mean
absorbed power is calculated on several periods of the wave excitation, once the steady
state is obtained. Using this methodology, we can obtain normalized responses for the
motion and absorbed power for a set of frequencies. These normalized responses can be
compared to the linear solutions, i.e. the response amplitude operator (RAQO). The limits
of the WS approximation are also inspected, with respect to the underlying assumptions.

4.1. WEC description

The submerged heaving WEC (SHWEC) that served as the model for this section
is the Ceto WEC, designed by Carnegie Wave Energy Limited HE] This WEC consists
of a heaving submerged buoy, moored at the seabed. Here we consider a simplified,
neutrally buoyant spherical buoy (see Fig. [0 with a spring-linear damping system to
model the mooring and power take-off (PTO). The dimensions are: radius a = 3.5 m,
mean immersion d = 2a = 7 m, depth H = 20 m. The spring specifications, Kpro and
lp, are optimized to adjust the body response to the wave input, A, and w. In order
to obtain resonant motions, the spring constant is set to Kpro = (M + pg3)w?, with
i3s3 given by the linear solution. Linear Power Take-Off (PTO) damping is taken into
account. The instantaneous power and energy absorbed by the PTO are:

Ppro(t) = BproV(t)?
¢ (32)
Epro (t) = {PPTO (T)dT

14
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Figure 6: diagram of the SHWEC and its geometrical characteristics

The mean absorbed power P,,, capture width Cy and efficiency 7y, along with the wave
energy flux J for a regular wave, are defined as

Epro Pg* 1o 2kh
= = —A*Ttanh(kh) |1+ ———
Fab . ! g AT tanh(kh) \ 1+ oy ) Wim
Pabs C
Cw = m _ SW
J m %

(33)
The numerical tank consists in a cylindrical and regular domain, centered around
the body, see Figlll Vertical and bottom symmetries are used to reduce the numbers
of nodes. The radius of the numerical domain varies according to the incident wave
length, Rpem = 3A with a numerical absorbing beach radius of one wave length. Based
on successful mesh and time convergence studies, the time and space discretisation was
chosen such that dt = T'/100 and dr = A/20 or dr = 0.5m for large A, dr being the size
of the smallest elements of the mesh (on the body and on the free surface close to the
body).

4.2. Linear conditions

The incident wave considered is a small amplitude regular wave, in order to allow
comparisons with linear theory. The wave parameters (angular frequency w, period T,
length A\, amplitude A, and steepness € = kA,,) are given in Table [
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Figure 7: Representation of the numerical domain for the SHWEC

w(rad/s) | T (s) | A (m) | A, (m) | € (%)
1.7 3.7 21.3 0.001 0.03

Table 1: Wave parameters in linear conditions

The small wave amplitude ensures linear conditions: the wave steepness is very small,
as is the body motion response, despite the fact that the value of the spring constant
was chosen to achieve mechanical resonance, Kpro = 7.4 10° N /m.

Initially, the PTO damping, Bpro, was set to zero, in order to check the radiation
damping of the body. The linear and WS solutions of the body heaving motion are
plotted in Fig. 8

Heave motion
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N
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_7.002 | | | | | | |
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Figure 8: Linear and WS heave motion responses, in linear conditions (w = 1.7 rad/s, A, = 0.001 m,
kpro = 7.410° N/m, Bpro = 0 kg/s)
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Figure 9: Added Mass and Radiation Damping in Heave for the SHWEC, given by the linear potential
flow theory.

Excellent agreement between the linear and WS solutions is observed. Harmonic
analysis could not be performed, since the steady state was not achieved due to the small
damping. Nevertheless, the agreement validates the implementation of the equations in
the WS code.

The PTO damping was then set to Bpro = 5.10* kg/s, while keeping all other
parameters constant. This value is approximately twice the maximum of the radiation
damping of the SHWEC, see Fig.[0l A steady state was achieved after approximately five
wave periods. In addition to heave motion, the accumulated absorbed energy through
the PTO is plotted both for the linear and WS solutions in Fig. [0

As for the previous case, good agreement between linear and WS solutions was ob-
tained in linear conditions. A small accumulated error in the absorbed energy can be
observed, which leads to an offset between the two solutions. It is believed that this is due
to the different starting procedures in the two numerical approaches or an accumulated
numerical error.

The mean absorbed power, capture width and WEC efficiency were calculated on the
three periods after the steady state was reached and compared in Table 2 The wave
energy flux per unit length of wave front related to this incident wave is J = 0.014 W /m.

The relative errors in the WEC performance values between the linear and WS results
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Figure 10: Linear and WS heave motion and absorbed energy, in linear conditions (w = 1.7 rad/s,
A, = 0.001 m, kpro = 7.410° N/m, Bpro = 5.10* kg/s)

P (W) By (m) m (%)
Linear Theory | 0.0369 2.61 37.3
CN_WS§S 0.0367 2.59 37.0

Table 2: Mean absorbed power, capture width and WEC efficiency given by the linear and WS solutions,
in linear conditions

are less than 1% validating the implementation of the wave-body motion coupling in the
WS code.

The body motion and power output responses were then considered for a set of
incident wave angular frequencies, ranging from 0.4 to 2 rad/s. The wave amplitude and
PTO damping were kept constant (A, = 0.001 m, Bpro = 5.10* kg/s, respectively).
The stiffness constant was tuned for each frequency in order to achieve resonance. The
body is meshed using approximately 2000 nodes and the free surface between 1000 and
1600 nodes, depending of the incident wavelength. The resulting computational time per
wave period is Topy /T ~ 800. The geometrical error on the body, due to the meshing, is
below 1%. The body motion and power output responses are shown for the two solutions
in Fig. [0l The maximum recoverable power for an axisymmetric absorber in heave J/k
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is also plotted for comparison.

Heave Motion Response

25 ) T T T
. T o~ Zen_ws
26 ——Z{near Theory | |
.15
3
<
NoL
05
0 I I I I I I
0.6 0.8 1 1.2 1.4 1.6 1.8 2
circular frequency (rad/s)
5 %10° Absorbed power RAO
T T T
——JI(kA?)
o L5 e—Pen_ws =
E Puneav Theory
=
o3 1
<
2
<
& o5
L
0 I I I I I I

0.6 0.8 1 1.2 1.4 1.6 1.8 2
circular frequency (rad/s)

Figure 11: SHWEC motion and power output responses, in linear conditions (A, = 0.001 m, Bpro =
5.10% kg/s, the stiffness Kpro is tuned to adjust the natural frequency to the wave excitation).

