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Abstract: Reconstruction of phase objects is a central problem in digital holography, whose
various applications include microscopy, biomedical imaging, and fluid mechanics. Starting from
a single in-line hologram, there is no direct way to recover the phase of the diffracted wave in
the hologram plane. The reconstruction of absorbing and phase objects therefore requires the
inversion of the non-linear hologram formation model. We propose a regularized reconstruction
method that includes several physically-grounded constraints such as bounds on transmittance
values, maximum/minimum phase, spatial smoothness or the absence of any object in parts
of the field of view. To solve the non-convex and non-smooth optimization problem induced
by our modeling, a variable splitting strategy is applied and the closed-form solution of the
sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient
and is shown to lead to quantitative phase estimation on reconstructions of accurate simulations
of in-line holograms based on the Mie theory. As our approach is adaptable to several in-line
digital holography configurations, we present and discuss the promising results of reconstructions
from experimental in-line holograms obtained in two different applications: the tracking of an
evaporating droplet (size ∼ 100µm) and the microscopic imaging of bacteria (size ∼ 1µm).
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (090.1995) Digital holography; (100.3010) Image reconstruction techniques; (100.3190) Inverse problems;
(100.5070) Phase retrieval.

References and links
1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
2. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A

21, 367–377 (2004).
3. I. Yamaguchi, J.-i. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and

applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
4. M. Jericho, H. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with

point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012).
5. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and

diffraction plane pictures,” Optik 35, 237 (1972).
6. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
7. R. Horisaki, Y. Ogura, M. Aino, and J. Tanida, “Single-shot phase imaging with a coded aperture,” Opt. Lett. 39,

6466–6469 (2014).
8. Z. Wang, Q. Dai, D. Ryu, K. He, R. Horstmeyer, A. Katsaggelos, and O.S. Cossairt, “Dictionary-based phase retrieval

for space-time super resolution using lens-free on-chip holographic video,” in Imaging and Applied Optics 2017 (3D,
AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper CTu2B.3.

https://doi.org/10.1364/OA_License_v1


9. Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in
holographic microscopy,” Sci. Rep. 6, 37862 (2016).

10. D. Ryu, Z. Wang, K. He, G. Zheng, R. Horstmeyer, and O. Cossairt, “Subsampled phase retrieval for temporal
resolution enhancement in lensless on-chip holographic video,” Biomed. Opt. Express 8, 1981–1995 (2017).

11. F. Eilenberger, S. Minardi, D. Pliakis, and T. Pertsch, “Digital holography from shadowgraphic phase estimates,”
Opt. Lett. 37, 509–511 (2012).

12. Y. Rivenson, Y. Zhang, H. Günaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction
using deep learning in neural networks,” arXiv preprint arXiv:1705.04286 (2018).

13. A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4,
1117-1125 (2017).

14. S. Sotthivirat and J. A. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am.
A 21, 737–750 (2004).

15. L. Denis, D. Lorenz, É. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,”
Opt. Lett. 34, 3475–3477 (2009).

16. A. Bourquard, N. Pavillon, E. Bostan, C. Depeursinge, and M. Unser, “A practical inverse-problem approach to
digital holographic reconstruction,” Opt. Express 21, 3417–3433 (2013).

17. F. Soulez, É. Thiébaut, A. Schutz, A. Ferrari, F. Courbin, and M. Unser, “Proximity operators for phase retrieval,”
Appl. Opt. 55, 7412–7421 (2016).

18. C. Schretter, D. Blinder, S. Bettens, H. Ottevaere, and P. Schelkens, “Regularized non-convex image reconstruction
in digital holographic microscopy,” Opt. Express 25, 16491–16508 (2017).

19. J. Song, C. L. Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee,
“Sparsity-based pixel super resolution for lens-free digital in-line holography,” Sci. Rep. 6, 24681 (2016).

20. S. Bettens, H. Yan, D. Blinder, H. Ottevaere, C. Schretter, and P. Schelkens, “Studies on the sparsifying operator in
compressive digital holography,” Opt. Express 25, 18656–18676 (2017).

