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Abstract: Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural
features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for
characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the
ability to identify different chemical species in three dimensions. Microstructural observations using APT can
underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses
there are currently multiple methods for analyzing the data. This can result in inconsistencies between results
obtained from different researchers and unnecessary scatter when combining data from multiple sources. This
makes interpretation of results more complex and calibration of radiation damage models challenging. In this
work simulations of a range of different microstructures are used to directly compare different cluster analysis
algorithms and identify their strengths and weaknesses.
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INTRODUCTION

Most of the operating nuclear reactors in the world are
pressurized water reactors (PWRs). In a PWR, the reactor
pressure vessel (RPV) is the second barrier between the fuel
and the outside world. They are made of low alloyed bainitic
steels (NiMoCr, NiMoCrV, A-533B). During service, neu-
trons produced in the reactor core generate displacement
damage, resulting in a supersaturation of vacancies and self-
interstitial atoms (SIAs). These supersaturated point defects
(PDs) can agglomerate to form extended defects, but also
enhance and modify solute diffusion causing solute redis-
tribution in the material. This irradiation ageing is respon-
sible for hardening and nonhardening embrittlement of RPV
steels and the degradation can be life limiting for nuclear
reactors. As irradiation damage occurs at the nm-scale, atom
probe tomography (APT) (Miller et al., 1996; Miller, 2000;
Gault et al., 2012) is a suitable tool to characterize
irradiation-induced nanofeatures in terms of their nature,
chemical composition, size, shape, and number density.

Small clusters or precipitates containing Cu, Mn, Ni, Si,
and P are often observed using APT (Pareige et al., 1997;
Miller et al., 2000, 2007; Carter et al., 2001; Radiguet et al.,
2009; Huang et al., 2014). The chemical composition of these
clusters, and their evolution with neutron fluence, depends

on many variables including bulk composition and detailed
irradiation conditions (e.g., temperature and flux). However,
the reported chemical compositions also depend on artifacts
inherent to APT, the methodologies used to characterize the
APT data and the specific scientists involved in the work
(e.g., through the choice of analysis parameters). The result
has been a plethora of inconsistent nomenclatures. For
instance, the terms copper rich precipitates, copper enriched
clusters, manganese nickel silicon precipitates, manganese
nickel precipitates, nickel silicon precipitates have been used
interchangeably by different researchers (Auger et al., 1995;
Odette, 1995; Miller & Russell, 2007; Pareige et al., 1997;
Carter et al., 2001; Takeuchi et al., 2010; Wells et al., 2014).

A consistent and robust approach to data analyses (and
also nomenclature) is necessary to enable direct comparison of
APT data obtained in different laboratories, whereas enabling
modelers to analyze the outcome of atomistic simulations
consistently with experiments, allowing direct and fair com-
parison. There are three issues to address. First, it is necessary
to assess the intrinsic limitations of APT techniques, so that the
relationship between microstructure observed using APT and
the actual microstructure is understood. Second it is necessary
to ensure that the cluster analysis algorithms provide an accu-
rate and robust description of the irradiation-induced micro-
structural features. Third, it is necessary to agree on protocols
to be used for the analysis of, especially, atomisticmodel results,
so as to enable a fair comparison with APT results.*Corresponding author. paul.styman@materials.ox.ac.uk
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There are several known limitations of APT, including
concerns that the reconstruction algorithms used are too
simplistic. For instance, for the analysis of RPV steels, one
major concern is that trajectory aberrations, due to differ-
ence of the evaporation field between the solute clusters and
the surrounding matrix, could bias their measured chemical
composition and structure. Other concerns, include (i) the
fact that APT cannot directly detect the presence of
vacancies, (ii) the spatial resolution is imperfect, (iii) the
detection efficiency is imperfect, and (iv) the very small
analyzed volume may not be fully representative of a mate-
rial as complex as a steel (Miller et al., 1996; Miller, 2000;
Gault et al., 2012).

