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Abstra
t

Wave-to-Wire numeri
al models being developed for the study of wave energy 
on-

verters usually make use of linear potential �ow theory [1, 2, 3, 4, 5℄ to des
ribe wave-

stru
ture intera
tion. This theory is highly e�
ient from a 
omputational perspe
tive.

However, it relies on assumptions of small wave steepness and small amplitude of motion

around mean positions. Often, maximization of wave energy 
onverters' energy perfor-

man
e implies large amplitude motion [6, 7, 8℄, thus 
ontradi
ting the assumption of

small amplitude motion.

An alternative approa
h is to linearize the free surfa
e 
onditions on the instanta-

neous in
ident wave elevation (Weak-S
atterer approa
h [9℄) while the body 
onditions

are evaluated at the exa
t body position. Studies of wave energy 
onverters' dynami


response using this method are expe
ted to be more a

urate, while maintaining a rea-

sonable 
omputational time. With this aim, a Weak-S
atterer 
ode (CN_WSC) was

developed and used to study two submerged wave energy 
onverters. The �rst is a heav-

ing submerged sphere and the se
ond is a bottom-hinged fully submerged os
illating �ap.

They are inspired respe
tively by the Ceto [10℄ and WaveRoller [11℄ devi
es.

Initial 
al
ulations were performed in linear 
onditions �rst to verify the CN_WSC

against linear theory. Subsequently, 
al
ulations in nonlinear 
onditions were performed,

using large wave steepness and amplitude of body motion. In linear 
onditions, results

of CN_WSC showed good agreement with linear theory, whereas signi�
ant deviations

from linear theory were observed in nonlinear 
onditions. As amplitude of body motion

in
reases, linear theory tends to overestimate energy performan
e in 
omparison with

weak-s
atterer theory. In 
ontrast, with smaller amplitude of motion but larger wave

steepness, the opposite result is obtained: energy performan
e is underestimated by

linear theory 
ompared to weak-s
atterer theory.
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e Flow,
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1. INTRODUCTION

The standard numeri
al tools for modeling and designing wave energy 
onverters

(WECs) rely on linear potential theory [1, 2, 3, 4, 5℄, and as su
h are limited to move-

ments of small amplitude around mean positions. However e�
ien
y of WECs relies on

large amplitude motion [6℄: by design, their resonant frequen
ies must fall in the wave

ex
itation range. Linear potential theory has been shown to be insu�
ient to model

the behavior of WECs in su
h 
on�gurations [7, 8℄. Thus, other numeri
al approa
hes

are required. A nonlinear potential-�ow model, in the 
ontext of a numeri
al wave-

tank (NWT), was pioneered by Longuet-Higgins and Cokelet [12℄. In their work, they

used the mixed Eulerian-Lagrangian (MEL) approa
h, solving the Lapla
e equation in

an Eulerian 
oordinate system, and then adve
ting the nodes at the mesh boundaries.

Sin
e that time, several wave tanks have been developed, in both two and three dimen-

sions [13, 14, 15, 16℄. Issues related to the development of NWT have been reviewed

by Tanizawa [17℄. Re
ent developments have fo
used on a

elerating three-dimensional

NWT (
omputational requirements are still large) and address issues of gridding, numer-

i
al stability, and a

ura
y that 
an be problemati
 for 
omplex geometries [18, 19℄.

A weakly nonlinear approa
h, based on the weak-s
atterer (WS) approximation, is

expe
ted to be a promising alternative that avoids or redu
es the impediments of fully

nonlinar potential-�ow 
odes. Introdu
ed by Pawlowski [9℄, this 
lass of approximation

is based on linearisation of the free surfa
e 
onditions on the in
ident wave elevation,

allowing treatment of nonlinear steep in
ident waves. The body 
ondition is evaluated

at the exa
t instantaneous position of the body, allowing large body motions to be taken

into a

ount. The only assumption in the WS approa
h is that the perturbation potential

is small. Thus, numeri
al 
odes based on the WS approa
h are expe
ted to be a

urate in


ases with small to large amplitude body motions, in
ident waves of arbitrary steepness

and when the perturbed wave is small. The di�erent quantities are then de
omposed into

in
ident and perturbation 
omponents, with the in
ident ones as for
ing terms while only

the perturbation ones are solved. The main advantage of this is that the in
ident wave

does not need to be propagated from a wave-maker, allowing the mesh to be re�ned

only in the vi
inity of the body. Moreover, sin
e the free surfa
e boundary is known

expli
itly, the WS method is expe
ted to be more robust and stable than the fully non

linear approa
h.

Several WS �ow solvers have been developed in the past: SWAN-4 [20℄, LAMP-4 [21℄

and WISH [22℄. Their �elds of study were however mainly fo
used on ship with forward

speed, whi
h 
an indeed be 
onsidered as slender bodies. As a 
onsequen
e, the s
attered

waves and motion responses are small and the assumptions of the WS approximation are

ful�lled. In this arti
le, the aim is to investigate whether the WS method 
an improve

numeri
al modeling of WECs.

The development of this new solver is based on the experien
e gained by the authors in

the 90's in developing a three-dimensional time domain boundary integral equation (BIE)

solver for linear, se
ond-order and fully nonlinear wave-body intera
tion problems [13,

23, 16, 24℄. In parti
ular, although higher order BIE solvers are available, the 
hoi
e of a

linear, isoparametri
 BIE solver based on triangular elements has been maintained. This
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solution method presents some important advantages, namely the 
apa
ity to express

the surfa
e integrals in a purely analyti
 form, and very good e�
ien
y (typi
ally, the

ratio of number of unknowns to number of elements is approximately 0.5). In addition,

it is possible to apply e�
ient mesh generation s
hemes that originate from the �nite

element 
ommunity, whi
h is 
onsidered to be key to pra
ti
al appli
ations. Analyti
al

expressions for the in�uen
e 
oe�
ients, initially unpublished [25℄, have been 
ompletely

redeveloped by the �rst author during his PhD work, and are presented in Appendix A

of this paper.

Comparisons with a fully nonlinear �ow solver have been 
arried out for a submerged

body in for
ed motions [26℄. In the present paper, we extend this to the 
ase of freely

moving bodies, whi
h requires new equations and numeri
al implementations to 
al
ulate

the motion of the body. The Impli
it method, introdu
ed by Tanizawa [27℄ and based on

the solution of a se
ond Boundary Value Problem (BVP) for the time derivative of the

velo
ity potential, was 
hosen to solve the 
omplex impli
it problem of the body motion


al
ulations. We have developed a new expression for the BVP body 
ondition, whi
h

uni�es the two expressions previously given by Tanizawa [27℄ and Cointe [28℄ ; the details

are presented in [29℄.

First, WS theory is re
alled. The numeri
al implementations are then introdu
ed,

namely the boundary element method, the time-mar
hing s
heme and the �uid/stru
ture

intera
tion method. Finally, the method is applied to two submerged WECs, using the

Ceto[10℄ and WaveRoller[11℄ systems as examples. For the purpose of veri�
ation, results

are initially 
ompared to linear theory in linear 
onditions. Simulations in nonlinear


onditions, with large amplitude motions and large steepness in
ident wave, are then


ondu
ted.

2. METHODS

2.1. Potential �ow theory

Assuming a �uid to be in
ompressible and invis
id with irrotational �ow, its �ow

velo
ity derives from a velo
ity potential φ whi
h satis�es the Lapla
e Eq.:

∇2φ(x, y, z, t) = 0 (1)

in the �uid domain, D. The boundary of the �uid domain is ∂D = Γ = Γfs∪Γb∪Γw∪Γd,
see Fig 1.

In the general 
ase, without forward speed, it 
an be shown [30℄ that the velo
ity
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Figure 1: Domain de�nition : boundaries and referen
e frames

potential is the solution of the following boundary value problem (BVP):
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∇2φ = 0 in the �uid domain D

∂φ

∂t
= −gη − 1

2
∇φ · ∇φ on the free surfa
e, Γfs

∂η

∂t
=
∂φ

∂z
−∇φ · ∇η on the free surfa
e, Γfs

∂φ

∂n
= Vb · n on the body, Γb

∂φ

∂n
= φ0 on the seabed, Γd

φ −→ 0 on boundaries far from the body, Γw

(2)

The free surfa
e elevation is denoted by the single-valued variable η, whi
h means that

wave overturning 
annot be handled. g is the gravitational a

eleration, Vb the body
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velo
ity and n the normal ve
tor pointing outwards from the �uid. φ0 is the velo
ity

potential of the in
oming waves.

Using Green's Se
ond Identity along with the Rankine sour
e, it 
an be shown that

the resolution of the 3D Lapla
e equation in the �uid domain 
an be redu
ed to a surfa
e

integral equation, on its boundaries.

2.2. The weak-s
atterer approximation

The WS approximation relies on the de
omposition of the velo
ity potential and

the free surfa
e elevation (φ, η) into the in
ident (φ0, η0) and the perturbation (φp, ηp)

omponents, see Fig 2.

{

φ = φ0 + φp
η = η0 + ηp

(3)

Figure 2: Weak-S
atterer de
omposition and de�nition of the di�erent wave elevation 
omponents

The perturbation 
omponents are generated by the intera
tion of the body with the

in
ident (undisturbed) �ow. They in
lude di�ra
tion and radiation e�e
ts. In the WS

approximation, the perturbation 
omponents are assumed to be small 
ompared to the

in
ident 
omponents.Sin
e the in
ident 
omponents 
an be 
onsidered as for
ing terms,

only the perturbation 
omponents are solved. Thus, the in
ident wave does not need to

be generated using a wave maker on an outer boundary, and propagated with the �ow

solver. This allows us to re�ne the free surfa
e mesh only 
lose to the body, whi
h would

not have been possible if the in
ident wave have had to be propagated a
ross the whole


omputational domain.

