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ABSTRACT. A model of the chemostat involving planktonic and attached bacteria competing for a

single nutrient is considered. We study this flocculation model with monotonic growth rates and same

removal rates. We show that this model has at most one positive steady state that is stable as long

as it exists where planktonic and attached bacteria can coexist. According to control parameters, the

operating diagram illustrates the washout and coexistence regions that depend only on the growth rate

of planktonic bacteria. Indeed, flocculation process affects only the density of isolated and attached

bacteria at steady state.

RÉSUMÉ. Dans ce travail, on considère un modèle du chémostat incluant une seule espèce compo-
sée de bactéries planctoniques et attachées en compétition pour une seule ressource. Nous étudions

ce modèle de floculation avec des taux de croissance monotones et le même taux de disparition.

Nous montrons que ce modèle admet au plus un équilibre positif qui est stable dès qu’il existe où

les bactéries planctoniques et attachées peuvent coexister. Selon les paramètres de contrôle, le dia-

gramme opératoire illustre les régions de lessivage et de coexistence qui dépendent que du taux de

croissance des bactéries planctoniques. En effet, le processus de floculation affecte seulement la

densité des bactéries isolées et attachées à l’équilibre.
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1. Introduction

Flocculation is a process wherein microorganisms isolated or planktonic bacteria clus-

ter together to form new flocs and reversibly these flocs can split and liberate isolated

bacteria [9]. The attachment of planktonic bacteria could be also on a wall as biofilms

[1]. In order to understand these flocculation phenomena and predict the outcome of sys-

tem, several extensions of the well-known chemostat model [6, 8] have been proposed

and studied in the literature by considering two compartments of isolated and attached

biomass for each species. This flocculation mechanism can explain the coexistence be-

tween species when the most competitive species inhibits its growth by the formation of

flocs [3, 4, 6, 7]. Indeed, the flocs consume less substrate than isolated bacteria since

they have less access to substrate, given that this access to substrate is proportional to the

outside surface of flocs.

In this paper, we consider the flocculation model proposed in [3] where planktonic

bacteria of density u can stick with isolated bacteria or flocs of density v to form new

flocs, with rate a(u + v)u, (a is a positive constant) and that flocs can split and liberate

an isolated bacteria, with rate bv (b is a positive constant). With same removal rate, the

model take the form











Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = [f(S)−D]u− a(u+ v)u+ bv

v̇ = [g(S)−D]v + a(u+ v)u− bv

(1)

where S(t) denotes the concentration of nutrient in the culture at time t; u(t) and v(t)
denote, respectively, the concentration of planktonic and attached bacteria at time t; f(S)
and g(S) represent, respectively, the per-capita growth rates of planktonic and attached

bacteria; Sin and D denote, respectively, the input concentration of the limiting nutrient

and the dilution rate of the chemostat. In [3], model (1), with distinct removal rates,

has been studied only in the case where attachment and detachment dynamics are fast

compared to growth dynamics. Using singular perturbation methods, the corresponding

reduced model is a density-dependent model.

The model (1) has been studied in [6]. For the more general case where removal rates

are distinct the reader is refereed to [2]. In Section 2, we present the results of [6] and

we recall some of the results of [2]. In Section 3, we give the operating diagram of (1).

The operating diagram is a bifurcation diagram that describes the system behavior when

the two control parameters Sin and D vary, and all biological parameters are fixed. The

operating diagram has not been considered in [2, 6].

We assume the following hypothesis:

(H1) f(0) = g(0) = 0 and f ′(S) > 0 and g′(S) > 0 for all S > 0.

(H2) f(S) > g(S) for all S > 0.

Hypothesis (H1) means that the growth can take place if and only if the substrate is

present. In addition, the growth rates of isolated and attached bacteria increase with the

concentration of substrate. Hypothesis (H2) means that the bacteria in flocs consume less

substrate than isolated bacteria, this means that a lower specific growth rate. Note that

system (1) is well defined: its solutions remain non-negative and positively bounded for

any non-negative initial condition. In the following, we shall use for convenience the

abbreviation LES for Locally Exponentially Stable steady states.
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2. Steady state and stability analysis

From (H1), when equations f(S) = D and g(S) = D have solutions, they are unique

and we define the usual break-even concentrations

λu = f−1(D) and λv = g−1(D).