Demonstrating that cluster detection algorithms accu-
rately characterize the multitude of microstructural features
observed in RPV steels is also challenging. The very small
size of these solute clusters and their apparently dilute nature
makes their identification, inside three-dimensional (3D)
data sets containing tens or hundreds of millions of atoms,
very challenging. The very small size of the features means
that a relatively high fraction of the associated atoms are
interface atoms, and thus their measured sizes, number
density, and compositions can also strongly depend on the
algorithms used to detect them. Currently, there is no
agreement on what constitutes the most “appropriate” ana-
lysis methodology (Marquis & Hyde, 2010). Furthermore, all
methods require the use of user-defined parameters and their
selection is not trivial. Methods based on the maximum
separation method (MSM) (Hyde & English, 2001; Heinrich
et al., 2003; Kolli & Seidman, 2007; Morley et al., 2009;
Styman et al., 2013) are most widely used, but there are many
variants and options at each stage of the process, including
defining the chemical identities of core atoms, selecting an
appropriate maximum separation distance, identifying
which noncore atoms also belong to each cluster and whe-
ther to apply an erosion step to minimize interface effects.
Other methods, based on concentration threshold criteria,
have also been developed and used (Lefebvre et al., 2016) by
several groups. As for MSMs, the definition of the chemical
identities and the selection of appropriate parameters is an
important step to get quantitative and reliable results.

In this work, simulations have been used to create
representative APT data sets with known microstructures.
The microstructural data have been degraded to simulate the

limitations of APT and the resulting data have been analyzed
blind using two analysis methodologies. The results have
been compared with each other and the strengths and
weaknesses of the methods assessed. This builds on previous
work by Hyde et al. (2011) by using multiple analyses
methods, and adding the effect of local magnification.

METHODOLOGY

Simulated Microstructures
In all, six simulated microstructures, each 60 × 60 × 60 nm3,
of a simple ferritic alloy were created (bcc lattice with a lattice
parameter of 0.28 nm). The simulated microstructures were
populated with clusters with a number density of between
5 and 10 × 1023m− 3. Three different cluster sizes were cho-
sen (approximate radii of ~0.5, 1.0, and 1.5 nm) with each
cluster having a solute content of either ~50 or 100%. Thus
each simulated microstructure contained multiple clusters of
different sizes and compositions (~18 of each radius and
composition combination). A bulk alloy concentration of
~1% was chosen. The simulated microstructures also took
into account experimental artifacts. In three data files, the
imperfect detection efficiency of the CAMECA LEAP 3000
or 4000HR was simulated by randomly removing 60% of the
atoms. In four of the simulations, uncertainties in the atom
positions were modeled by adding a Gaussian scatter to the
coordinates (2σ = 0.5 or 1 nm for the X and Y coordinates,
and 2σ = 0.1 nm for the Z coordinates). The resulting matrix
of simulated microstructures is summarized in Table 1.
In addition, three of the simulations were further degraded
by modeling the compression of atoms in reconstructed
APT data associated with the local magnification effect (only
simulation 6 was analyzed here, yielding a total of seven
datasets for analysis). The compression algorithm used is
detailed in the next section. The combinations were designed
to enable the influence of experimental artifacts on the
detectability and characterization of clusters to be assessed.

A further nine simulated microstructures were
generated for an alloy with a bulk solute concentration
of 4% and then a further 12 simulated microstructures
were created to model core shell cluster structures. The
analysis of these additional simulations will be the subject of
a future paper.

Table 1. Simulated Microstructures and Simulations of Experimental Artifacts.

Simulation
no.

Cluster
Radius (nm)

Cluster Solute
Concentrations (%)

Bulk Solute
Concentration (%)

Detection
Efficiency

Lateral Scatter (Width of Gaussian
Applied to X and Y Coordinates) (nm)

1 0.5, 1.0, 1.5 ~ 50 and 100 1 100 NAa

2 0.5, 1.0, 1.5 ~50 and 100 1 40 NA
3 0.5, 1.0, 1.5 ~50 and 100 1 100 0.5
4 0.5, 1.0, 1.5 ~50 and 100 1 40 0.5a

5 0.5, 1.0, 1.5 ~50 and 100 1 100 1.0
6 0.5, 1.0, 1.5 ~50 and 100 1 40 1.0a

aThese simulated microstructures were further degraded to simulate the increased density of atoms associated with local magnification effects.
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Simulating the Increased Density of Atoms
Associated with Local Magnification Effects
Evaporation of a material composed of several phases with
significant differences in field evaporation threshold induces
an evolution of the steady state shape of the tip surface. The
consequence is strong distortions of the ion trajectories
named “local magnification” effects (Miller & Hetherington,
1991). It changes both the X, Y positions, and, to a lesser
extent, the Z positions. This effect can be highlighted by the
presence of high- (or low)-density regions correlated with
differences in local composition (Fig. 1).