The free surfa
e equations 
an then be linearized on the instantaneous position of

the in
ident wave, whi
h is expli
itly known. Sin
e the position of the free surfa
e is

independent of the solution, the WS approa
h is then more robust than the fully non

linear approa
h, in whi
h the free surfa
e position is one of the unknowns.

2.2.1. In
ident wave model

In the WS method, the free surfa
e boundary 
onditions are linearized on the position

of the in
ident free surfa
e. This means that the in
ident wave model has to ful�ll the

nonlinear free surfa
e boundary 
onditions. The 
hosen model is thus the nonlinear
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Figure 3: Free surfa
e elevation from stream fun
tion solution in deep water for di�erent steepness,

from [16℄. x is the non-dimensional wavelength, while η is the wave elevation.

solution given by the stream fun
tion theory of Riene
ker and Fenton [31℄. Based on

Fourier series, the in
ident �eld 
al
ulations 
an be obtained a

urately and qui
kly, for

very steep waves, up to the theoreti
al limit of wave-breaking, see Fig 3. Only regular

waves are 
onsidered in this study.A 
oupling with a High Order Spe
tral (HOS) [32℄

method may be 
arried out to take into a

ount more 
omplex nonlinear in
ident waves

(irregular sea states with possible dire
tional spreading).

2.2.2. Free-surfa
e boundary 
onditions

The fully nonlinear kinemati
 and dynami
 free surfa
e 
onditions, applied at the

exa
t position of the free surfa
e at z = η, are:

∂η

∂t
=
∂φ

∂z
−∇φ · ∇η (4)

∂φ

∂t
= −1

2
∇φ · ∇φ− gη (5)

In order to make the Mixed Euler-Lagrange (MEL) approa
h [12℄ simpler, the free

surfa
e nodes are allowed to move only verti
ally. It is imposed that they follow the

in
ident wave position: a node of 
oordinates (x, y, z = η0(x, y, t)) moves verti
ally to

(x, y, z = η0(x, y, t+dt)) with a velo
ity v = ∂η0
∂t

z. The 
orresponding derivation operator

is

D0z

Dt
=

∂

∂t
+
∂η0
∂t

∂

∂z
(6)

Noting that the wave elevation η is independent of z, this leads to
D0zη

Dt
=
∂η

∂t
. Intro-

du
ing the WS de
omposition in the kinemati
 free surfa
e boundary 
ondition, Eq. (4),

yields

∂ηp
∂t

= −∂η0
∂t

+
∂

∂z
(φp + φ0)−∇(φp + φ0) · ∇(ηp + η0) , on z = η(x, y) = η0 + ηp (7)
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A Taylor expansion on the perturbation 
omponent ηp (whi
h is small 
ompared to

η0) is applied at the in
ident free surfa
e position, in order to obtain the WS kinemati


free surfa
e 
ondition. The higher order 
omponents (η2p , φ
2
p, ηp.φp, et
.) are negle
ted.

∂ηp
∂t

=
∂φp
∂z

−∇φp · ∇η0 −∇φ0 · ∇ηp

+ηp

(

∂2φ0
∂z2

− ∂∇φ0
∂z

· ∇η0
)

, on z = η0 (8)

The same operations are su

essively applied to the dynami
 free surfa
e equation,

to obtain its WS version:

D0zφp
Dt

= −gηp −∇φp · ∇φ0 +
∂η0
∂t

∂φp
∂z

−ηp
(

∂2φ0
∂z∂t

+
∂∇φ0
∂z

· ∇φ0
)

, on z = η0 (9)

2.2.3. Body boundary 
ondition

The body 
ondition in the boundary value problem, Eq. 2, is:

∂φ

∂n
(x) = Vb(x) · n (10)

A

ording to the WS approximation, the wetted surfa
e of the body takes into a

ount

the instantaneous in
ident wave elevation. Introdu
ing the WS de
omposition, Eq.(3),

in the body 
ondition yields:

∂φp
∂n

(x) = −∂φ0
∂n

(x) +Vb(x) · n on the wetted surfa
e of the body, Γb (11)

The boundary 
ondition on the seabed is similar, with a zero boundary velo
ity:

∂φp
∂n

(x) = −∂φ0
∂n

(x) on the seabed, Γd (12)

2.2.4. Far-�eld 
ondition

Far from the origin of the perturbation (the WECs), the perturbation 
omponents

must vanish:

{

ηp → 0
φp → 0

, when r → ∞ (13)

Our numeri
al domain is bounded by a verti
al 
ylinder 
ontrol surfa
e, Γw. The

in
ident wave is expe
ted to go through this surfa
e:

∂φ

∂n
(x) =

∂φ0
∂n

(x) , on Γw (14)

leading to the boundary 
ondition:

∂φp
∂n

= 0 , on Γw (15)

while the 
ontrol surfa
e is assumed su�
iently far from the body so that the normal

velo
ity of the perturbation velo
ity potential is negligible. A numeri
al bea
h was also

applied to ensure this last 
ondition, see se
tion 3.3.
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2.2.5. Summary: boundary value problem

The BVP for the velo
ity potential resulting from the BIE and the previous boundary


onditions 
an thus be des
ribed as:












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


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






























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






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









































△φp = 0 in the �uid domain, D

D0zφp
Dt

= −gηp −∇φp · ∇φ0 +
∂η0
∂t

∂φp
∂z

r on the free surfa
e,

−ηp
(

∂2φ0
∂z∂t

+
∂∇φ0
∂z

· ∇φ0
)

Γfs : z = η0

∂ηp
∂t

=
∂φp
∂z

−∇φp · ∇η0 −∇φ0 · ∇ηp on the free surfa
e,

+ηp

(

∂2φ0
∂z2

− ∂∇φ0
∂z

· ∇η0
)

Γfs : z = η0

∂φp
∂n

= −∂φ0
∂n

+Vb(x) · n on the body, Γb

∂φp
∂n

= −∂φ0
∂n

on the seabed, Γd

∂φp
∂n

= 0 on the 
ontrol surfa
e, Γw

(16)

2.3. Hydrodynami
 For
e and Body Motions

2.3.1. Equations of motion

The body motion equations are obtained a

ording to Newton's law:











M · ẍb = FH +M · g +
∑

Fext

δb = I0 · S · θ̈b +
[

I0 · Ṡ+ İ0 · S
]

· θ̇b = Mb(FH) +
∑

Mb(Fext)
(17)

where M and I0 are the mass and inertia matri
es, ẍb and θ̈b are the a

eleration in

translation and rotation of the 
enter of gravity of the body in the global referen
e

frame, FH and Mb(FH) and Fext and Mb(Fext) are respe
tively the hydrodynami
 and

external (Power Take-O� (PTO), mooring, vis
ous damping, et
.) for
es and moments

applied on the body at its 
enter of gravity, and S is the rotation matrix based on the

Euler angles:

S =





cos(θ) cos(ψ) − sin(ψ) 0
cos(θ) sin(ψ) cos(ψ) 0

− sin(θ) 0 1





(18)

Ω = ψ̇z0 + θ̇yψ + ϕ̇xθ = S · θ̇b (19)

where Ω is the body rotational ve
tor a

ording to the Euler angles ( θ̇ =
(

ψ̇ θ̇ ϕ̇
)

)

(see Fig 4).

8



Figure 4: Euler angles (ψ, θ, ϕ) with their 
orresponding ve
tors

The hydrodynami
 for
e and moment are obtained by integrating the hydrodynami


pressure on the wetted body surfa
e (normal ve
tor pointing outwards from the �uid).

The pressure p is given by Bernoulli's equation, and expressed relatively to the at-

mospheri
 pressure pa : p = p̃ − pa. Moreover, the free surfa
e pressure is supposed to

be zero:

p = −ρ
(

∂φ

∂t
+

1

2
∇φ · ∇φ+ gz

)

(20)

The velo
ity potential is known on the body, as the solution of the BVP. Its lo
al

derivatives are 
omputed using a B-spline approximation of the potential, while the

normal velo
ity is given by the body 
ondition. The velo
ity potential time derivative is

a priori not known on the body and needs to be 
omputed.

2.3.2. Velo
ity Potential Time Derivative

For a body undergoing pres
ribed motion, the equations of motion, and thus the

hydrodynami
 loads, do not need to be 
omputed to 
arry on the simulation. Sin
e the

velo
ity potential is known on the body at ea
h time-step, a �nite di�eren
e s
heme 
an

be used in post-pro
essing, to estimate its time derivative and from this the indu
ed

body loads.

For a body undergoing free motion, this s
heme is not a

urate enough and 
an

lead to instabilities [33℄. Another approa
h has been 
hosen, based on the solution of a

se
ond BVP for the velo
ity potential time derivative, whi
h also satis�es the Lapla
e

equation [28℄.

△φ = 0 =⇒ △∂φ

∂t
= 0, in D (21)

The BVP for the time derivative of the velo
ity potential is similar to that for the ve-

lo
ity potential. The boundary 
onditions are mixed: Neumann for the material bound-

aries (body, seabed and numeri
al 
ontrol surfa
es) and Diri
hlet for the free-surfa
e.