Perfect agreement can also be observed between the linear and WS results across the
whole range of frequencies. This validates the WS model.

4.83. Nonlinear conditions

With the WS code, two different kinds of nonlinearity can be taken into account and
studied. The first relates to the change in body geometry and position relative to the
free surface. The second relates to the steepness of the incident wave. These are usually
related, since large wave amplitudes lead to large body motions, and hence it is difficult
to quantify the effect of one nonlinearity as distinct from the other. For this reason, we
first present the normalized responses in heave, and mean absorbed power, for the same
body parameters (radius ¢ = 3.5 m and submergence d = 7 m). The range of angular
frequencies is still 0.4 rad/s to 2 rad/s, but the wave amplitude is now equals to 0.85 m;
it follows that the wave steepness ranges from 2.6% to 31%. Similar PTO parameters
are used: the stiffness is tuned to achieve resonance with the wave frequency, while the
damping is kept constant at Bpro = 5.10* kg/s.

The domain is meshed the same way as in linear conditions : with 2000 nodes on
the body and between 1000 and 1600 on the free surface depending on the incident
wavelength.

The linear and WS results show significant differences in these nonlinear conditions.
These discrepancies are most notable on two ranges of angular frequency. The first is fre-
quencies greater than 1.3 rad/s, i.e. wave steepness greater than 20%. These differences
are thus related to the incident wave nonlinearities that are taken into account in the
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Figure 12: SHWEC motion and power output normalized responses, in nonlinear conditions (A, =
0.85 m, Bpro = 5.10* kg/s and stiffness tuned to adjust the natural frequency to the wave excitation)

WS approximation. With a constant PTO damping for all the frequencies, the lowest
normalized response in heave are obtained for this range of frequencies. An interesting
result is that linear theory tends to underestimate up to 15% the RAO in heave and
30% the mean absorbed power, compared to the WS approximation, for this range of
frequencies. However, with a PTO damping tuned for each frequency, we should be able
to get the maximum recoverable energy (J/k) with both linear and WS approximation.
The discrepancies between linear and WS solutions are then expected to be smaller in
this condition.

The second range of frequencies is between 0.8 rad/s and 1.3 rad/s. The wave steep-
ness in this case is lower than 15%, which means there are fewer wave nonlinearities.
In contrast, with the RAO in heave exceeding 2, body nonlinearities are important.
The implication is that the RAO in heave, and thus mean absorbed power, tend to be
overestimated by linear theory, up to 4.5% and 9% respectively.

Since higher performance is achieved in this second range of frequencies, the WEC
will be designed to work mainly in this range, leading to an overestimation of the perfor-
mance of the WEC by the linear theory. However, this is dependent on the geometrical
parameters of the body: the nonlinearities related to large wave amplitude and large
motion responses are not always as distinct as here. This decoupling in our case allows
us to study the two kind of non linearities separately.

4.3.1. Motion nonlinearities

Motion nonlinearities are studied first, for the angular frequency giving the highest
motion response. The wave characteristics and PTO parameters are given in Table B
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w (rad/s) | T (s)

Ay, (m)

e (%)

kao (N/m)

Bpro (kg/s)

1 6.3

1

13%

3.10°

5.10%

Table 3: Wave and PTO parameters producing the highest motion response
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Figure 13: Linear, and WS heave motion, force responses, in a large motion case (w = 1rad/s, A, = 1 m,

kpro = 3.10° N/m, Bpro = 5.10* kg/s)

The linear condition of small motions is not respected: by the end of the simulation,
the motion amplitude reaches up to 2 m (50% of the buoy radius a). This results in
clear differences between the two approaches: the steady state response amplitude is
overestimated by linear theory. Nonlinearities are also visible in the hydrodynamic force.
When the body moves close to the free surface, the peaks are deformed in comparison
with the linear solution. This arises from a local modification of the radiation damping,
leading to a small phase shift for a short time. When the body moves further from the
free surface, the radiation damping, and thus the phase shift, return to their mean value.
These nonlinearities are thus completely related to the nonlinearities in the body position
rather than the large wave amplitude.

These nonlinearities affect the mean absorbed power significantly. Table dlsummarizes
the different quantities related to energy absorption, calculated in the same manner as in
linear conditions, for the linear and WS approximations. For the incident wave chosen,
the wave energy flux is J = 24.1 kW /m.

The differences between the two numerical approaches in their calculation of mean
absorbed power, and thus also capture width and capture width ratio, are substantial:

21



Paps (kW) | By (m) | m (%) | tepu/T
Linear Theory 107 4.44 63 <1
CN_WS 93 3.85 55 700

Table 4: Mean absorbed power, capture width and efficiency, for the linear and WS approximations, in
a large motion case (w = 1 rad/s, A, = 1 m, kpro = 3.10° N/m, Bpro = 5.10* kg/s)

linear theory, which does not take into account the large body motion, overestimates
the performance of the WEC, yielding results that exceed those produced by the WS
approximation by nearly 15%.

This large wave amplitude, however, pushes our WS flow solver to its limit: the body
is almost reaching the free surface. More importantly, the validity of the WS assumption
needs to be checked. The incident and perturbation components of the wave elevation
are thus plotted in Fig. 4] for a point on the free surface and above the sphere center.
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Figure 14: Incident and perturbation wave elevation, above the SHWEC gravity center, in a large
motion case (w =1 rad/s, A, =1 m, kpro = 3.10° N/m, Bpro = 5.10* kg/s)

The total wave elevation is similar to the incident wave elevation, but demonstrates
more nonlinearities (higher peaks, flatter troughs and some higher order components).
These differences, which arise from from the perturbation component, are relatively small
compared to the incident wave elevation. They are related to the emission of small
waves, when the body comes close to the free surface. These waves die out quickly, and
hence their maximum amplitude occurs directly above the sphere - which is where the
data plotted in Figure [[4] were recorded. The WS condition that the perturbation wave
elevation should be small compared to the incident wave elevation is not fulfilled in this
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specific case. However this hypothesis is also a condition of linear theory, which further
requires that amplitude of motion should be small, which is also not the case here. The

WS approximation is thus likely to present more accurate physical results than the linear
theory.