When local magnification is observed, at the interface
between phases, trajectory overlaps may be present. When
the difference is too big, the phase of interest can be mixed
completely with the surrounding matrix (ion crossing)
(Miller & Hetherington, 1991). The magnitude of ion
crossing is difficult to assess. Limits can be determined based
on the fact that small solute clusters can be identified. The
modeling of the field evaporation of a thin needle at the
atomic scale can also provide understanding of the origin of
the bias in 3D reconstructions and quantitative information
about their influence on chemical composition measure-
ments (Blavette et al., 2001; Lefebvre et al., 2016).

Local magnification of solute clusters in RPV steels will
result in compression or expansion in X and Y orientations,
due to the fact that the solute atoms have different
evaporation fields to that of Fe, and thus clusters may appear
ellipsoidal (elongated in the Z direction) rather than
spherical. For example, in the case of Cu clusters in an Fe
matrix a compression of the clusters is observed.

The underlying physics and complexities of local
magnification, and the associated resulting effect on atom
positions in the reconstructed data, is extremely challenging
to model. In this work, a pragmatic approach to consider the
effect of local magnification in the simulated data files was
taken and is outlined here.

Assuming cylindrical symmetry on the Z axis of a single
spherical cluster, the positions of atoms situated at the center

of each cluster are not modified by local magnification
effects. Similarly, far away from the cluster there is no effect
of local magnification. These define the boundary conditions
for the transformation (either from observed APT data to a
more realistic picture of the underlying microstructure, or to
transform perfect simulated data into a microstructure that
is more representative of what would be observed by APT).
The transformation, shown schematically in Figure 2, shows
that it is necessary to consider both atoms within the solute
cluster (compressed in APT data) and those in the adjacent
matrix (more disparate in APT data).

Consider a solute cluster with radius r. As the cluster is
slowly uncovered during an APT analysis, the radius of
uncovered surface will increase to ~r and then decrease to 0.
The effective radius, as a function of depth z in the cluster
(where − r< z< r), is therefore given by

R zð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi

r2 - z2
p

:

The schematic in Figure 3 shows the displacement of
each atom (i.e., the difference between where the atom is
detected and where it would have been detected without local
magnification). The displacement depends on the distance (d)
in the X–Y plane to the center of the solute cluster and the

Figure 1. Local magnification effects for low evaporation field particle (left) or high evaporation field particle (right),
and schematic drawing showing ion trajectories close to the surface of the evaporated phase (the red atoms have a
lower evaporation field than the white). Note the presence of ion crossing at the interface. From Vurpillot et al. (2000).

a b

Figure 2. Schematic representation of (a) observed distribution of
atoms from atom probe tomography analysis resulting from local
magnification effects and (b) expected distribution without local
magnification effects. Plan view (X–Y plane). “Blue” atoms have a
lower evaporation field than the matrix.

Comparison of APT Cluster Analysis Methods 3

https://doi.org/10.1017/S1431927616012678
Downloaded from https:/www.cambridge.org/core. University of Florida, on 02 Feb 2017 at 11:20:55, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S1431927616012678
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
pareicri
Rectangle

pareicri
Rectangle



effective cluster radius R(z). The function satisfies the
boundary conditions, 0 at the center of each cluster and far
away from the cluster. A positive gradient corresponds to
a compression of the distances between atom positions,
a negative gradient to an expansion. The “transformation”
also ensures that the atoms preserve their relative positions to
each other.

The exact form of the displacement function is not
known and so a simple trial function was considered

Δd / k2R zð Þ - dj jð Þd;
where k2 is a constant. In this case the maximum displace-
ment will occur when d= k2R zð Þ

2 and will equal 0 when d = 0
or d = k2R(z). The maximum displacement is
Δdmax / 1

4 k
2
2R zð Þ2. Hence, the shift can be normalized to

have a maximum shift of k1.