Sin
e the material derivative

D0zφp
Dt

is already 
al
ulated on the free-surfa
e for the time

integration of the free-surfa
e elevation, we 
an get the partial time derivative of the

9



velo
ity potential using Eq.(6)


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


































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



















△∂φp
∂t

= 0 in the �uid domain, D

∂φp
∂t

=
D0zφp
Dt

− ∂η0
∂t

∂φp
∂z

on the free surfa
e, Γfs : z = η0

∂2φp
∂n∂t

= −∂
2φ0
∂n∂t

+ ẍ · n+ q on the body, Γb

∂2φ

∂n∂t
= −∂

2φ0
∂n∂t

on the seabed, Γd

∂2φ

∂n∂t
= 0 on the numeri
al tank walls, Γw

(22)

where ẍ is the a

eleration ve
tors in translation of the node 
onsidered and q represents
adve
tion due to the motion of the body. Two di�erent expressions for q have been

derived by Cointe [28℄ and Tanizawa [27℄ by developing the Neumann 
ondition on moving

boundaries using two di�erent kinds of a

eleration: respe
tively, a

eleration of the body

and a

eleration of a �uid parti
le sliding on the body. The two expression were shown

to be equivalent in [29℄ and a new expression, unifying them, is re
alled here:

q = (Ω · s1)
(

∂φ

∂s2
− 2(ẋ · s2)

)

− (Ω · s2)
(

∂φ

∂s1
− 2(ẋ · s1)−

)

+
(ẋ · s1)
R1

(

∂φ

∂s1
− (ẋ · s1)

)

+
(ẋ · s2)
R2

(

∂φ

∂s2
− (ẋ · s2)

)

+(ẋ · n)
(

∂2φ

∂s21
+
∂2φ

∂s22
+

(

1

R1
+

1

R2

)

∂φ

∂n

)

(23)

where s1 and s2 are the lo
al 
oordinate ve
tors and (R1, R2) denote the lo
al 
urvature
along the respe
tive lo
al ve
tors.

2.3.3. Impli
it method

As seen in the previous se
tions, solution of the equations of motion depends on

the 
al
ulation of the hydrodynami
 for
e (Eq. (17)), whi
h in turn depends on the


al
ulation of the velo
ity potential time derivative that is found by solving the solution

of the se
ond BVP (Eq. (22)). However, the body boundary 
ondition of this BVP

requires knowledge of the a

eleration of the body. This leads to an impli
it problem,

whi
h 
an be solved using the Impli
it method introdu
ed by Tanizawa [27℄ and Van

Daalen [34℄ for this purpose. The BVP is extended to in
lude the equations of motion

and hydrodynami
 for
e 
al
ulation, whi
h are then solved simultaneously.

∂2φ
∂n∂t

and

∂φ
∂t

on the body are then solutions of this extended BVP, as is the body motion.

Several other methods have been proposed, in
luding the indire
t method, the mode

de
omposition method, and the iterative method (see [35, 36℄). The Impli
it method

requires solving only one additional BVP, 
ompared to up to six for the other methods.

Thus, it is expe
ted to be more 
omputationally e�
ient.

10



3. NUMERICAL IMPLEMENTATION

3.1. Solution of the BIE

The 
ollo
ation method is used to solve the BVP. The BIE is thus applied to a set

of nodes, xl, on the boundaries. For given elements j and a �eld point l, the BIE 
an be

de
omposed into two integrals:

Iσ,j(x) =

∫∫

Sj

∂φ

∂n
(xl)G(x,xl)dΓ (24)

Iµ,j(x) =

∫∫

Sj

φ(xl)
∂G(x,xl)

∂n
dΓ (25)

x1 x2

x3

u

v
xG

Sj

Cj

Figure 5: Linear dis
retization on an element Sj = (x1, x2, x3): de�nition of the variables u and v

Linear triangular elements are used, via an isoparametri
 parametrization, des
ribing

both the geometry and the spatial variation of the unknowns (see Fig 5).

fj(x) = fj(x1) + u(fj(x2)− fj(x1)) + v(fj(x3)− fj(x1))

= fj(xG) +∇s(fj) · rj (26)

where xG is the position ve
tor of the 
enter of gravity Gj of the element Sj =
(x1x2x3), rj = x − xGj and ∇s(fj) represents the surfa
e gradient of fj , whi
h 
an be


al
ulated from the derivatives of fj along u and v. Cj is the 
ontour of the element.

Using this dis
retization, the two integrals 
an be written as (see AppendixA):

Iσ,j(x) =







=
∆

∫∫

Sj

G(x,x)dΓ −







∮

Cj

n ∧ dl

G(x,x)







=
Σ






·





∂φ
∂n

(x1)
∂φ
∂n

(x2)
∂φ
∂n

(x3)





(27)

Iµ,j(x) =







=
∆

∫∫

Sj

∂G(x,x)

∂n
dΓ−







∮

Cj

G(x,x)r ∧ dl







=
Σ






·





φ(x1)
φ(x2)
φ(x3)





(28)
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where

=
∆ =

¯̄I
3 + xGx ·

=
Σ and

=
Σ is an operator su
h that

=
Σ ·





f(x1)
f(x2)
f(x3)



 = ∇s(f).

Analyti
al solutions for the surfa
e integrals have been given by Guevel [37℄. Analyti


solutions for the 
ontour integrals with Rankine sour
es were obtained by 
onsidering the


ontributions of ea
h edge of the triangular panel (see AppendixA).

To 
al
ulate in�uen
e 
oe�
ients in 
ases where the �eld point is far from the in-

�uen
ing panel, asymptoti
 solutions for ea
h integral have been developed to speed up


al
ulations [38℄.

The BIE applied to the set of nodes, with the 
ollo
ation methods, results in the

following linear system to solve, for a point i on the boundary:

Gijφ(j) = Hijφn(j) (29)

where φ and φn are the velo
ity potential and normal velo
ity ve
tors. The matrix

G in
ludes all integrals of Green's fun
tion (Eq. (27)), as well as the solid angle terms

along the diagonal, and H in
ludes all integrals of the normal derivative of Green's

fun
tion (Eq. (28)). These matri
es are 
alled in�uen
e matri
es. The iterative method

GMRES (Generalized Minimal RESsidual method) [39℄ is used to solve the resulting

system e�
iently.

Some of the verti
es may be lo
ated at an interse
tion between surfa
es with non-


ontinuous normal ve
tors (for instan
e, verti
es at the interse
tion of the free surfa
e

and the body surfa
e, or on sharp 
orners for non-smooth body geometries). They require

spe
ial treatment, to take into a

ount the di�erent 
onditions (Diri
hlet/Neumann or

di�erent normal velo
ity and normal de�nition). All the boundary 
onditions on these

parti
ular points are applied by dupli
ating nodes. For a given geometri
al lo
ation,

several boundary 
onditions are enfor
ed, to arrive at di�erent solutions.

The 
ontinuity of the potential at the interse
tion is 
he
ked to ensure the validity of

the BVP solution.

3.2. Code a

eleration

Three te
hniques have been developed to redu
e the number of unknowns in the


al
ulation of the in�uen
e matri
es (and hen
e the 
al
ulation time): partial 
al
ulation

of the in�uen
e matri
es; symmetries; and open domain.

• Partial 
al
ulation involves 
al
ulating the in�uen
e matri
es only on sub-domains

that have 
hanged during the previous time step. A �xed boundary during the

simulation does not need to have its auto-in�uen
e matri
es updated at ea
h time

step.

• Two symmetries are implemented, one verti
al along the (xOz) plane, and the

other horizontal on the bottom (for �at sea bottoms). The two symmetries 
an be

used 
on
urrently. By 
utting the number of mesh elements by a fa
tor two, the


al
ulation time for the in�uen
e 
oe�
ients is also 
ut by a fa
tor of two, whilst

the 
al
ulation time for solving the linear system is 
ut by a fa
tor four.

12



• Simulations in open domain are also possible, by 
onsidering numeri
al 
ontrol

surfa
es to be su�
iently far from the body, so that the perturbation dies out

before rea
hing these boundaries. A 
lassi
 numeri
al bea
h is used to enfor
e this

last 
ondition.

More details 
on
erning these features 
an be found in [38℄.

3.3. Numeri
al bea
h

We implemented a 
lassi
 numeri
al bea
h [33℄, based on elongation of the elements

on the free surfa
e and the addition of virtual pressure terms in the free surfa
e equations.

For the fully nonlinear free surfa
e equations, for example, the method yields:











∂φ

∂t
= −gη − 1

2
∇φ · ∇φ+ νφ

∂η

∂t
=

∂φ

∂z
−∇φ · ∇η + νη

(30)

For 
ir
ular domains, the damping variable ν varies as







ν(r) = αω

(

(r − r0)

λ

)2

r ≥ r0 = Re − βλ

ν(r) = 0 r < r0

(31)

α and β are parameters that adjust the virtual pressure loads and the width of the

numeri
al bea
h to the perturbation, respe
tively, and Re is the external radius delimiting

the free surfa
e in the horizontal plane. α = 0.7 and β ≃ 1 were found to be optimal.

3.4. Lo
al derivative 
al
ulations

Spatial derivatives are present in the free surfa
e equation, but also in the q-term of

the body 
ondition for the time derivative of the velo
ity potential BVP (Eq. (23)). The

se
ond-order derivatives are also required in this 
al
ulation. The lo
al derivatives given

by the linear dis
retization are 
onstant on ea
h element, requiring a spe
ial s
heme

for the evaluation of the se
ond-order derivatives. Following [40℄, a higher order B-

Splines approximation has been implemented, allowing easy 
al
ulation of the �rst- and

se
ond-order lo
al derivatives as well as better pre
ision than a
hieved by the linear

dis
retization, resulting in a low CPU-time 
ost. Virtual nodes are used to 
ope with

dis
ontinuities in the plane of symmetry.

3.5. Time Integration

A fourth-order Runge-Kutta s
heme with a 
onstant time step is used for time-

mar
hing . The velo
ity potential and wave elevation on the free surfa
e are advan
ed in

time using equations Eq. (8) and Eq. (9). The body position and velo
ity are advan
ed

simultaneously using the body motion equation Eq. (17). The algorithm implies the

solution of the BVP for four di�erent mesh 
on�gurations during ea
h time step. This

theoreti
ally leads to four 
al
ulations of the in�uen
e matri
es.

13



In pra
ti
e, it has been observed that it is possible to keep the geometry (free surfa
e

and body) during the four substeps of the RK4. This is referred to as geometry-lo
ked-

RK4 [13℄, and results in only one 
al
ulation of the in�uen
e matri
es per time-step.

A time 
onvergen
e of the normal and geometry-lo
ked-RK4 showed that, for a given

a

ura
y, the geometry-lo
ked-RK4 leads to a signi�
ant redu
tion in 
omputational

time. Thus, the modi�ed s
heme is used in the following.