4.8.2. Wave nonlinearities

Next, we investigated wave nonlinearities, i.e. waves with large steepness and rela-
tively small body motion response. The wave characteristics and PTO parameters chosen
are given in Table Bl The mean immersion is decreased to d = 5 m, in order to increase

w (rad/s)

T (s)

A (m)

A, (m)

e (%)

kpro (N/m)

Bpro (kg/s)

d (m)

2

3.14

17

0.85

31%

9.5.10°

5.10%

5

Table 5: Wave and PTO parameters in steep waves

the influence of the nonlinearities from the wave.
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Figure 15: Linear, WS heave motion, force, in a steep wave case (w = 2 rad/s, A, = 0.85 m, kpro =
9.510° N/m, Bpro = 5.10* kg/s, d = 5 m)

The linear, WS solutions of the response in heave motion and diffraction-radiation
forces are plotted in Fig.[I3l The small amplitude motion response assumption is valid in
this case: the heave motion maximum amplitude is 0.5 m (0.15a). However, the incident
wave approximation differs between the two methods. This is clearly visible in the force
response, where the WS solution features higher peaks and flatter troughs than the linear
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solution. The Froude-Krylov force, not plotted, displays similar differences between the
two solutions. This directly affects the motion response (smaller for the linear theory)

and hence the absorbed energy.
Table [6]l summarizes the different quantities related to the energy absorption, calcu-

lated in the same manner as in linear conditions, for the two approximations. For the

selected incident wave, the wave energy flux is J = 8.7 kW /m.

Paps (kW) | By (m) | m (%) | tepu/T
Linear Theory 19.7 2.27 32 <1
CN_WS 25.3 2.91 42 800

Table 6: Mean absorbed power, capture width and efficiency, for the linear and WS approximation, in
a steep wave case (w = 2 rad/s, A, = 0.85 m, kpro = 9.510° N/m, Bpro = 5.10* kg/s, d = 5 m)

Linear theory, which does not take into account nonlinear waves, predicts lower per-

formance in steep waves. This result is unexpected.

Again it is important to study the validity of the WS hypothesis in this case. To
this end, the incident and perturbation wave elevations are plotted in Fig. [[6] where the
diffraction is the largest, approximately one wave length after the SHWEC. The linear
incident wave elevation, used in linear theory, is also plotted to illustrate differences

arising from the incident wave model.
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Figure 16: Incident (linear and nonlinear) and perturbation wave elevations, one wave length after the
SHWEC, in a steep wave case (w = 2 rad/s, A, = 0.85 m, kpro = 9.510° N/m, Bpro = 5.10* kg/s,

d =5 m)
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Figure 17: Diagram of the SOWSC and its geometrical characteristics

After a few periods, the perturbation wave elevation is locally almost as large as the
incident wave elevation. The total wave (sum of incident and perturbation) is a larger but
steeper wave, which is highly likely to break. This phenomenon is related to the emission
of small waves due to the diffraction, when the body is close to the free surface. In this
case, the fundamental assumption of WS -that the perturbation is small compared to the
incident wave elevation - is not respected. However, again, this is also an assumption of
linear theory, which further requires the incident wave to be linear (small steepness), a
condition that is not fulfilled either.

Thus the validity of the WS hypothesis must be questioned. However, by taking into
account nonlinearities, it at least offers a better model of the physics than linear theory.

5. Application to a submerged oscillating wave surge converter

5.1. WEC description

The submerged oscillating wave surge converter (SOWSC) that served as inspiration
for this section is the WaveRoller WEC, developed by AW-Energy ] Located near-
shore (8-20m depth), it consists of a flap attached to the seabed along one edge. This
edge becomes an axis around which the flap rotates in a back and forth motion under
the influence of the wave surge. A half-scale device was installed in open sea in 2007. An
array of three prototypes was deployed in Portugal in 2009.
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The PTO of the device is modeled here in its simplest form, as in the previous case,
using a linear model including stiffness and damping terms. The shape and dimensions
of the device are informed by the latest design, see Fig.[[7and Table[ll The water depth
is H=9 m.

height (m) | width (m) | thickness (m) | rotation center (m) | immersion (m)
=6 a=4 b=1 c=2.5 d=5

Table 7: SOWSC geometrical characteristics

As for the Ceto, the PTO specifications, spring stiffness and damping coefficient, are
chosen in such a way as to achieve both resonance for each wave frequency Kprp =
(Is5 + us5)w? and a short transient response (< 8T'). The added inertia pss5, required for
estimation of the resonance frequency, is given by the linear model.

The PTO damping also being linear, the instantaneous power is simply given by:

Ppro(t) = Bpro X é(t)2 (34)

The numerical tank is similar to that used for the SHWEC case (see FiglI8]). Mesh and
time convergence studies showed no difference to the SHWEC case, so the same time and
space parameters are used. The body and free surface are meshed using approximately

1200 and 1800 nodes respectively, leading to a mean computational time per wave period
of TCPU/T = 600.

Figure 18: Representation of the numerical domain for the SOWSC

5.2. Linear conditions

The first case considered is small amplitude incident waves. The motion and power
responses are calculated for frequencies ranging from w = 0.42 to 2 rad/s, with a wave
amplitude A, = 0.001 m. The wave steepness, ¢ = kA, is thus less than 0.04% for all
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frequencies. The motion and power responses are calculated using a Fourier analysis and
plotted in Fig.
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Figure 19: SOWSC Motion and power responses, in linear wave conditions (A, = 0.001 m, Bpro =
5.10* kg.m2/s, the stiffness Kpro is tuned to adjust the natural frequency to the wave excitation)

The motion and power responses show excellent agreement between WS and linear
results in linear conditions; for the power response, the difference is less than 1%.

5.3. Nonlinear conditions

To compare the methods under nonlinear conditions, the wave amplitude was then set
to A, = 0.5 m, causing the wave steepness to vary in the range 3.4% to 20.4%. Again,
the motion and power responses were predicted for the two numerical approaches, as
depicted in Fig.