Δd= k1
k2R zð Þ - dj jð Þd

1
4 k

2
2R zð Þ2 :

However, the maximum shift should increase with
increasing R(z). When R(z) = 0, the shift should equal 0,
when R(z) = r (the cluster radius) the shift should be a
maximum. The maximum should depend on the size of the
cluster. This can be achieved by multiplying by R zð Þ

r as (R(z)
can have any value between 0 and r). Thus, a better model for
the displacements is

Δd=
k2R zð Þ - dj jð Þd

1
4 k

2
2R zð Þ2 :

R zð Þ
r

: k - 1ð ÞR zð Þ

=
k2R zð Þ - dj jð Þd

1
4 k

2
2r

: k - 1ð Þ;

with k defined as a compression coefficient (k1 + 1). Thus
with k = 1.1 (a compression coefficient of 10%), Δdmax =
0.1R(z), corresponding to a displacement toward the cluster
center making the cluster 10% smaller in the X–Y plane.

With k2 = 2, [dmax is set to be 2R(z)] the equation
simplifies to

Δd=
2R zð Þ - dj jð Þd

r
: k - 1ð Þ:

Tests were performed to determine how robust the
approach adopted is. APT data from an irradiated RPV steel

containing a range of solute cluster sizes (0–5 nm diameter)
was selected. The MSM method was used to identify atoms
belonging to each cluster. Each cluster was then analyzed to
determine the associated center of mass and principle axes of
the best fit ellipsoid. The observed density of atoms in the
solute enriched clusters was then determined by dividing the
number of atoms within the best fit ellipsoid by the ellipsoid
volume. The atoms included in these calculations can
include both those assigned as cluster atoms and also matrix
atoms. The resultant density data were analyzed as a function
of cluster size. The transformation was applied, selecting a
single value of k1 to spread out atoms within the clusters to a
density consistent with the rest of the reconstructed data.
The transformed data were re-analyzed, and the observed
densities of atoms in each cluster size measured. The
experimental data set selected was from Ringhals NPP and
has been published (Styman et al., 2015).

The results show that the apparent density of atoms in
clusters in this APT data are 60–70% greater than what would
be expected from a typical steel with 37% detection efficiency.
The same value of k was applied to all clusters in the data set
irrespective of diameter. Table 2 and Figure 4 show that a
single value of k reduced the density to close to the average for
the entire reconstructed volume (36 atoms/nm3). A single
value of k can be used for a range of cluster sizes.

Analysis of Solute Clusters
The MSM is one of the most commonly used cluster
identification algorithms. Several authors have provided
detailed explanations of its strengths and weaknesses
and made recommendations regarding how best to optimize
the parameters (Cerezo & Davin, 2007; Kolli &
Seidman, 2007; Styman et al., 2013; Williams et al., 2013;
Jägle et al., 2014).

A second method, named “Isoposition method” (IPM)
was also used to identify clusters. The principle of this
method which is based on solute concentration criteria is
described elsewhere (Lefebvre et al., 2016). Roughly, a 3D
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Figure 3. Schematic representation of displacement function in
X–Y plane to simulate the local magnification effect.

Table 2. Density of Atoms in Clusters in (i) Atom Probe Tomo-
graphy (APT) Data and (ii) APT Data Following Simulation to
Reverse the Effect of Local Magnification.

Atoms/nm3 in Solute Clusters

Radius (nm)

As
Reconstructed
APT Data

Post Local
Magnification

Transformation with
k1 = 1.25

Entire reconstructed
volume

36 36

0.75–1.25 49.0± 10.4 39.2± 11.5
1.25–1.75 58.1± 13.1 33.9± 9.3
1.75–2.25 65.8± 9.7 39.3± 7.2
2.25–2.75 66.4± 12.3 40.6± 5.7
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concentration map is used to define the local concentration
associated with the position of each atom inside the volume.
A concentration threshold (Cmin) is then applied on all
positions to select and filter out atoms that will be considered
to identify the clusters. If the filtered atoms are separated by a
distance smaller than a given value (dmax), they belong to the
same cluster. Only clusters containing a minimum number
of solute atoms (Nmin) are considered. The values of the user
defined parameters are determined by comparing the
simulated data files with randomized ones (in that case, the
chosen parameters should not result in cluster detection). It
is important to note that after this identification step, if two
clusters are identified as a unique one or if a cluster is cut in
two parts during identification, they are separated or merged
after visual inspection. Then an erosion is applied to the
clusters to remove interface atoms. The interface is then
located at the half-maximum of the cluster core composition.
The cluster size is calculated after erosion. The given cluster
composition is the core composition.