4. Validation : simulation of a submerged heaving WEC

In this se
tion, the results of the CN_WSC for free-body motions are veri�ed at

�rst in linear 
onditions (i.e. small amplitudes of body motion and wave steepness).

Linear potential �ow theory is used as a referen
e, thanks to the open sour
e software

Nemoh [41℄. Subsequently, nonlinear 
onditions (i.e. large amplitudes of body motion

and wave steepness) are studied and di�eren
es with linear theory are highlighted. The

sti�ness of the power take-o� is tuned to the wave ex
itation, to obtain a me
hani
al

resonan
e. A Fourier analysis is applied to the motion time history, and the mean

absorbed power is 
al
ulated on several periods of the wave ex
itation, on
e the steady

state is obtained. Using this methodology, we 
an obtain normalized responses for the

motion and absorbed power for a set of frequen
ies. These normalized responses 
an be


ompared to the linear solutions, i.e. the response amplitude operator (RAO). The limits

of the WS approximation are also inspe
ted, with respe
t to the underlying assumptions.

4.1. WEC des
ription

The submerged heaving WEC (SHWEC) that served as the model for this se
tion

is the Ceto WEC, designed by Carnegie Wave Energy Limited [10℄. This WEC 
onsists

of a heaving submerged buoy, moored at the seabed. Here we 
onsider a simpli�ed,

neutrally buoyant spheri
al buoy (see Fig. 6, with a spring-linear damping system to

model the mooring and power take-o� (PTO). The dimensions are: radius a = 3.5 m,

mean immersion d = 2a = 7 m, depth H = 20 m. The spring spe
i�
ations, KPTO and

l0, are optimized to adjust the body response to the wave input, Aω and ω. In order

to obtain resonant motions, the spring 
onstant is set to KPTO = (M + µ33)ω
2
, with

µ33 given by the linear solution. Linear Power Take-O� (PTO) damping is taken into

a

ount. The instantaneous power and energy absorbed by the PTO are:















PPTO(t) = BPTOV(t)2

EPTO(t) =
t
∫

0

PPTO(τ)dτ
(32)
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Figure 6: diagram of the SHWEC and its geometri
al 
hara
teristi
s

The mean absorbed power Pabs, 
apture width CW and e�
ien
y η1, along with the wave

energy �ux J for a regular wave, are de�ned as















Pabs =
EPTO
t

W

CW =
Pabs
J

m



















J =
ρg2

8π
A2
ωT tanh(kh)

(

1 +
2kh

sinh(2kh)

)

W/m

η1 =
CW
2a

(33)

The numeri
al tank 
onsists in a 
ylindri
al and regular domain, 
entered around

the body, see Fig.7. Verti
al and bottom symmetries are used to redu
e the numbers

of nodes. The radius of the numeri
al domain varies a

ording to the in
ident wave

length, RDom = 3λ with a numeri
al absorbing bea
h radius of one wave length. Based

on su

essful mesh and time 
onvergen
e studies, the time and spa
e dis
retisation was


hosen su
h that dt = T/100 and dr = λ/20 or dr = 0.5m for large λ, dr being the size

of the smallest elements of the mesh (on the body and on the free surfa
e 
lose to the

body).

4.2. Linear 
onditions

The in
ident wave 
onsidered is a small amplitude regular wave, in order to allow


omparisons with linear theory. The wave parameters (angular frequen
y ω, period T ,
length λ, amplitude Aω and steepness ǫ = kAω) are given in Table 1.
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Figure 7: Representation of the numeri
al domain for the SHWEC

ω (rad/s) T (s) λ (m) Aω (m) ǫ (%)

1.7 3.7 21.3 0.001 0.03

Table 1: Wave parameters in linear 
onditions

The small wave amplitude ensures linear 
onditions: the wave steepness is very small,

as is the body motion response, despite the fa
t that the value of the spring 
onstant

was 
hosen to a
hieve me
hani
al resonan
e, KPTO = 7.4 105 N/m.

Initially, the PTO damping, BPTO, was set to zero, in order to 
he
k the radiation

damping of the body. The linear and WS solutions of the body heaving motion are

plotted in Fig. 8.

0 1 2 3 4 5 6 7 8
t/T

-7.002

-7.001

-7

-6.999

-6.998

z 
(m

)

Heave motion

Z
WS

Z
Linear

Figure 8: Linear and WS heave motion responses, in linear 
onditions (ω = 1.7 rad/s, Aω = 0.001 m,

kPTO = 7.4106 N/m, BPTO = 0 kg/s)
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Figure 9: Added Mass and Radiation Damping in Heave for the SHWEC, given by the linear potential

�ow theory.

Ex
ellent agreement between the linear and WS solutions is observed. Harmoni


analysis 
ould not be performed, sin
e the steady state was not a
hieved due to the small

damping. Nevertheless, the agreement validates the implementation of the equations in

the WS 
ode.

The PTO damping was then set to BPTO = 5.104 kg/s, while keeping all other

parameters 
onstant. This value is approximately twi
e the maximum of the radiation

damping of the SHWEC, see Fig. 9. A steady state was a
hieved after approximately �ve

wave periods. In addition to heave motion, the a

umulated absorbed energy through

the PTO is plotted both for the linear and WS solutions in Fig. 10.

As for the previous 
ase, good agreement between linear and WS solutions was ob-

tained in linear 
onditions. A small a

umulated error in the absorbed energy 
an be

observed, whi
h leads to an o�set between the two solutions. It is believed that this is due

to the di�erent starting pro
edures in the two numeri
al approa
hes or an a

umulated

numeri
al error.

The mean absorbed power, 
apture width and WEC e�
ien
y were 
al
ulated on the

three periods after the steady state was rea
hed and 
ompared in Table 2. The wave

energy �ux per unit length of wave front related to this in
ident wave is J = 0.014 W/m.

The relative errors in the WEC performan
e values between the linear and WS results
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Figure 10: Linear and WS heave motion and absorbed energy, in linear 
onditions (ω = 1.7 rad/s,

Aω = 0.001 m, kPTO = 7.4106 N/m, BPTO = 5.104 kg/s)

Pabs (W) BJ (m) η1 (%)

Linear Theory 0.0369 2.61 37.3

CN_WS 0.0367 2.59 37.0

Table 2: Mean absorbed power, 
apture width and WEC e�
ien
y given by the linear and WS solutions,

in linear 
onditions

are less than 1% validating the implementation of the wave-body motion 
oupling in the

WS 
ode.

The body motion and power output responses were then 
onsidered for a set of

in
ident wave angular frequen
ies, ranging from 0.4 to 2 rad/s. The wave amplitude and

PTO damping were kept 
onstant (Aω = 0.001 m, BPTO = 5.104 kg/s, respe
tively).

The sti�ness 
onstant was tuned for ea
h frequen
y in order to a
hieve resonan
e. The

body is meshed using approximately 2000 nodes and the free surfa
e between 1000 and

1600 nodes, depending of the in
ident wavelength. The resulting 
omputational time per

wave period is TCPU/T ≃ 800. The geometri
al error on the body, due to the meshing, is

below 1%. The body motion and power output responses are shown for the two solutions

in Fig. 11. The maximum re
overable power for an axisymmetri
 absorber in heave J/k
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is also plotted for 
omparison.
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Figure 11: SHWEC motion and power output responses, in linear 
onditions (Aω = 0.001 m, BPTO =
5.104 kg/s, the sti�ness KPTO is tuned to adjust the natural frequen
y to the wave ex
itation).

Perfe
t agreement 
an also be observed between the linear and WS results a
ross the

whole range of frequen
ies. This validates the WS model.

4.3. Nonlinear 
onditions

With the WS 
ode, two di�erent kinds of nonlinearity 
an be taken into a

ount and

studied. The �rst relates to the 
hange in body geometry and position relative to the

free surfa
e. The se
ond relates to the steepness of the in
ident wave. These are usually

related, sin
e large wave amplitudes lead to large body motions, and hen
e it is di�
ult

to quantify the e�e
t of one nonlinearity as distin
t from the other. For this reason, we

�rst present the normalized responses in heave, and mean absorbed power, for the same

body parameters (radius a = 3.5 m and submergen
e d = 7 m). The range of angular

frequen
ies is still 0.4 rad/s to 2 rad/s, but the wave amplitude is now equals to 0.85 m;

it follows that the wave steepness ranges from 2.6% to 31%. Similar PTO parameters

are used: the sti�ness is tuned to a
hieve resonan
e with the wave frequen
y, while the

damping is kept 
onstant at BPTO = 5.104 kg/s.

The domain is meshed the same way as in linear 
onditions : with 2000 nodes on

the body and between 1000 and 1600 on the free surfa
e depending on the in
ident

wavelength.

The linear and WS results show signi�
ant di�eren
es in these nonlinear 
onditions.

These dis
repan
ies are most notable on two ranges of angular frequen
y. The �rst is fre-

quen
ies greater than 1.3 rad/s, i.e. wave steepness greater than 20%. These di�eren
es

are thus related to the in
ident wave nonlinearities that are taken into a

ount in the
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Figure 12: SHWEC motion and power output normalized responses, in nonlinear 
onditions (Aω =
0.85 m, BPTO = 5.104 kg/s and sti�ness tuned to adjust the natural frequen
y to the wave ex
itation)

WS approximation. With a 
onstant PTO damping for all the frequen
ies, the lowest

normalized response in heave are obtained for this range of frequen
ies. An interesting

result is that linear theory tends to underestimate up to 15% the RAO in heave and

30% the mean absorbed power, 
ompared to the WS approximation, for this range of

frequen
ies. However, with a PTO damping tuned for ea
h frequen
y, we should be able

to get the maximum re
overable energy (J/k) with both linear and WS approximation.

The dis
repan
ies between linear and WS solutions are then expe
ted to be smaller in

this 
ondition.

The se
ond range of frequen
ies is between 0.8 rad/s and 1.3 rad/s. The wave steep-

ness in this 
ase is lower than 15%, whi
h means there are fewer wave nonlinearities.