Significant differences between the two approaches are now observed: at its peak, the
power response predicted by the linear approach is nearly 200% that predicted by the
WS approach. Since the angular motion RAO ranges between 0.5 to 1.5 rad/m, with a
wave amplitude of A, = 0.5 m, it follows that the total angular compass of the flap is
between 10 to 40°, while the trajectory of the top of the flap ranges from 1.4 m to 4.1 m.
These motions are large compared to the dimensions of the flap, leading to nonlinearities
that are not taken into account by the linear model. Some of these nonlinearities are a
consequence of the small depth that is a characteristic of the SOWSC; however, the large
amplitude motion seems to be the predominant source of nonlinearities in this case.

Since linear theory does not take into account these important body motion nonlin-
earities, linear theory overestimates energy performance for this type of WEC. However,
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Figure 20: SOWSC Motion and power responses, in nonlinear conditions( A, = 0.5 m, Bpro =
5.10% kg.m2/s, the stiffness Kpro is tuned to adjust the natural frequency to the wave excitation)

it may be that this is highly dependent on the choice of PTO stiffness (that was tuned
in this study in order to achieve resonance for each incident wave frequency).

The validity of the WS assumption is checked in Fig. RI], for w = 0.8 rad/s. Pertur-
bation waves emitted from the body can become as large as the incident wave, primarily
because of the large body motions. In fact it is possible to observe two peaks per pe-
riod, related to the body approaching the free surface twice per cycle. The total wave
elevation is still globally similar to the incident wave elevation, but demonstrates more
pronounced nonlinearities. Hence, the assumption of WS, that the perturbation should
be small compared to the incident wave elevation, might not be fulfilled locally. How-
ever, again, this is also an assumption of the linear theory, which further requires the
amplitude of motion and the steepness of the incident wave to be small - conditions that
are not fulfilled in this case either. Thus, the accuracy of the model provided by the WS
approximation is expected to be better than the linear theory.

For OWSC, it is well known that linear theory over-predicts the energy performance
in comparison to experiment. The difference is usually attributed to viscous damping
and vortex shedding. Our study shows that nonlinear effects due to large amplitude body
motion are responsible for a large share of the power reduction. Further work is required
to clarify which mechanisms are the most important (vortex shedding or nonlinear effects
due to large body motion).
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Figure 21: Incident and perturbation wave elevation, above the SOWSC, for w = 0.8 rad/s, A, = 0.5 m

6. CONCLUSIONS

A new flow solver based on the WS method has been developed to model the partic-
ular characteristics of various WECs. Details of the implementation of the method are
reported in this paper. For studying free moving bodies, the equations of motion have
been integrated into the BVP of the time derivative of the velocity potential, following
the Implicit Condition method. An alternative expression, developed in [29], was used
for the body condition of this BVP, unifying the two expressions given by Cointe @] and
Tanizawa [27]. The WS code has been verified for a Submerged Heaving Wave Energy
Converter (SHWEC) and a Submerged Oscillating Wave Surge Converter (SOWSC) by
comparing numerical simulations in linear conditions against results from linear theory.
Time traces of the motion response and hydrodynamic forces have shown excellent agree-
ment for different excitation frequencies, with or without PTO damping. The motion
and power responses for a wide range of frequencies have then been studied, using a
Fourier analysis. The differences between the two models have been shown to be smaller
than 1% in both cases.

Moving to nonlinear conditions, with large body motions and large incident wave
steepness, significant differences are observed between linear theory and the WS method.
For large body motions, linear theory tends to overestimate the motion and power re-
sponses, up to 200% for the SOWSC. In contrast, linear theory underestimates the re-
sponse in the presence of nonlinearities related to steep incident waves. In comparisons
of linear theory to nonlinear models, overestimation is more commonly cited than under-
estimation. In the former case, the range of frequencies over which the overestimation is
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observed is close to the operating frequencies of the WEC, for which the power response
is maximum. These differences show that body nonlinearities may have a significant
impact on the performance of WEC. Thus, in Wave to Wire models of WECs, it may
be beneficial to use the WS method or at least the body exact theory method, rather
than linear theory alone. For the two nonlinear cases, the cpu time for the WS code was
two orders of magnitude greater than the real time simulated (w ~ 800), with
T = 6.3s and 3.14s respectively. The WS code can still yield the RAO for a set of 70
frequencies in a reasonable cpu time. Of course, computational time is greatly reduced
with linear potential theory. With the open source linear BEM code, Nemoh, it takes a
few minutes to calculate the entire database of first-order coefficients for a typical mesh
size of a few hundred panels, and less than a second to simulate the response for one
wave period in the time domain. The computational time for the CN_WSC was also
compared to that of a fully nonlinear numerical wave tank, in ﬂﬁ] It was found that the
CN_WSC is roughly one order of magnitude faster than the fully nonlinear numerical
wave tank.

It has also been shown that the assumptions of the WS method should be verified a
posteriori. Certainly, large amplitude motion may lead to large perturbations. However,
although the WS method may not be valid from time to time due to the local deforma-
tion of the incident wave, its results are still expected to be more realistic in nonlinear
conditions when compared with results from linear theory. Nevertheless, complementary
studies comparing these results with fully nonlinear solvers or experiments may be re-
quired to assess the validity of the CN_WSC. Dissipation due to viscosity and turbulent
flows are not modelled in potential flow theory. These phenomena could have a signif-
icant impact on the performance of WECs with large amplitude motion, particularly
OCN_WSCs “ﬁ] It is thus important to compare the results of the numerical mod-
els with experiments, in order to quantify the main sources of performance reduction:
nonlinearities related to large body motion, or dissipation due to viscous effects.

In this work, only submerged WECs were considered. Future work will consider
floating bodies. This will require development of methods for tracking and updating
the waterline and automatic remeshing of the free surface. For considering irregular
waves, it may be interesting to couple the CN_ WSC with a High Order Spectral (HOS)
wave propagation model [32]. Coupling with a multi-body dynamic algorithm may also
be required to deal with WECs composed of multiple bodies with complex kinematic
relationships. An extension to fully nonlinear theory is also possible, exploiting the past
experience of the laboratory in this domain , , , ] Finally, the CN_WSC has
not yet been parallelized, which has the potential to greatly reduce the computational
time.