Both MSM and IPM rely upon user-defined parameters
which can strongly influence the results. For this work the
following parameters were used for MSM and IPM:

∙ MSM

o Dmax = 0.4 nm,
o Nmin = 9 or 22 (equivalent to the number of solutes in a

0.5 nm cluster of 50% solute with 40 or 100% detection
efficiency, respectively),

o L = e = 0.3 nm (set to be 0.1 nm less than Dmax,
previous analyses have shown results do not depend
strongly on choice of L or e: Hyde et al., 2011).

∙ IPM

o Cthreshold = 5.5–5.7%: set to the value for which the
concentration histogram of randomized data set is
negligible (<0.1%),

o Dmax = 0.5 nm (small but voxels always contain a
few atoms),

o Nmin = 6–10: set so no clusters identified in a
randomized volume with Cthreshold,

o Derosion = 0.4–0.8 nm: set at half maximum of the
erosion profile.

The microstructure simulations were analyzed using both
the MSM and IPM. The precise parameters used to seed the
microstructural simulations were then revealed and an
assessment of the accuracy of the two analysis methods
performed.

For both methods the cluster radii are given by average of
the Guiner radius, RG which is the gyration radius multiplied
by √(5/3), to give the true radius assuming spherical clusters
of uniform atom density. Cluster compositions are reported as
the average of the compositions of individual clusters.

RESULTS

Each simulated microstructure contained 108 solute clusters
(although this information was not provided to the scientists
analyzing the simulated data). The number of clusters
detected by MSM and IPM is presented in Figure 5. All the
clusters were detected in the microstructures that had not
been degraded (100% detection efficiency, perfect lateral
resolution) or had been degraded by either a reduction in
detection efficiency (to 40%) or by the introduction of lateral
scatter (2σ = 0.5 nm or 1 nm). However, the combination of
both a reduced detection efficiency and loss of lateral
resolution did impact the cluster detectability. In these
situations, for the 0.5 nm clusters, the MSM was not able to
accurately distinguish between clusters which were seeded
and those which were the result of random statistical
fluctuations (sometimes referred to as background or
random clusters). In this instance the IPM was more efficient
at detecting the 0.5 nm clusters than the MSM method.

Figure 6 shows the observed cluster sizes determined
using the MSM and IPM methods. The error bars represent
the range of cluster sizes shown. The analysis of perfect data

Figure 4. Densities of atoms in clusters in the as reconstructed data and after applying local magnification transform
with k = 1.25.
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(100% detection efficiency and no lateral scatter) shows
excellent agreement between the two methodologies.
A degradation in either the detection efficiency or lateral
resolution increases the range of cluster sizes observed but
the results are still self-consistent. The most challenging
scenario involves identifying clusters with a radius of
~0.5 nm, degraded by the imperfect detection efficiency and
lateral scatter (made even more difficult if clusters only
contain 50% solute). The IPM was able to detect some of
these, but the MSM was not able to distinguish these from
random solute fluctuations.

Figure 7 shows the observed mean cluster compositions
determined by the MSM and IPM. The data have been split
by cluster size (different colors) and nominal solute level
(100 or ~50%). An examination of the results from perfect
data (high detection efficiency and perfect lateral resolution)
shows that both analysis techniques accurately identify the
larger clusters (radius ≥1 nm). However, the compositions of

the smaller clusters (radius ~0.5 nm) can be overestimated
using MSM. If the lateral resolution is degraded, the
observed Fe content increases and this is particularly
noticeable for the smallest clusters, where the surface atoms
have an increasingly significant influence on the observed
overall cluster composition. If the lateral resolution is
degraded and the detection efficiency reduced to 40%, it
becomes increasingly difficult to identify the smallest
(radius = 0.5 nm) clusters. More of these clusters are
detectable using the IPM than the MSM, but the estimated
cluster compositions were ~50% solute irrespective of their
true solute composition (~50 or 100%).