In 
ontrast, with the RAO in heave ex
eeding 2, body nonlinearities are important.

The impli
ation is that the RAO in heave, and thus mean absorbed power, tend to be

overestimated by linear theory, up to 4.5% and 9% respe
tively.

Sin
e higher performan
e is a
hieved in this se
ond range of frequen
ies, the WEC

will be designed to work mainly in this range, leading to an overestimation of the perfor-

man
e of the WEC by the linear theory. However, this is dependent on the geometri
al

parameters of the body: the nonlinearities related to large wave amplitude and large

motion responses are not always as distin
t as here. This de
oupling in our 
ase allows

us to study the two kind of non linearities separately.

4.3.1. Motion nonlinearities

Motion nonlinearities are studied �rst, for the angular frequen
y giving the highest

motion response. The wave 
hara
teristi
s and PTO parameters are given in Table 3.
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ω (rad/s) T (s) λ (m) Aω (m) ǫ (%) kPTO (N/m) BPTO (kg/s)

1 6.3 60 1 13% 3.105 5.104

Table 3: Wave and PTO parameters produ
ing the highest motion response
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Figure 13: Linear, and WS heave motion, for
e responses, in a large motion 
ase (ω = 1 rad/s, Aω = 1m,

kPTO = 3.106 N/m, BPTO = 5.104 kg/s)

The linear 
ondition of small motions is not respe
ted: by the end of the simulation,

the motion amplitude rea
hes up to 2 m (50% of the buoy radius a). This results in


lear di�eren
es between the two approa
hes: the steady state response amplitude is

overestimated by linear theory. Nonlinearities are also visible in the hydrodynami
 for
e.

When the body moves 
lose to the free surfa
e, the peaks are deformed in 
omparison

with the linear solution. This arises from a lo
al modi�
ation of the radiation damping,

leading to a small phase shift for a short time. When the body moves further from the

free surfa
e, the radiation damping, and thus the phase shift, return to their mean value.

These nonlinearities are thus 
ompletely related to the nonlinearities in the body position

rather than the large wave amplitude.

These nonlinearities a�e
t the mean absorbed power signi�
antly. Table 4 summarizes

the di�erent quantities related to energy absorption, 
al
ulated in the same manner as in

linear 
onditions, for the linear and WS approximations. For the in
ident wave 
hosen,

the wave energy �ux is J = 24.1 kW/m.

The di�eren
es between the two numeri
al approa
hes in their 
al
ulation of mean

absorbed power, and thus also 
apture width and 
apture width ratio, are substantial:
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Pabs (kW) BJ (m) η1 (%) tCPU/T

Linear Theory 107 4.44 63 < 1

CN_WS 93 3.85 55 700

Table 4: Mean absorbed power, 
apture width and e�
ien
y, for the linear and WS approximations, in

a large motion 
ase (ω = 1 rad/s, Aω = 1 m, kPTO = 3.106 N/m, BPTO = 5.104 kg/s)

linear theory, whi
h does not take into a

ount the large body motion, overestimates

the performan
e of the WEC, yielding results that ex
eed those produ
ed by the WS

approximation by nearly 15%.

This large wave amplitude, however, pushes our WS �ow solver to its limit: the body

is almost rea
hing the free surfa
e. More importantly, the validity of the WS assumption

needs to be 
he
ked. The in
ident and perturbation 
omponents of the wave elevation

are thus plotted in Fig. 14 for a point on the free surfa
e and above the sphere 
enter.
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Figure 14: In
ident and perturbation wave elevation, above the SHWEC gravity 
enter, in a large

motion 
ase (ω = 1 rad/s, Aω = 1 m, kPTO = 3.106 N/m, BPTO = 5.104 kg/s)

The total wave elevation is similar to the in
ident wave elevation, but demonstrates

more nonlinearities (higher peaks, �atter troughs and some higher order 
omponents).

These di�eren
es, whi
h arise from from the perturbation 
omponent, are relatively small


ompared to the in
ident wave elevation. They are related to the emission of small

waves, when the body 
omes 
lose to the free surfa
e. These waves die out qui
kly, and

hen
e their maximum amplitude o

urs dire
tly above the sphere - whi
h is where the

data plotted in Figure 14 were re
orded. The WS 
ondition that the perturbation wave

elevation should be small 
ompared to the in
ident wave elevation is not ful�lled in this
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spe
i�
 
ase. However this hypothesis is also a 
ondition of linear theory, whi
h further

requires that amplitude of motion should be small, whi
h is also not the 
ase here. The

WS approximation is thus likely to present more a

urate physi
al results than the linear

theory.

4.3.2. Wave nonlinearities

Next, we investigated wave nonlinearities, i.e. waves with large steepness and rela-

tively small body motion response. The wave 
hara
teristi
s and PTO parameters 
hosen

are given in Table 5. The mean immersion is de
reased to d = 5 m, in order to in
rease

ω (rad/s) T (s) λ (m) Aω (m) ǫ (%) kPTO (N/m) BPTO (kg/s) d (m)

2 3.14 17 0.85 31% 9.5.105 5.104 5

Table 5: Wave and PTO parameters in steep waves

the in�uen
e of the nonlinearities from the wave.
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Figure 15: Linear, WS heave motion, for
e, in a steep wave 
ase (ω = 2 rad/s, Aω = 0.85 m, kPTO =
9.5105 N/m, BPTO = 5.104 kg/s, d = 5 m)

The linear, WS solutions of the response in heave motion and di�ra
tion-radiation

for
es are plotted in Fig. 15. The small amplitude motion response assumption is valid in

this 
ase: the heave motion maximum amplitude is 0.5 m (0.15a). However, the in
ident
wave approximation di�ers between the two methods. This is 
learly visible in the for
e

response, where the WS solution features higher peaks and �atter troughs than the linear
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solution. The Froude-Krylov for
e, not plotted, displays similar di�eren
es between the

two solutions. This dire
tly a�e
ts the motion response (smaller for the linear theory)

and hen
e the absorbed energy.

Table 6 summarizes the di�erent quantities related to the energy absorption, 
al
u-

lated in the same manner as in linear 
onditions, for the two approximations. For the

sele
ted in
ident wave, the wave energy �ux is J = 8.7 kW/m.

Pabs (kW) BJ (m) η1 (%) tCPU/T

Linear Theory 19.7 2.27 32 < 1

CN_WS 25.3 2.91 42 800

Table 6: Mean absorbed power, 
apture width and e�
ien
y, for the linear and WS approximation, in

a steep wave 
ase (ω = 2 rad/s, Aω = 0.85 m, kPTO = 9.5105 N/m, BPTO = 5.104 kg/s, d = 5 m)

Linear theory, whi
h does not take into a

ount nonlinear waves, predi
ts lower per-

forman
e in steep waves. This result is unexpe
ted.

Again it is important to study the validity of the WS hypothesis in this 
ase. To

this end, the in
ident and perturbation wave elevations are plotted in Fig. 16 where the

di�ra
tion is the largest, approximately one wave length after the SHWEC. The linear

in
ident wave elevation, used in linear theory, is also plotted to illustrate di�eren
es

arising from the in
ident wave model.
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Figure 16: In
ident (linear and nonlinear) and perturbation wave elevations, one wave length after the

SHWEC, in a steep wave 
ase (ω = 2 rad/s, Aω = 0.85 m, kPTO = 9.5105 N/m, BPTO = 5.104 kg/s,

d = 5 m)
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Figure 17: Diagram of the SOWSC and its geometri
al 
hara
teristi
s

After a few periods, the perturbation wave elevation is lo
ally almost as large as the

in
ident wave elevation. The total wave (sum of in
ident and perturbation) is a larger but

steeper wave, whi
h is highly likely to break. This phenomenon is related to the emission

of small waves due to the di�ra
tion, when the body is 
lose to the free surfa
e. In this


ase, the fundamental assumption of WS -that the perturbation is small 
ompared to the

in
ident wave elevation - is not respe
ted. However, again, this is also an assumption of

linear theory, whi
h further requires the in
ident wave to be linear (small steepness), a


ondition that is not ful�lled either.

Thus the validity of the WS hypothesis must be questioned. However, by taking into

a

ount nonlinearities, it at least o�ers a better model of the physi
s than linear theory.

5. Appli
ation to a submerged os
illating wave surge 
onverter

5.1. WEC des
ription

The submerged os
illating wave surge 
onverter (SOWSC) that served as inspiration

for this se
tion is the WaveRoller WEC, developed by AW-Energy [11℄. Lo
ated near-

shore (8-20m depth), it 
onsists of a �ap atta
hed to the seabed along one edge. This

edge be
omes an axis around whi
h the �ap rotates in a ba
k and forth motion under

the in�uen
e of the wave surge. A half-s
ale devi
e was installed in open sea in 2007. An

array of three prototypes was deployed in Portugal in 2009.
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The PTO of the devi
e is modeled here in its simplest form, as in the previous 
ase,

using a linear model in
luding sti�ness and damping terms. The shape and dimensions

of the devi
e are informed by the latest design, see Fig. 17 and Table 7. The water depth

is H = 9 m.

height (m) width (m) thi
kness (m) rotation 
enter (m) immersion (m)

l = 6 a = 4 b = 1 c = 2.5 d = 5

Table 7: SOWSC geometri
al 
hara
teristi
s

As for the Ceto, the PTO spe
i�
ations, spring sti�ness and damping 
oe�
ient, are


hosen in su
h a way as to a
hieve both resonan
e for ea
h wave frequen
y KPTO =
(I55 +µ55)ω

2
and a short transient response (< 8T ). The added inertia µ55, required for

estimation of the resonan
e frequen
y, is given by the linear model.