In this case, from (H2), one has λu < λv . Otherwise, f(S) = D or g(S) = D have

no solution, we put λu = ∞ or λv = ∞. The steady states of (1) are given by solving

equations Ṡ = 0, u̇ = 0 and v̇ = 0. From equation u̇ = 0, if u = 0, it follows that v = 0.
From equation v̇ = 0, if v = 0, then u = 0. Hence, we cannot have a steady state of

extinction only of planktonic or attached bacteria. Therefore, besides the washout steady

state

E0 = (Sin, 0, 0)

where both planktonic or attached bacteria are extinct, the system can have a positive

steady state of coexistence

E1 = (S∗, u∗, v∗)

where S∗ > 0, u∗ > 0 and v∗ > 0. We define the following functions:

U(S) =
ϕ(S) (ψ(S)− b)

a [ψ(S)− ϕ(S)]
, V (S) =

ϕ2(S) (ψ(S)− b)

a [ϕ(S)− ψ(S)]ψ(S)
, H(S) = D

ϕ(S)(ψ(S)− b)

aψ(S)
,

where

ϕ(S) = f(S)−D, ψ(S) = g(S)−D.

From ϕ(S) > 0 and ψ(S) < 0 on I =]λu, λv[, we deduce that functions U(·), V (·) and

(a)

f(S)

g(S)

D
ϕ(S)

ψ(S)

λu

I

λv

S

(b)

H V

U

D(Sin − S)

E1

E0
•
Sin

λu λv

I S

Figure 1: (a) Definition of the interval I =]λu, λv[. (b) The graphs of functions H , U and V and

H showing the existence of a unique positive steady state. Red color is used for LES steady states

and blue color for unstable steady states.

H(·) are positive on I (see Figure 1). Moreover, H(λu) = U(λu) = V (λu) = 0 and

H(·), V (·) tend to infinity as S tends to λv (see Figure 1(b)).

Straightforward computations, see [2, 6], show that the positive steady state is E1 =
(S∗, u∗, v∗) where S∗ is the solution of equation

D(Sin − S
∗) = H(S∗), (2)

and u∗ = U(S∗), v∗ = V (S∗).
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Proposition 1. Assume that assumptions (H1)-(H2) hold. Then system (1) has at most

two steady states:

The washout E0 = (Sin, 0, 0), that always exists. It is LES if and only if f(Sin) < D.

The positive steady state, E1 = (S∗, u∗, v∗), that exists if and only if f(Sin) > D. If

it exists, it is unique and LES.

Proof. The stability of E0 is easy to obtain. For the existence and uniqueness of E1,

straightforward computations show that the functionH is increasing. ThereforeE1 exists,

and is unique, if and only if Sin > λu which is equivalent to f(Sin) > D. Since

z = S + u+ v satisfies ż = D(Sin − z), it tends to Sin. Therefore, (1) is reduced to the

two dimensional system

{

du
dt

= ϕ(Sin − u− v)u− a(u+ v)u+ bv

dv
dt

= ψ(Sin − u− v)v + a(u+ v)u− bv.

The Jacobian matrix at (u∗, v∗) is

J∗ =

[

−u∗ϕ′(s∗) + ϕ(s∗)− a(2u∗ + v∗) −u∗ϕ′(s∗)− au∗ + b

−v∗ψ′(s∗) + a(2u∗ + v∗) −v∗ψ′(s∗) + ψ(s∗) + au∗ − b

]

.

Straightforward calculations show that

TrJ∗ = −u∗ϕ′(s∗)− v∗ψ′(s∗)− b
v∗

u∗
− a

(u∗ + v∗)u∗

v∗
< 0,

DetJ∗ = Au∗ϕ′(s∗) +Bv∗ψ′(s∗) + C,

where

A = a
(u∗ + v∗)2

v∗
> 0, B = b

u∗ + v∗

u∗
> 0, C = −ϕ(s∗) (ψ(s∗)− b) > 0.