7. ACKNOWLEDGMENT

The authors would like to thank the French ANR, (Agence Nationale de la Recherche)
for their financial support of this work as part of the project ANR11-MONU-018-01
MONACOREV.

30



BIBLIOGRAPHY

[1] A. Falcao, Wave energy utilization: A review of the technologies, Renewable and
Sustainable Energy Reviews 14 (3) (2010) 899-918.

[2] P. Ricci, J. Saulnier, F. Antonio, M. Pontes, Time domain models and wave energy
converters performance assessment, in: ASME 27th International Conference on
Offshore Mechanics and Artic Engineering, Estoril, Portugal, 699—-708, 2008.

[3] A. McCabe, An appraisal of a range of fluid modelling software, Supergen Marine
Workpackage 2 (October) (2004) 84.

[4] M. Folley, T. W. T. Whittaker, J. V. Hoff, The design of small seabed-mounted
bottom-hinged wave energy converters, in: 7th European Wave and Tidal Energy
Conference, Porto, Portugal, 10, 2007.

[5] A. Day, A. Babarit, A. Fontaine, Y.-P. He, M. Kraskowski, M. Murai, I. Pene-
sis, F. Salvatore, H.-K. Shin, Hydrodynamic modelling of marine renewable energy
devices: A state of the art review, Ocean Engineering 108 (2015) 46 — 69.

[6] J. Falnes, Ocean Waves and Oscillating Systems : Linear interaction including wave
energy extraction., Cambridge University Press, 2002.

[7] M. Durand, A. Babarit, B. Pettinotti, O. Quillard, J. Toularastel, A. H. Clément,
Experimental validation of the performances of the SEAREV Wave Energy Con-
verter with real time latching control, in: 7th European Wave and Tidal Energy
Conference, Porto, Portugal, 8, 2007.

[8] A. Babarit, H. Mouslim, A. H. Clément, P. Laporte-weywada, On the Numerical
Modelling of the Non Linear Behaviour of a Wave Energy Converter, in: ASME 2009
28th International Conference on Ocean, Offshore and Arctic Engineering, American
Society of Mechanical Engineers, Honolulu, Hawaii, USA, 1045-1053, 2009.

[9] J. S. Pawlowski, A Non-linear Theory of Ship Motion in Waves, Society of Naval
Architects and marine Engineers 99 (1991) 319-352.

[10] Carnegie Wave Energy, CETO Commercial Scale Unit Overview, URL
Availableat:http://www.carnegiewave.com/index.php, 2013.

[11] AW-Energy, WaveRoller  concept, plug into wave energy, URL
http://aw-energy.com/about-waveroller/waveroller-concept) 2015.

[12] M. S. Longuet-Higgins, E. D. Cokelet, The Deformation of Steep Surface Waves on
Water. I. A Numerical Method of Computation, Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 350 (1660) (1976) 1 —26.

[13] P. Ferrant, Three-dimensional unsteady wave-body interactions by a Rankine bound-
ary element method, Ship Technology Research 40 (4) (1993) 165-175.

31


Available at: http://www. carnegiewave. com/index. php
http://aw-energy.com/about-waveroller/waveroller-concept

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Grilli, P. Guyenne, F. Dias, A fully non-linear model for three-dimensional over-
turning waves over an arbitrary bottom, International Journal for Numerical Meth-
ods in Fluids 35 (2001) 829 — 867.

W. Koo, M.-H. Kim, Freely floating-body simulation by a 2D fully nonlinear numer-
ical wave tank, Ocean Engineering 31 (16) (2004) 2011-2046.

P. Ferrant, Fully Non-Linear Interactions of Long-Crested Wave Packets with a
Three -Dimensional Body, in: 22nd ONR Symposium on Naval Hydrodynamics,
403-415, 1998.

K. Tanizawa, The state of the art on numerical wave tank, in: 4th Osaka colloquium
on seakeeping performance ships, 95114, 2000.

Y.-L. Shao, O. M. Faltinsen, A harmonic polynomial cell (HPC) method for 3D
Laplace equation with application in marine hydrodynamics, Journal of Computa-
tional Physics 274 (2014) 312-332.

C. Fochesato, F. Dias, A fast method for nonlinear three-dimensional free-surface
waves, Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 462 (2073) (2006) 2715-2735.

Y. Huang, Nonlinear ship motions by a Rankine panel method, Ph.D. thesis, Mas-
sachussets Institute of Technology, 1997.

W. Lin, M. Meinhold, N. Salvesen, D. K. P. Yue, Large-amplitude ship motions
and wave loads for ship design, in: 20th Symposium on Naval Hydrodynamics,
California, USA, 10, 1994.

K.-H. Kim, Y. Kim, Time-Domain Analysis of Nonlinear Ship Motion Responses
Based on Weak-scatterer Hypothesis, in: 19th International Offshore and Polar
Engineering Conference, vol. 1, Osaka, Japan, 583-589, 2009.

P. Ferrant, Radiation and Diffraction of Nonlinear Waves in Three Dimensions, in:
the BOSS’94 Conference, Massachussets Institute of Technology, 1994.

B. Biichmann, P. Ferrant, J. Skourup, Runup on a Body in Waves and Current.
Fully Non-Linear and Finite Order Calculations, Applied Ocean Research 22 (6)
(2000) 349-360.

P. Ferrant, Analytical expressions of the influence coefficients of linear isoparametric
triangular elements, personal notes, 1989.

L. Letournel, J. C. Harris, P. Ferrant, G. Ducrozet, M. Benoit, E. Dombre, Compar-
ison of fully nonlinear and weakly nonlinear potential flow solvers, in: ASME 2014
33rd International Conference on Ocean, Offshore and Arctic Engineering, American
Society of Mechanical Engineers, San Francisco, California, USA, 10, 2014.

32



[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

K. Tanizawa, A Nonlinear Simulation Method of 3-D Body Motions in Waves (1st
Report), Journal of the Society of Naval Architects of Japan 1995 (178) (1995)
179-191.