The PTO damping also being linear, the instantaneous power is simply given by:

PPTO(t) = BPTO × θ̇(t)2 (34)

The numeri
al tank is similar to that used for the SHWEC 
ase (see Fig.18). Mesh and

time 
onvergen
e studies showed no di�eren
e to the SHWEC 
ase, so the same time and

spa
e parameters are used. The body and free surfa
e are meshed using approximately

1200 and 1800 nodes respe
tively, leading to a mean 
omputational time per wave period

of TCPU/T = 600.
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Figure 18: Representation of the numeri
al domain for the SOWSC

5.2. Linear 
onditions

The �rst 
ase 
onsidered is small amplitude in
ident waves. The motion and power

responses are 
al
ulated for frequen
ies ranging from ω = 0.42 to 2 rad/s, with a wave

amplitude Aω = 0.001 m. The wave steepness, ǫ = kAω, is thus less than 0.04% for all
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frequen
ies. The motion and power responses are 
al
ulated using a Fourier analysis and

plotted in Fig. 19.
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Figure 19: SOWSC Motion and power responses, in linear wave 
onditions (Aω = 0.001 m, BPTO =
5.104 kg.m2/s, the sti�ness KPTO is tuned to adjust the natural frequen
y to the wave ex
itation)

The motion and power responses show ex
ellent agreement between WS and linear

results in linear 
onditions; for the power response, the di�eren
e is less than 1%.

5.3. Nonlinear 
onditions

To 
ompare the methods under nonlinear 
onditions, the wave amplitude was then set

to Aω = 0.5 m, 
ausing the wave steepness to vary in the range 3.4% to 20.4%. Again,

the motion and power responses were predi
ted for the two numeri
al approa
hes, as

depi
ted in Fig. 20.

Signi�
ant di�eren
es between the two approa
hes are now observed: at its peak, the

power response predi
ted by the linear approa
h is nearly 200% that predi
ted by the

WS approa
h. Sin
e the angular motion RAO ranges between 0.5 to 1.5 rad/m, with a

wave amplitude of Aω = 0.5 m, it follows that the total angular 
ompass of the �ap is

between 10 to 40◦, while the traje
tory of the top of the �ap ranges from 1.4 m to 4.1 m.

These motions are large 
ompared to the dimensions of the �ap, leading to nonlinearities

that are not taken into a

ount by the linear model. Some of these nonlinearities are a


onsequen
e of the small depth that is a 
hara
teristi
 of the SOWSC; however, the large

amplitude motion seems to be the predominant sour
e of nonlinearities in this 
ase.

Sin
e linear theory does not take into a

ount these important body motion nonlin-

earities, linear theory overestimates energy performan
e for this type of WEC. However,
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Figure 20: SOWSC Motion and power responses, in nonlinear 
onditions( Aω = 0.5 m, BPTO =
5.104 kg.m2/s, the sti�ness KPTO is tuned to adjust the natural frequen
y to the wave ex
itation)

it may be that this is highly dependent on the 
hoi
e of PTO sti�ness (that was tuned

in this study in order to a
hieve resonan
e for ea
h in
ident wave frequen
y).

The validity of the WS assumption is 
he
ked in Fig. 21, for ω = 0.8 rad/s. Pertur-

bation waves emitted from the body 
an be
ome as large as the in
ident wave, primarily

be
ause of the large body motions. In fa
t it is possible to observe two peaks per pe-

riod, related to the body approa
hing the free surfa
e twi
e per 
y
le. The total wave

elevation is still globally similar to the in
ident wave elevation, but demonstrates more

pronoun
ed nonlinearities. Hen
e, the assumption of WS, that the perturbation should

be small 
ompared to the in
ident wave elevation, might not be ful�lled lo
ally. How-

ever, again, this is also an assumption of the linear theory, whi
h further requires the

amplitude of motion and the steepness of the in
ident wave to be small - 
onditions that

are not ful�lled in this 
ase either. Thus, the a

ura
y of the model provided by the WS

approximation is expe
ted to be better than the linear theory.

For OWSC, it is well known that linear theory over-predi
ts the energy performan
e

in 
omparison to experiment. The di�eren
e is usually attributed to vis
ous damping

and vortex shedding. Our study shows that nonlinear e�e
ts due to large amplitude body

motion are responsible for a large share of the power redu
tion. Further work is required

to 
larify whi
h me
hanisms are the most important (vortex shedding or nonlinear e�e
ts

due to large body motion).
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Figure 21: In
ident and perturbation wave elevation, above the SOWSC, for ω = 0.8 rad/s, Aω = 0.5 m

6. CONCLUSIONS

A new �ow solver based on the WS method has been developed to model the parti
-

ular 
hara
teristi
s of various WECs. Details of the implementation of the method are

reported in this paper. For studying free moving bodies, the equations of motion have

been integrated into the BVP of the time derivative of the velo
ity potential, following

the Impli
it Condition method. An alternative expression, developed in [29℄, was used

for the body 
ondition of this BVP, unifying the two expressions given by Cointe [28℄ and

Tanizawa [27℄. The WS 
ode has been veri�ed for a Submerged Heaving Wave Energy

Converter (SHWEC) and a Submerged Os
illating Wave Surge Converter (SOWSC) by


omparing numeri
al simulations in linear 
onditions against results from linear theory.

Time tra
es of the motion response and hydrodynami
 for
es have shown ex
ellent agree-

ment for di�erent ex
itation frequen
ies, with or without PTO damping. The motion

and power responses for a wide range of frequen
ies have then been studied, using a

Fourier analysis. The di�eren
es between the two models have been shown to be smaller

than 1% in both 
ases.

Moving to nonlinear 
onditions, with large body motions and large in
ident wave

steepness, signi�
ant di�eren
es are observed between linear theory and the WS method.

For large body motions, linear theory tends to overestimate the motion and power re-

sponses, up to 200% for the SOWSC. In 
ontrast, linear theory underestimates the re-

sponse in the presen
e of nonlinearities related to steep in
ident waves. In 
omparisons

of linear theory to nonlinear models, overestimation is more 
ommonly 
ited than under-

estimation. In the former 
ase, the range of frequen
ies over whi
h the overestimation is

29



observed is 
lose to the operating frequen
ies of the WEC, for whi
h the power response

is maximum. These di�eren
es show that body nonlinearities may have a signi�
ant

impa
t on the performan
e of WEC. Thus, in Wave to Wire models of WECs, it may

be bene�
ial to use the WS method or at least the body exa
t theory method, rather

than linear theory alone. For the two nonlinear 
ases, the 
pu time for the WS 
ode was

two orders of magnitude greater than the real time simulated (

tCPU (WS)
T

≃ 800), with
T = 6.3s and 3.14s respe
tively. The WS 
ode 
an still yield the RAO for a set of 70

frequen
ies in a reasonable 
pu time. Of 
ourse, 
omputational time is greatly redu
ed

with linear potential theory. With the open sour
e linear BEM 
ode, Nemoh, it takes a

few minutes to 
al
ulate the entire database of �rst-order 
oe�
ients for a typi
al mesh

size of a few hundred panels, and less than a se
ond to simulate the response for one

wave period in the time domain. The 
omputational time for the CN_WSC was also


ompared to that of a fully nonlinear numeri
al wave tank, in [26℄. It was found that the

CN_WSC is roughly one order of magnitude faster than the fully nonlinear numeri
al

wave tank.

It has also been shown that the assumptions of the WS method should be veri�ed a

posteriori. Certainly, large amplitude motion may lead to large perturbations. However,

although the WS method may not be valid from time to time due to the lo
al deforma-

tion of the in
ident wave, its results are still expe
ted to be more realisti
 in nonlinear


onditions when 
ompared with results from linear theory. Nevertheless, 
omplementary

studies 
omparing these results with fully nonlinear solvers or experiments may be re-

quired to assess the validity of the CN_WSC. Dissipation due to vis
osity and turbulent

�ows are not modelled in potential �ow theory. These phenomena 
ould have a signif-

i
ant impa
t on the performan
e of WECs with large amplitude motion, parti
ularly

OCN_WSCs [42℄. It is thus important to 
ompare the results of the numeri
al mod-

els with experiments, in order to quantify the main sour
es of performan
e redu
tion:

nonlinearities related to large body motion, or dissipation due to vis
ous e�e
ts.

In this work, only submerged WECs were 
onsidered. Future work will 
onsider

�oating bodies. This will require development of methods for tra
king and updating

the waterline and automati
 remeshing of the free surfa
e. For 
onsidering irregular

waves, it may be interesting to 
ouple the CN_WSC with a High Order Spe
tral (HOS)

wave propagation model [32℄. Coupling with a multi-body dynami
 algorithm may also

be required to deal with WECs 
omposed of multiple bodies with 
omplex kinemati


relationships. An extension to fully nonlinear theory is also possible, exploiting the past

experien
e of the laboratory in this domain [13, 23, 16, 24℄. Finally, the CN_WSC has

not yet been parallelized, whi
h has the potential to greatly redu
e the 
omputational

time.
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AppendixA. Development of the integral equations with a linear dis
retiza-

tion

The two integral equations used for the solution of the boundary value problem are:

∫∫

S

∂φ(xl)

∂n
G(x,xl)dS (A.1)

∫∫

S

φ(xl)
∂G(x,xl)

∂n
dS (A.2)

The integrals 
an be evaluated by summing over ea
h element of the �uid domain

boundary. The dis
retization, i.e. the variation of the quantities φ and

∂φ
∂n

a
ross one

element, is linear. Analyti
al expressions for the 
onstant panel approximation have

been des
ribed previously by Guevel [37℄. The extension of these analyti
 expressions to a

pie
ewise linear approximation was des
ribed by Ferrant [25℄, and implemented in [13, 23℄.

In addition to the improvement in a

ura
y a�orded by this pie
ewise linear method, the

s
heme is espe
ially e�
ient, in terms of the ratio between the number of unknowns and

the number of panels (typi
ally 
lose to 1:2). Higher order dis
retizations 
an provide

even greater a

ura
y, but rely on numeri
al solution, whose asso
iated 
omputational

times are higher than with the analyti
al 
al
ulations. The linear dis
retization was thus


hosen as a good trade-o� between a

ura
y and 
omputational time.