Therefore E1 is LES if it exists. See [6] for more details.

In the case where removal rates are distinct, the functionH is not necessarily increas-

ing, nor we have necessarily λu < λv , so that equation (2) can have multiple solutions.

Therefore, the system can have multiple positive steady states [2]. In [2] it is shown that

a positive steady state is LES if and only ifH ′(S∗) > −D. Therefore, the result of Prop.

1 is a particular case of the results in [2]. The Table in Figure 2 summarizes existence and

local stability of steady states given in the previous proposition. The letter S (resp. U)

means stable (resp. unstable). Absence of letter means that the corresponding equilibrium

does not exist.

3. Operating diagram

The operating diagram describes the system behavior when the control parameters

Sin and D vary. All others parameters are known and can be measurable because they

depend on properties of the micro-organisms and substrate introduced in the chemostat.

Let Γ be the curve of equation f(Sin) = D that separates the operating plane (Sin, D) in
two regions, labeled as I0 and I1. The transition from the region I0 to the region I1 by

the curve Γ corresponds to a transcritical bifurcation making the steady state E0 unstable
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(a)
D

f(Sin)

I0

I1

Sin

(b)

Condition Region E0 E1

f(Sin) < D (Sin, D) ∈ I0 S

f(Sin) > D (Sin, D) ∈ I1 U S

Figure 2: (a): Operating diagrams of model (1). Cyan color represents the region of washout (E0

is LES) and red color represents the region of coexistence (E1 is LES). (b): Existence and local

stability of steady states according to regions in the operating diagram.

(saddle point) with the appearance of the coexistence steady state E1 which is LES. The

washout and coexistence regions depend only on the growth rate of planktonic bacteria

which are more efficient than attached bacteria. The operating diagram is shown in Figure

2.

Figure 3 illustrates the one-parameter bifurcation diagrams of the each component at

steady states showing the transcritical bifurcation making the steady state E0 unstable

with the appearance of the positive steady state E1 which is LES. Moreover, the density

of substrate, isolated and attached bacteria at steady state increase as Sin varies.

(a)
S

E0

E0

E1

Sin

(b)
u

E0 E0

E1

Sin

(c)
v

E0 E0

E1

Sin

Figure 3: One-parameter bifurcation diagrams of model (1): the components S (a), u (b) and v (c)

of each steady state. Parameter values are given in Table 1.

For numerical simulation, the growth functions are of Monod-type, defined by:

f(S) =
m1S

K1 + S
and g(S) =

m2S

K2 + S
, (3)

where mi and Ki, i = 1, 2, denote, respectively, the maximum growth rates and the

Michaelis-Menten (or half-saturation) constants. The parameter values used for the sim-

ulations are provided in Table 1.

Parameter m1 K1 m2 K2 a b D Sin

Figure 2

Figure 3
2.05 1.5 4 0.5 2 1

Variable

2

Variable

3

Table 1: Parameter values used for (1) where the growth rates are given by (3).
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4. Discussion
In this work, we have studied a chemostat model with a single resource and one mi-

crobial species that is present in two forms: isolated and aggregated bacteria. With mono-

tonic growth rates and same removal rates, the model shows the coexistence of planktonic

and attached bacteria. The one-parameter bifurcation diagrams show the emergence of

the positive steady state through a transcritical bifurcation with the washout steady state.

The operating diagram determines the regions of the operating parameters (input con-

centration of the nutrient and dilution rate), which depict the asymptotic behavior of the

system.

Since the flocs have less access to substrate than planktonic bacteria, the coexistence of

these two forms of bacteria depends only on the growth rate of the isolated bacteria. The

flocculation and deflocculation dynamics affect only the density of isolated and attached

bacteria at steady state and not the coexistence region of the operating parameters. More

precisely, the operating condition f(Sin) > D of survival of the species is the same as if

the species was present only in the form of isolated bacteria. The only difference is that,

compared to the case of only isolated bacteria, where at steady state the substrate is λu
and the total biomass is Sin − λu, the consumption of substrate to survive is now larger

(S∗ > λu) and the total biomass at steady state is lower (u∗+v∗ = Sin−S
∗ < Sin−λu).
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