The results indicate that clusters with a radius of
~0.5 nm are near the cluster detectability limit using current
APT (although it should be noted that compositional varia-
tions on this scale can be detected by alternative statistical
techniques). The results for the clusters with a radius of
~1 nm (green) are very similar to those with a radius of
~1.5 nm (blue) demonstrating the robustness of both
methodologies used for detecting larger clusters.

Figure 5. Number of clusters identified using maximum separa-
tion method (blue) and isoposition method (red) as a function of
detection efficiency (Q) and lateral scatter (LS). The dotted line is
the true number of clusters.

Figure 6. Observed cluster sizes determined using the maximum
separation method (blue) and isoposition method (red).

Figure 7. Observed compositions using maximum separation
method (MSD in figure) and isoposition method (Iso in figure)
for clusters containing 100 and ~50% solute atoms. The colors
relate to the cluster radii – ~1.5 nm (blue), ~1 nm (green), and
~0.5 nm (red). Note that for a detection efficiency of 40% and a
degraded lateral resolution, the clusters of about 0.5 nm with ~50
and ~100% solutes cannot be distinguished when detected.
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In real data sets, local magnification can occur. It com-
presses solute clusters in theX andY directions which can affect
detection of clusters and the observed cluster sizes (in contrast
to the positioning uncertainty). Therefore, local magnification
was applied to the simulated microstructure in which the
detection efficiency had been set to 40% and a Gaussian scatter
of width 1nm had been added to the X and Y coordinates.

Analysis of this new data set, using MSM, identified 90
clusters in comparison with the 71 previously identified.
In terms of cluster detection, the effect of local magnification
means that the 0.5 nm, 100% solute clusters can now
be separated from the random solute fluctuations using
MSM. As was the case previously (before the application of
local magnification effects) the 0.5 nm, 50% solute clusters
still cannot be separated from the random solute fluctua-
tions. The number of clusters identified with IPM method
remains constant (97 with or without local magnification)
(Figure 8).

The magnitude of the effect of local magnification on
size measurement is also shown in Figure 8. Obviously, both
IPM and MSM give a lower Guinier radius if there is local

magnification. In such cases, the Guinier radius is probably
not the best parameter to quantify the cluster size.

DISCUSSION

The results are summarized in Table 3. Not surprisingly both
methodologies worked extremely well with perfect data.
Both MSM and IPM worked well when a single degradation
phenomenon was introduced. Results from the IPM are
affected less by the introduction of a lateral scatter to the
atom positions than for the MSM. This is evident in the
slightly more accurate estimates of cluster sizes and com-
positions. Aside from the detection method itself, these more
accurate estimates could be due to the fact that (i) an erosion
of the interface atoms is performed after cluster identifica-
tion with IPM and (ii) the cluster composition is the core
composition. The scatter does increase the extent of the
clusters and this is detected by the MSMmethod. In contrast,
the IPM method followed by erosion tends to provide a
slightly lower estimate of cluster sizes.

Figure 8. Simulation 6 analyzed with and without local Mag simulation using the maximum separation method
and the isoposition method. a,c: Effect of local magnification on the number of clusters detected (b,d) Effect of local
magnification on the measured cluster radius (Comparison between cluster sizes with and without the simulation of
local magnification).
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Analysis becomes more challenging when both the
imperfect detection efficiency and degradation of lateral
resolution are simulated. However, even under these condi-
tions, both methods worked extremely well for clusters with
radii ≳1nm. Accurate characterization of the smallest clusters
(0.5 nm radius) proved more challenging. The MSM method
failed to separate a significant number of these clusters from
random solute fluctuations. The IPM proved to be more
effective at identifying the presence of these clusters, but it was
not possible to distinguish between the concentrated (100%
solute) clusters and the dilute (containing 50% solute).

Several reasons can explain these observations. First, in
terms of statistics, the smallest clusters contain so few solute
atoms that their definition is strongly influenced by surface
effects. So, strong difference in composition can result from the
interface definition. Including an erosion procedure, can
strongly modify the results in this case. Second, as it is shown in
Figure 9, the lateral scatter (without considering any
trajectory aberration due to difference in field evaporation) can
result in the introduction of a significant level of matrix atoms
in the cluster core. So, a concentrated small solute cluster

appears to be significantly diluted due to the lateral scatter.
Thus, both MSM and IPM will detect a high level of Fe in the
smallest clusters.