R. Cointe, Quelques aspects de la simulation numérique d’un canal & houle, Ph.D.
thesis, Ecole Nationale des Ponts et Chaussées, 1989.

L. Letournel, G. Ducrozet, A. Babarit, P. Ferrant, Proof of the equivalence of
Tanizawa—Berkvens’ and Cointe—van Daalen’s formulations for the time derivative of
the velocity potential for non-linear potential flow solvers, Applied Ocean Research
63 (2017) 184-199.

J. Wehausen, E. Laitone, Surface Waves, Springer, 1960.

M. Rienecker, J. Fenton, A Fourier approximation method for steady water waves,
Journal of Fluid Mechanics 104 (1981) 119-137.

G. Ducrozet, F. Bonnefoy, D. Le Touzé, P. Ferrant, HOS-ocean: Open-source solver
for nonlinear waves in open ocean based on High-Order Spectral method, Computer
Physics Communications 203 (2016) 245-254.

R. Cointe, P. Geyer, B. King, B. Molin, M. Tramoni, Nonlinear and linear motions of

a rectangular barge in a perfect fluid, in: 18th Symposium on Naval Hydrodynamics,
Ann Arbor, MI, USA, 85, 1990.

E. F. G. van Daalen, Numerical and Theoretical Studies of Water Waves and Float-
ing Bodies, Ph.D. thesis, University of Twente, The Netherlands, 1993.

E. Guerber, Modélisation numérique des intéractions non-linéaires entre vagues et
structures immergées, appliquée a la simulation de systémes houlomoteurs, Ph.D.
thesis, Unversité Paris-Est, 2011.

E. Guerber, M. Benoit, S. T. Grilli, C. Buvat, A fully nonlinear implicit model for
wave interactions with submerged structures in forced or free motion, Engineering
Analysis with Boundary Elements 36 (7) (2012) 1151-1163, ISSN 09557997.

P. Guével, Corps solide animé d’un mouvement quelconque dans un fluide illimité,
Lecture Notes, Ecole Centrale de Nantes, 1976.

L. Letournel, Développement d’un outil de simulation numérique basé sur ’approche
Weak-Scatterer pour 1'étude des systémes houlomoteurs en grands mouvements,
Ph.D. thesis, Ecole Centrale de Nantes, 2015.

Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on scientific and statistical
computing 7 (3) (1986) 856-869.

33



[40] P. Ferrant, K. Pelletier, Second order wave diffraction patterns about complex off-
shore structures, in: The Tenth International Offshore and Polar Engineering Con-
ference, International Society of Offshore and Polar Engineers, 2000.

[41] A. Babarit, G. Delhommeau, Theoretical and numerical aspects of the open source
BEM solver NEMOH, in: 11th European Wave and Tidal Energy Conference
(EWTEC2015), Nantes, France, 10, 2015.

[42] M. A. Bhinder, A. Babarit, L. Gentaz, P. Ferrant, et al., Effect of viscous forces
on the performance of a surging wave energy converter, in: 22nd International Off-

shore and Polar Engineering Conference, International Society of Offshore and Polar
Engineers, 5, 2012.

[43] M. Bonnet, Equations intégrales et éléments frontiéres, CNRS Editions / Eyrolles,
1995.

34



AppendixA. Development of the integral equations with a linear discretiza-
tion

The two integral equations used for the solution of the boundary value problem are:

/ / a%(:;l)G(x,xl)dS (A1)

S
/ / ¢(xl)%&xl)ds (A.2)
S

The integrals can be evaluated by summing over each element of the fluid domain
boundary. The discretization, i.e. the variation of the quantities ¢ and % across one
element, is linear. Analytical expressions for the constant panel approximation have
been described previously by Guevel ﬂﬁ] The extension of these analytic expressions to a
piecewise linear approximation was described by Ferrant ], and implemented in , ]
In addition to the improvement in accuracy afforded by this piecewise linear method, the
scheme is especially efficient, in terms of the ratio between the number of unknowns and
the number of panels (typically close to 1:2). Higher order discretizations can provide
even greater accuracy, but rely on numerical solution, whose associated computational
times are higher than with the analytical calculations. The linear discretization was thus
chosen as a good trade-off between accuracy and computational time.

AppendizA.1. Discretization
The discretization is based on triangular elements, with quantities varying linearly
across the elements.

AppendizA.1.1. Parametric system

X3

X1 u X9
Figure A.22: Parameters
The following parameters are defined on each element, as seen in fig [A.22]
X=X +u X X1X2 + v X X1X3 (A.3)

This discretization is isoparametric : the parametric function f describes the geometry
and the variations in the quantities.

fx) = fx1) +ux (f(x2) = f(x1) +vx (f(x3) = f(x1))

= (I—u—v)xfx) +ux f(xz) +vx f(xs)

(A4)
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The centre of gravity of the element is located at (u,v) = (%, %), leading to:

X1 X2 X3
Xa = — 4+ =4 —

3 3 3
fixa) = $f0a)+3000)+ 5 /()

(A.5)

Since the function f varies linearly, its local derivatives are constant on the element. It

can then be expressed, using the surface gradient V,f, as:

f(x) = f(xg) + Vsf - xax

(A.6)

The surface gradient has a zero normal derivative, in contrast to the total gradient.

st:Vf—(Vf-n)n

AppendizA.1.2. Gradient expression

(A7)

The expression for the surface gradient requires the local derivatives of the function

f, along u and v:

0f (x)

fulx) = —38 = f(x2) = f(x1)
af(x
fo0 = 29 ) )
v
and the local derivatives of the parametric system:
ox
X,u = — = X1X2
U
X
X = % = X1X3

The metric tensor is then defined as:

” X1X2 H2 X1X2 * X1X3

X1X2 - X1X3 || X1X3 H2
and its inverse is:
1 | x1x3 |2 —xix2-x1X3
_ -1 _
9=9"= A 2
—X1X2 * X1X2 | x1x2 ||

where A = x3x2 |2 x || x1x3 ||? — (x1X2 - x1x3)*.
The gradient of the parametric function is then given by [43]:

_of ox 0x af 0x 0x of
Vf= oy X (9118u+91280> + 0 X <g218u +9228?}> + n X n
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from which it follows that the surface gradient is:

f(x2) — f(x1)

st = # X (H X1X3 H2 XX1X92 — X1X2 -X1X32)
(A.13)
x3) — f(x
+ W X (H X1X2 H2 XX1X3 —X1X22 . X1X3)
This can be expressed as a function of the values of f on the nodes:
[ )
Vef =% | f(x2) (A.14)
f(x3)
where _ 1
Y o= — —-(A+B) A B
L[ -a+B) A B]
A = H X1X3 H2 XX1X2 —X1X2 X1X32 (A15)
B = H X1X2 H2 XX1X3 — X1X22 - X1X3

AppendizA.2. Integral equation for the normal velocity

The integral I,(x,i) can be decomposed, for each field point x, on each element S;
of the fluid domain boundary. o refers to the single source distribution that generates

the normal velocity field %.
x ):// %G(X,xl)ds (A.16)
S

The linear variation of the source distribution can be written for a point x; € S; as:
o(x;) = o(xg) + Vso - xgx1 (A.17)

The center of gravity, x¢, and the surface gradient, Vo, are related to the element S;,
and should also be indexed i. However, this index will be omitted in order to facilitate
the legibility of the following equations.

The integral equation I,(x,7) can then be written as:

I,(x,i) = o(xag // ——dS + Vo - // *GX
[|xxy || | xx ||

= (0(x¢) + Vo xgx // — S+ Vo // x> (A.18)
| xxi || | xx1 H

Using the Kelvin formula, the second double integral can be converted to a contour

integral:
// VfdS :j{ fng Adl (A.19)
S C
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since: XX
V([ xx1 [|) (A.20)

E=T

leading to:

1
I,(x,i) = (0(xq) + Vs0 - xagX) // mds + Vo - 7{ || xx; || nAdl (A.21)
Si Ci

By using eq[A.14] it is possible to isolate values of o on the nodes:

1 = 1 — o1
I,(x,i) = <—I+XGX-E> //7d5— y{H xx) || xnAdl] -X| | o2
3 J] T ® -

, 1 (A.22)

where [ is the third dimension identity matrix.
The following integrals are functions of geometrical characteristics only, dependent
on x and S;:

1
SU://idS and IU:%H xx] || xn Adl
J] T ]

AppendizA.2.1. Analytical expression for S,
Regular case. An analytical expression has been derived by Guevel [37], for x & S;:

3
S, = ; %log <g—i> — 2| Z | arctan (g—é) (A.23)
Where:
(R = | xkx ||
de = || XX+ ||
Z = X@gX-'n
Nl = Rpy1+ R +dy (A.24)
Dy = Ry + Ry —dy
N = 2xkx- (DA XkXki1)
D! = (Rps1+Rp)>—di+2|Z| x(Rys1 + Ri)

If x € §;,i.e. x=x; with £ =1,2 or 3, a singularity occurs.

x = X} = (Rg,dg, N}, D}, Nt DL = (0, Ry 1,2 X Riy1,0,0,0) (A.25)
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X2

Figure A.23: Parameters for the singular case

Singular case. Suppose x = x7. Any solution found for this particular case can be
transposed for x = xo or x = x3, by simply reordering the indexes.
The following parameters are defined for the element S;, see fig [A.23}

i = %(x1x2 +x1X3) = —X1 + %(xz + x3)
J = Xoxg (A.26)
h = iAj
. . 11
xxi=pi+pgj  (pg) €[0,1] x[-5,5] (A.27)

We introduce new variables p’, ¢’ as follows:

2

/J

= /)( _—

p p A

- e

The integration limits are thus:

) P
(p',q’)e[o,,/j%]x[—wrb,wrb] with a:%xﬁand b:(\l/%) (A.29)

The elementary surface dS is:

/ /§? A | hl
dS =|| h || pdpdg =|| h || p’ x d’ Y dg = Ly apldg
| b pdpdg =| h || p’ A Pdrda

with A =i*xj —(i-j)> (A.28)

—~

A.30)
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It is then possible to write the square norm of xx; as:

[ xx1 ]2 = (pxi+pgxj)?=p*xi2+¢ xj>+2p%q¢xi-j
= p2><(i2+q2><j2+2q><i-j)

22 e \2 o .
J . A o (G-)° VA Xi-j
= pQKX 12+q/2XFXJ2+( j4) X‘]2—2q/j74>< 2
A _(i§)? (A.31)
T
2 . -\ 2
/2.] 92 12 A (1.]) :|
= pr=X|1"+qg° X .
A [ 2 j2
) )
pd? [P x3 -9 ]
= pr—x . +q° X 5
A [ J2 J2
leading to:
I xx 2= p2(1+ ¢) (A.32)

The integral S, can be written as:

- e v

p'xq’

N UTIN oy S N
VA j? /\/1+q’2

HhH

[

Se = I x [asinh(a + b) — asinh(—a + b)] (A.33)

Vi

1 h bt /T4 (ath)?
SU:// gg = 1Bl ot “* (A.34)
| xxi || V2 —a+b+ 1+ (—a+0b)?

AppendizA.2.2. Analytical expression for 1,

This integral can be evaluated on each side of the element. Consider a reference
case, with a segment [x4,%p], a point x; on this segment and the field point x. For this
configuration:

or:

XB
I, = / || xxp || dl - s (A.35)
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XB

XA

Figure A.24: Reference case

where the local base (t,s,n) is defined as:

XAXB
t - =
| xaxs ||
I xaxp || (A.36)
| xaxy ||
LT e Y
dl = | xaxp | xdt
The square norm of xx; can be written as:
I 2 = [l xaxt [ + [ xax 2 —2xax - xax
XAX
= a4 a2 20 A5 e a
| xaxB ||

= t2x || xaxB ||* + || xax ||> =2t X XAXB - XAX
2

2
XAXB - XAX XAXB - XAX
- <“<”XAXB"‘ %A% | > *‘”XAX”Q“< I xaxs | )“&3”

This is equivalent to:
F3exy [[*= K*(1 + ¢%) (A.38)

with the following change of variables:

( 2
K2 = |2 - (TR )
| xaxs |
1 XAXB) - (xax%))2
¢ = X <t>< | xaxs || « AH zlx(Bﬁ ) > +q € [q0, 1]
| xaxs ||
q X (A.39)
w = XAXB - XAX
| xaxB || xK
= | xaxB ||? —XAXB - XAX

|| XAXB || x K
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Introducing these variables to the integral I yields:

q1
I, = / K2\/1 + ¢2dgs

q0

asinh(q1)
= K%x V1 +sinh(z)? x cosh(z)dz xs  with ¢ = sinh(z)A.40)
asinh(go)
(A.41)
The analytic solution for this integral is then:
K? inh(2b) — sinh(2
%:——P—a+$n() sinh(2a) ] o (A.42)
2 2
with
a = asinh(q)
b = asinh(q) (A.43)

Singular case. While the original integral has no singularity, the solution developed here
has one: if K = 0, the expression for ¢ is not valid. However, K = 0 = x € (x4,Xp),
leading to the following simple solution for this case:

XB
I, = /|| xx) || xdl-n At
XA
XAXB - XAX

dls
| xaxg ||| xax |

XB
/ | 3cxa |+ | xax || %

XA
1
XAXB - XAX

t H XAXB H2 dt X s
I xaxs [[[| xax ||

= |l xaxs ||| xax | s+

XAXB-XAX>

= || xaxB || <” XaX || +m

AppendizA.3. Integral equation for the potential

The integral I,,(x,i) can be decomposed, for each field point x, on each element S;
of the fluid domain boundary. p refers to the source doublet distribution that generates
the potential field ¢.

I,(x,i) = / / ¢(><0st (A.44)
S

The singular case for this integral is inherent in the calculation of the solid angle and
does not require special treatment:

0x)ox) = [[[ obxacixxiv (A.45)
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For the regular case, a method similar to that used for the integral I,(x,1) is used,
based on the linear expression for u(x;) = ¢(x;) on the element S;:

pw(xy) = p(xc) + Vsp - xgxi (A.46)

The integral I,(x,7) can be written as:

1,(%1) = (u(xG) + Vo - X% / / 06 x1) 45 7 / / 0GX1) , 1adS (A4T)

The second integral can be converted to a contour integral by using the following vector
field:
F = —G(x,x;) (Vsp A xx1) (A.48)

X (y—y) = by x (21— 2)
V@@ =)+ (g —y)? + (21 — 2)?
ay X (71— 2) — ¢y X () — x)
V@@ —x)2+ (g —y)? + (21 — 2)?
by X (x—x) —au x (y1 —y)
(V@ =2+ —y)? + (2 - 2)?
The normal component of the rotational of this function is the integrand of the second
surface integral of Eq.[A.47

with  Veu =[ay, by, cy]  (A49)

rot(F) = [au(z —2) +bu(yr — y) + culz — 2)] x VG(x,%))
-2 X G(x,%x7) X Vsu+ G(x,%x7) X Vspu
= (Vsp-xx) VG(x,%x;) — G(x,%;)Vsp (A.50)
rot(F)-n = W (Vsp - xx1) — G(x,%x7) (Vs - 1)
= LGS;X” (Vsp - xx7) (A.51)

Using the fact that the normal component of the surface gradient is zero :
Vsp-n=20

Stokes’ theorem can be used to transform the surface integral to a contour integral:

// rot(F) - ndS = 7{F dl (A.52)
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The second surface integral of Eq. [A.47] thus becomes:

//W(V&u-xxl)dkg = j{—%(vsu/\xm)'dl

| xx ||
S; C;

_ —Vs,uxj{ XA dl (A.53)
Ci

[|xxy ||

The integral I,(x,7) can then be written as:

)

. 0G(x,x XX
I,(x,i) = (u(x@) + Vsp - xgX) // #ds — Vsp - y{ m Adl  (A.54)
Si Ci

Using Eq. [A.14] it is possible to isolate values of yu on the nodes:

(T = 0G(x,x7) XX] = 1
I,(x,1) = <3+XGX-E>X// o as — y{HXA—XH/\dl X | e
87; C'L

M3
(A.55)

The following integrals are functions of geometrical characteristics only, dependent of x

and S;:

0G(x,x7) XX]
S, = ——=dS d I,= Adl
o= ] e s a1, B
S; i

AppendizA.3.1. Analytical expression for S,
The following analytical solution for the integral S, was provided by Guevel [37]:

3
Nt
S, =2 x sign(2) Zarctan (D—f> (A.56)
k=1 k
(R = || xkx|
de = || xkXKi |
Z = XgX-n (A.57)
N = 2xpx- (0 A XgXki1)
Dy = (Repr+ Ry)? —di +2| Z | x(Ry41 + Ry)

AppendizA.3.2. Analytical expression for I,
The integral I,, can be evaluated on either side of the element S;. Consider a reference
case: a segment [Xx4,Xp|, a point x; on this segment, and the field point x, see fig. [A.25]
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For this configuration:

Xp

I, = XA dl

’ | xx ||

XA
XB 1 XB
= XXA/\/idl—F Xaxpredl (A.58)
(| xx1 || (| xx1 ||

XA XA

Using the same parameters and variables as for integral I,, we arrive at a simple
expression for || xx; |.

XB

X

XA
Figure A.25: Reference case

( t = XAXB
| xaxs ||
| xaxs ||
dl = | xaxp | dt
I xxi [°= K*(1+¢%) (A.60)
where )
K? = | xax|?— XAXB T XAX ) -
| xaxs |
1 XAXB " XAX
= = t - |»4q € )
q 7 ( x || xaxB || [ %axs | > q € [q0, 1]
| xaxs || (A.61)
d = = 0 dt )
q K X
XAXB - XAX
qo TR TR ——
| xaxB || xK
P || xaxB H2 —XAXB ' XAX
| xaxp || xK
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If K2 > 0, the integral I, can be written as:

I, = —Kx XA AX“"XB/ x dg
’ XAXB H K x 1 +4q )
— _w [asinh(ql) — asinh(qo)] (A62)

I xaxs ||

I :_XXA/\XAXB1 Q1+\/1+q1 (A.63)
g | xaxB || q++V1+aq

A singularity occurs for K = 0, which means M € (x4,xp). In this particular case,
it can be shown that the integral is equal to zero, since (xx;) Adl =0

or:
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