AppendixA.1. Dis
retization

The dis
retization is based on triangular elements, with quantities varying linearly

a
ross the elements.

AppendixA.1.1. Parametri
 system

x1 x2

x3

u

v
xG

Figure A.22: Parameters

The following parameters are de�ned on ea
h element, as seen in �g A.22

x = x1 + u× x1x2 + v × x1x3 (A.3)

This dis
retization is isoparametri
 : the parametri
 fun
tion f des
ribes the geometry

and the variations in the quantities.

f(x) = f(x1) + u× (f(x2)− f(x1)) + v × (f(x3)− f(x1))

= (1− u− v)× f(x1) + u× f(x2) + v × f(x3)
(A.4)
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The 
entre of gravity of the element is lo
ated at (u, v) =
(

1
3 ,

1
3

)

, leading to:











xG =
x1

3
+

x2

3
+

x3

3

f(xG) =
1

3
f(x1) +

1

3
f(x2) +

1

3
f(x3)

(A.5)

Sin
e the fun
tion f varies linearly, its lo
al derivatives are 
onstant on the element. It


an then be expressed, using the surfa
e gradient ∇sf , as:

f(x) = f(xG) +∇sf · xGx (A.6)

The surfa
e gradient has a zero normal derivative, in 
ontrast to the total gradient.

∇sf = ∇f − (∇f · n)n (A.7)

AppendixA.1.2. Gradient expression

The expression for the surfa
e gradient requires the lo
al derivatives of the fun
tion

f , along u and v:










f,u(x) =
∂f(x)

∂u
= f(x2)− f(x1)

f,v(x) =
∂f(x)

∂v
= f(x3)− f(x1)

(A.8)

and the lo
al derivatives of the parametri
 system:











x,u =
∂x

∂u
= x1x2

x,v =
∂x

∂v
= x1x3

(A.9)

The metri
 tensor is then de�ned as:

G =





‖ x1x2 ‖2 x1x2 · x1x3

x1x2 · x1x3 ‖ x1x3 ‖2





(A.10)

and its inverse is:

g = G−1 =
1

∆





‖ x1x3 ‖2 −x1x2 · x1x3

−x1x2 · x1x2 ‖ x1x2 ‖2





(A.11)

where ∆ =‖ x1x2 ‖2 × ‖ x1x3 ‖2 − (x1x2 · x1x3)
2
.

The gradient of the parametri
 fun
tion is then given by [43℄:

∇f =
∂f

∂u
×
(

g11
∂x

∂u
+ g12

∂x

∂v

)

+
∂f

∂v
×
(

g21
∂x

∂u
+ g22

∂x

∂v

)

+
∂f

∂n
× n (A.12)
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from whi
h it follows that the surfa
e gradient is:

∇sf =
f(x2)− f(x1)

∆
×
(

‖ x1x3 ‖2 ×x1x2 − x1x2 · x1x3
2
)

+
f(x3)− f(x1)

∆
×
(

‖ x1x2 ‖2 ×x1x3 − x1x2
2 · x1x3

)

(A.13)

This 
an be expressed as a fun
tion of the values of f on the nodes:

∇sf =
=
Σ ·









f(x1)

f(x2)

f(x3)









(A.14)

where



















=
Σ =

1

∆
×
[

−(A+B) A B
]

A = ‖ x1x3 ‖2 ×x1x2 − x1x2 · x1x3
2

B = ‖ x1x2 ‖2 ×x1x3 − x1x2
2 · x1x3

(A.15)

AppendixA.2. Integral equation for the normal velo
ity

The integral Iσ(x, i) 
an be de
omposed, for ea
h �eld point x, on ea
h element Si
of the �uid domain boundary. σ refers to the single sour
e distribution that generates

the normal velo
ity �eld

∂φ
∂n
.

Iσ(x, i) =

∫∫

Si

∂φ(xl)

∂n
G(x,xl)dS (A.16)

The linear variation of the sour
e distribution 
an be written for a point xl ∈ Si as:

σ(xl) = σ(xG) +∇sσ · xGxl (A.17)

The 
enter of gravity, xG, and the surfa
e gradient, ∇sσ, are related to the element Si,
and should also be indexed i. However, this index will be omitted in order to fa
ilitate

the legibility of the following equations.

The integral equation Iσ(x, i) 
an then be written as:

Iσ(x, i) = σ(xG)

∫∫

Si

1

‖ xxl ‖
dS +∇sσ ·

∫∫

Si

xGxl

‖ xxl ‖
dS

= (σ(xG) +∇sσ · xGx)

∫∫

Si

1

‖ xxl ‖
dS +∇sσ ·

∫∫

Si

xxl

‖ xxl ‖
dS (A.18)

Using the Kelvin formula, the se
ond double integral 
an be 
onverted to a 
ontour

integral:

∫∫

S

∇fdS =

∮

C

fnS ∧ dl (A.19)

37



sin
e:

xxl

‖ xxl ‖
= ∇(‖ xxl ‖) (A.20)

leading to:

Iσ(x, i) = (σ(xG) +∇sσ · xGx)

∫∫

Si

1

‖ xxl ‖
dS +∇sσ ·

∮

Ci

‖ xxl ‖ n ∧ dl (A.21)

By using eq A.14, it is possible to isolate values of σ on the nodes:

Iσ(x, i) =





(

1

3
Ī + xGx ·

=
Σ

)∫∫

Si

1

‖ xxl ‖
dS −





∮

Ci

‖ xxl ‖ ×n ∧ dl



 ·
=
Σ



 ·





σ1
σ2
σ3





(A.22)

where Ī is the third dimension identity matrix.

The following integrals are fun
tions of geometri
al 
hara
teristi
s only, dependent

on x and Si:

Sσ =

∫∫

Si

1

‖ xxl ‖
dS and Iσ =

∮

Ci

‖ xxl ‖ ×n ∧ dl

AppendixA.2.1. Analyti
al expression for Sσ
Regular 
ase. An analyti
al expression has been derived by Guevel [37℄, for x 6∈ Si:

Sσ =

3
∑

k=1

N t
k

2dk
log

(

N1
k

D1
k

)

− 2 | Z | arctan
(

N t
k

Dt
k

)

(A.23)

Where:



























































Rk = ‖ xkx ‖
dk = ‖ xkxk+1 ‖
Z = xGx · n
N1
k = Rk+1 +Rk + dk

D1
k = Rk+1 +Rk − dk

N t
k = 2xkx · (n ∧ xkxk+1)

Dt
k = (Rk+1 +Rk)

2 − d2k + 2 | Z | ×(Rk+1 +Rk)

(A.24)

If x ∈ Si, i.e. x = xk with k = 1, 2 or 3, a singularity o

urs.

x = xk ⇒ (Rk, dk, N
1
k ,D

1
k, N

t
k,D

t
k) = (0, Rk+1, 2×Rk+1, 0, 0, 0) (A.25)
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x = x1

x2

x3

i
j

p q

Figure A.23: Parameters for the singular 
ase

Singular 
ase. Suppose x = x1. Any solution found for this parti
ular 
ase 
an be

transposed for x = x2 or x = x3, by simply reordering the indexes.

The following parameters are de�ned for the element Si, see �g A.23:















i = 1
2(x1x2 + x1x3) = −x1 +

1
2 (x2 + x3)

j = x2x3

h = i ∧ j

(A.26)

xxl = pi+ pqj (p, q) ∈ [0, 1] × [−1

2
,
1

2
] (A.27)

We introdu
e new variables p′, q′ as follows:



















p = p′ ×
√

~j2

∆

q =

√
∆

j2

(

q′ +
i · j√
∆

)

with ∆ = i2 × j2 − (i · j)2 (A.28)

The integration limits are thus:

(p′, q′) ∈
[

0,

√

∆

j2

]

× [−a+ b, a+ b] with a =
1

2
× j2√

∆
and b =

(i · j)√
∆

(A.29)

The elementary surfa
e dS is:

dS =‖ h ‖ pdpdq =‖ h ‖ p′ ×
√

j2

∆
×
√

j2

∆
dp′ ×

√
∆

j2
dq′ =

‖ h ‖√
∆
p′dp′dq′ (A.30)
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It is then possible to write the square norm of xxl as:

‖ xxl ‖2 = (p × i+ pq × j)2 = p2 × i2 + q2 × j2 + 2p2q × i · j
= p2 ×

(

i2 + q2 × j2 + 2q × i · j
)

= p′2
j2

∆
×
[

i2 + q′2 × ∆

j4
× j2 +

(i · j)2
j4

× j2 − 2q′
√
∆× i · j
j4

× j2

+2q′
∆

j2
− 2

(i · j)2
j2

]

= p′2
j2

∆
×
[

i2 + q′2 × ∆

j2
− (i · j)2

j2

]

= p′2
j2

∆
×
[

i2 × j2 − (i · j)2
j2

+ q′2 × ∆

j2

]

(A.31)

leading to:

‖ xxl ‖2= p′2(1 + q′2) (A.32)

The integral Sσ 
an be written as:

Sσ =

∫∫

p′×q′

1

p′ ×
√

1 + q′2
‖ h ‖√

∆
p′dp′dq′

=
‖ h ‖√

∆
×
√

∆

j2
×
∫

q′

1
√

1 + q′2
dq′

=
‖ h ‖
√

j2
×
∫

q′

1
√

1 + q′2
dq′

Sσ =
‖ h ‖
√

j2
× [asinh(a+ b)− asinh(−a+ b)] (A.33)

or:

Sσ =

∫∫

Si

1

‖ xxl ‖
dS =

‖ h ‖
√

j2
× ln(

a+ b+
√

1 + (a+ b)2

−a+ b+
√

1 + (−a+ b)2
) (A.34)

AppendixA.2.2. Analyti
al expression for Iσ

This integral 
an be evaluated on ea
h side of the element. Consider a referen
e


ase, with a segment [xA,xB ], a point xl on this segment and the �eld point x. For this


on�guration:

I
ø

=

xB
∫

xA

‖ xxl ‖ dl · s (A.35)
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+

+

xA

xB

x

xl

t
s

n

Figure A.24: Referen
e 
ase

where the lo
al base (t, s,n) is de�ned as:











































t =
xAxB

‖ xAxB ‖

s = n ∧ t =
n ∧ xAxB

‖ xAxB ‖

t =
‖ xAxl ‖
‖ xAxB ‖ , t ∈ [0, 1]

dl = ‖ xAxB ‖ ×dt

(A.36)

The square norm of xxl 
an be written as:

‖ xxl ‖2 = ‖ xAxl ‖2 + ‖ xAx ‖2 −2xAxl · xAx

= ‖ xAxl ‖2 + ‖ xAx ‖2 −2
‖ xAxl ‖
‖ xAxB ‖xAxB · xAx

= t2× ‖ xAxB ‖2 + ‖ xAx ‖2 −2t× xAxB · xAx

=

(

t× ‖ xAxB ‖ −xAxB · xAx

‖ xAxB ‖

)2

+ ‖ xAx ‖2 −
(

xAxB · xAx

‖ xAxB ‖

)2

(A.37)

This is equivalent to:

‖ xxl ‖2= K2(1 + q2) (A.38)

with the following 
hange of variables:







































































K2 = ‖ xAx ‖2 −
(

xAxB · xAx

‖ xAxB ‖

)2

q =
1

K
×
(

t× ‖ xAxB ‖ −((xAxB) · (xAx))
2

‖ xAxB ‖

)

, q ∈ [q0, q1]

dq =
‖ xAxB ‖

K
× dt

q0 = − xAxB · xAx

‖ xAxB ‖ ×K

q1 =
‖ xAxB ‖2 −xAxB · xAx

‖ xAxB ‖ ×K

(A.39)
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Introdu
ing these variables to the integral I
ø

yields:

I
ø

=

∫ q1

q0

K2
√

1 + q2dqs

= K2 ×
∫

asinh(q1)

asinh(q0)

√

1 + sinh(x)2 × cosh(x)dx× s with q = sinh(x)(A.40)

(A.41)

The analyti
 solution for this integral is then:

I
ø

=
K2

2

[

b− a+
sinh(2b)− sinh(2a)

2

]

s (A.42)

with







a = asinh(q0)

b = asinh(q1)
(A.43)

Singular 
ase. While the original integral has no singularity, the solution developed here

has one: if K = 0, the expression for q is not valid. However, K = 0 =⇒ x ∈ (xA,xB),
leading to the following simple solution for this 
ase:

I
ø

=

xB
∫

xA

‖ xxl ‖ ×dl · n ∧ t

=

xB
∫

xA

‖ xxA ‖ + ‖ xAxl ‖ × xAxB · xAx

‖ xAxB ‖‖ xAx ‖dls

= ‖ xAxB ‖‖ xAx ‖ s+

1
∫

0

xAxB · xAx

‖ xAxB ‖‖ xAx ‖t ‖ xAxB ‖2 dt× s

= ‖ xAxB ‖
(

‖ xAx ‖ +
xAxB · xAx

2× ‖ xAx ‖

)

s

AppendixA.3. Integral equation for the potential

The integral Iµ(x, i) 
an be de
omposed, for ea
h �eld point x, on ea
h element Si
of the �uid domain boundary. µ refers to the sour
e doublet distribution that generates

the potential �eld φ.

Iµ(x, i) =

∫∫

Si

φ(xl)
∂G(x,xl)

∂n
dS (A.44)

The singular 
ase for this integral is inherent in the 
al
ulation of the solid angle and

does not require spe
ial treatment:

Ω(x)φ(x) =

∫∫∫

D

φ(xl)∆G(x,xl)dV (A.45)
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For the regular 
ase, a method similar to that used for the integral Iσ(x, i) is used,
based on the linear expression for µ(xl) = φ(xl) on the element Si:

µ(xl) = µ(xG) +∇sµ · xGxl (A.46)

The integral Iµ(x, i) 
an be written as:

Iµ(x, i) = (µ(xG) +∇sµ · xGx)

∫∫

Si

∂G(x,xl)

∂n
dS+∇sµ ·

∫∫

Si

∂G(x,xl)

∂n
×xxldS (A.47)

The se
ond integral 
an be 
onverted to a 
ontour integral by using the following ve
tor

�eld:

F = −G(x,xl) (∇sµ ∧ xxl) (A.48)

F =







































cµ × (yl − y)− bµ × (zl − z)
√

(xl − x)2 + (yl − y)2 + (zl − z)2

aµ × (zl − z)− cµ × (xl − x)
√

(xl − x)2 + (yl − y)2 + (zl − z)2

bµ × (xl − x)− aµ × (yl − y)
√

(xl − x)2 + (yl − y)2 + (zl − z)2

with ∇sµ = [aµ, bµ, cµ] (A.49)

The normal 
omponent of the rotational of this fun
tion is the integrand of the se
ond

surfa
e integral of Eq. A.47:

rot(F) = [aµ(xl − x) + bµ(yl − y) + cµ(zl − z)]×∇G(x,xl)
−2×G(x,xl)×∇sµ+G(x,xl)×∇sµ

= (∇sµ · xxl)∇G(x,xl)−G(x,xl)∇sµ (A.50)

rot(F) · n =
∂G(x,xl)

∂n
(∇sµ · xxl)−G(x,xl) (∇sµ · n)

=
∂G(x,xl)

∂n
(∇sµ · xxl) (A.51)

Using the fa
t that the normal 
omponent of the surfa
e gradient is zero :

∇sµ · n = 0

Stokes' theorem 
an be used to transform the surfa
e integral to a 
ontour integral:

∫∫

Si

rot(F) · ndS =

∮

Ci

F · dl (A.52)
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The se
ond surfa
e integral of Eq. A.47 thus be
omes:

∫∫

Si

∂G(x,xl)

∂n
(∇sµ · xxl) dS =

∮

Ci

− 1

‖ xxl ‖
(∇sµ ∧ xxl) · dl

= −∇sµ×
∮

Ci

xxl

‖ xxl ‖
∧ dl (A.53)

The integral Iµ(x, i) 
an then be written as:

Iµ(x, i) = (µ(xG) +∇sµ · xGx)

∫∫

Si

∂G(x,xl)

∂n
dS −∇sµ ·

∮

Ci

xxl

‖ xA − x ‖ ∧ dl (A.54)

Using Eq. A.14, it is possible to isolate values of µ on the nodes:

Iµ(x, i) =





(

Ī

3
+ xGx ·

=
Σ

)

×
∫∫

Si

∂G(x,xl)

∂n
dS −





∮

Ci

xxl

‖ xA − x ‖ ∧ dl



 ·
=
Σ



 ·





µ1
µ2
µ3





(A.55)

The following integrals are fun
tions of geometri
al 
hara
teristi
s only, dependent of x

and Si:
Sµ =

∫∫

Si

∂G(x,xl)

∂n
dSP and Iµ =

∮

Ci

xxl

‖ xxl ‖
∧ dl

AppendixA.3.1. Analyti
al expression for Sµ
The following analyti
al solution for the integral Sµ was provided by Guevel [37℄:

Sµ = 2× sign(Z)

3
∑

k=1

arctan

(

N t
k

Dt
k

)

(A.56)



































Rk = ‖ xkx ‖
dk = ‖ xkxk+1 ‖
Z = xGx · n
N t
k = 2xkx · (n ∧ xkxk+1)

Dt
k = (Rk+1 +Rk)

2 − d2k + 2 | Z | ×(Rk+1 +Rk)

(A.57)

AppendixA.3.2. Analyti
al expression for Iµ

The integral Iµ 
an be evaluated on either side of the element Si. Consider a referen
e

ase: a segment [xA,xB ], a point xl on this segment, and the �eld point x, see �g. A.25.
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For this 
on�guration:

I
ø

=

xB
∫

xA

xxl

‖ xxl ‖
∧ dl

= xxA ∧
xB
∫

xA

1

‖ xxl ‖
dl+

xB
∫

xA

✭
✭
✭
✭
✭

xAxl ∧ dl

‖ xxl ‖
(A.58)

Using the same parameters and variables as for integral Iσ, we arrive at a simple

expression for ‖ xxl ‖.

+

+

xA

xB

x

xl

t

Figure A.25: Referen
e 
ase


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























t =
xAxB

‖ xAxB ‖

t =
‖ xAxl ‖
‖ xAxB ‖ , t ∈ [0, 1]

dl = ‖ xAxB ‖ dt

(A.59)

‖ xxl ‖2= K2(1 + q2) (A.60)

where







































































K2 = ‖ xAx ‖2 −
(

xAxB · xAx

‖ xAxB ‖

)2

≥ 0

q =
1

K
×
(

t× ‖ xAxB ‖ −xAxB · xAx

‖ xAxB ‖

)

, q ∈ [q0, q1]

dq =
‖ xAxB ‖

K
× dt

q0 = − xAxB · xAx

‖ xAxB ‖ ×K

q1 =
‖ xAxB ‖2 −xAxB · xAx

‖ xAxB ‖ ×K

(A.61)
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If K2 > 0, the integral I
ø


an be written as:

I
ø

= −K × xxA ∧ xAxB

‖ xAxB ‖

q1
∫

q0

1

K ×
√

(1 + q2)
× dq

= −xxA ∧ xAxB

‖ xAxB ‖ [asinh(q1)− asinh(q0)] (A.62)

or:

I
ø

= −xxA ∧ xAxB

‖ xAxB ‖ ln

(

q1 +
√

1 + q21
q0 +

√

1 + q20

)

(A.63)

A singularity o

urs for K = 0, whi
h means M ∈ (xA,xB). In this parti
ular 
ase,

it 
an be shown that the integral is equal to zero, sin
e (xxl) ∧ dl = 0.
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