In real APT data, local magnification will result in an
increase in the density of atoms in the clusters. Counter-
intuitively, this can actually aid identification of solute clus-
ters with the MSM as it is predicated on finding regions in
which the solute atoms are more closely spaced. On the
contrary, local magnification has no influence on the cluster
detection using IPM. This is not surprising as the IPM is
based on concentration threshold and not on distance
between atoms. As explained previously, the algorithm
applied to reproduce local magnification results in a change
in the local atom density, but not in local concentration as
trajectory overlaps were not simulated.

The limitations reported here in the methods of analysis of
APT data in terms of correct detection (or not) of clusters below
a certain size, over- or underestimation of size and concentra-
tion of solutes, etc. should be used also to provide atomistic
modelers with indications, and possibly protocols, about how to
analyze the results of simulations for a fair comparison.

Table 3. Summary of Observations.

MSM IPM

Perfect data All clusters identified
Solute content of dilute smallest clusters
overestimated

All clusters identified and correctly characterized

Imperfect detection
efficiency

All clusters identified
Solute content of dilute smallest clusters
overestimated

All clusters identified
Solute content of dilute smallest clusters
overestimated

Perfect detection but
degraded lateral
resolution

All, or nearly all, clusters identified
Lateral scatter increases apparent cluster size
Solute content of concentrated clusters
underestimated

All clusters identified
Good estimates of cluster sizes and solute content
excepted for pure small (0.5 nm) clusters
(overestimation of Fe content)

Imperfect detection
efficiency and
degraded lateral
resolution

Significant fraction of smallest clusters not
identified

Increasingly difficult to determine cluster sizes
accurately

The observed compositions of dilute clusters are
reasonable but the compositions of the more
concentrated clusters are underestimated

A small fraction of smallest clusters not identified.
More scatter observed on cluster sizes, but the mean
cluster sizes are approximately correct

The observed compositions of dilute clusters are
reasonable but the compositions of the more
concentrated clusters are underestimated

Not possible to distinguish dilute and concentrated
smallest clusters in terms of composition

MSM, maximum separation method; IPM, Isoposition method.

Figure 9. Effect of lateral scatter on the definition of a solute cluster.
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Atomistic simulations contain the position and type of all
atoms, therefore, an analysis of density, size, and composition
applied directly to simulated results cannot be directly
compared with APT results. The data (atomic positions and
types) should at least be treated similarly to what has been done
in this work (Methodology section) in terms of lateral resolu-
tion and detection efficiency, so as to mimic the effect of APT.
Indications about the best way to do so, depending on the APT
technique, should be given by experimentalists. Moreover, the
limitations of the analysis methods (e.g., the overestimation of
the size of small clusters using MSM, or its underestimation
using IPM) should be used as a criterion to judge the
comparison between simulation and experiments. Ideally,
precise protocols should be deduced on how to treat simulation
data, in order for the comparison with APT experiments to be
performed on equal footing.

CONCLUSIONS

The aim of this work was to provide insight into the limita-
tions and uncertainties associated with reported APT data,
which would be useful both to the atom probe community
and also to modelers. Simulations of microstructural data,
which take into account estimates of common experimental
artifacts associated with APT (reduced detection efficiency,
positioning uncertainty, and local magnification effects),
were performed. A simple method for modeling local
magnification effects was proposed and it was shown to be
effective in accounting for the observed increased density of
atoms in solute clusters in experimental data.

The resulting simulated microstructures have been
analyzed using two algorithms, the MSM and the IPM. The
results show that for the identification of clusters ≳1 nm,
both MSM and IPM work extremely well, provided that the
parameters are carefully chosen. Detection of clusters with a
radius of ~0.5 nm is possible, but care is needed interpreting
quoted compositions. Further work on core shell structured
clusters is underway and will provide additional insight on
the capability of methodologies used to characterize clusters
observed in atom probe data.

Recommendations will be developed which, if adopted,
will enable inter-comparison of results between different
labs, enabling trends in microstructural development to be
more readily observed, and provide information that can be
directly used to support calibration of models from the
modeling community.
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