21. A. Berdeu, F. Momey, B. Laperrousaz, T. Bordy, X. Gidrol, J.-M. Dinten, N. Picollet-D’hahan, and C. Allier,
“Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy,” Appl. Opt. 56,
3939–3951 (2017).

22. N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends® in Optimization 1, 127–239 (2014).
23. P. L. Combettes and J.-C. Pesquet, “Proximal Splitting Methods in Signal Processing,” in Fixed-Point Algorithms for

Inverse Problems in Science and Engineering (Springer, 2011), pp. 185–212.
24. W. Hare and C. Sagastizábal, “Computing proximal points of nonconvex functions,” Math. Program. 116, 221–258

(2009).
25. R. Mourya, L. Denis, J.-M. Becker, and É. Thiebaut, “Augmented lagrangian without alternating directions: Practical

algorithms for inverse problems in imaging,” in Proc. of 2015 IEEE International Conference on Image Processing
(ICIP) (IEEE, 2015), pp. 1205–1209.

26. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
27. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital

holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).
28. F. Soulez, L. Denis, É. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital

holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).
29. C. Fournier, L. Denis, M. Seifi, and T. Fournel, “Digital hologram processing in on-axis holography,” Multi-

Dimensional Imaging 0, 51–73 (2014).
30. C. Fournier, F. Jolivet, L. Denis, N. Verrier, É. Thiebaut, C. Allier, and T. Fournel, “Pixel super-resolution in digital

holography by regularized reconstruction,” Appl. Opt. 56, 69–77 (2017).
31. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the

alternating direction method of multipliers,” Foundations and Trends® in Machine Learning 3, 1–122 (2011).
32. J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. Comput. 35, 773–782 (1980).
33. É. Thiébaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE 4847, pp. 174–183 (2002).
34. D. Chareyron, J.-L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès “Testing an in-line

digital holography ‘inverse method’ for the Lagrangian tracking of evaporating droplets in homogeneous nearly
isotropic turbulence,” New J. Phys. 14, 043039 (2012).

35. L. Méès, N. Grosjean, D. Chareyron, J.-L. Marié, M. Seifi, and C. Fournier, “Evaporating droplet hologram simulation
for digital in-line holography setup with divergent beam,” J. Opt. Soc. Am. A 30, 2021–2028 (2013).

36. J.-L. Marié, T. Tronchin, N. Grosjean, L. Méès, O. C. Öztürk, C. Fournier, B. Barbier, and M. Lance, “Digital
holographic measurement of the lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic
turbulence,” Exp. Fluids 58, 11 (2017).

37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
38. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2017).
39. L. Kai and P. Massoli, “Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely

stratified sphere model,” Appl. Opt. 33, 501–511 (1994).
40. F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary

beam,” Appl. Opt. 34, 7113–7124 (1995).
41. G. Toker and J. Stricker, “Holographic study of suspended vaporizing volatile liquid droplets in still air,” Int. J. Heat



Mass Tran. 39, 3475–3482 (1996). .
42. Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24,

8437–8445 (2016).

1. Introduction

The principle of in-line holography was first proposed by Dennis Gabor in 1948 [1]. It uses a
coherent - or semi coherent - optical illumination to image absorbing and/or phase objects. This is
a method of choice for the imaging of transparent objects, which is impossible with conventional
imaging.
While interferometric setups like off-axis holography [2] or phase shifting [3] can be used to

measure the phase in the hologram plane and then recover the complex amplitude in the object
plane by simple back-propagation of the complex wave field, with in-line holography a numerical
inversion is necessary to recover the phase either in the hologram plane or in the object plane.
Phase retrieval is a central problem in in-line holography [4].
State-of-the-art methods propose for example variants of the widely used Gerchberg-Saxton

algorithm [5], such as the Error-Reduction Fienup’s algorithm [6] which includes a step for
constraining the support of the object of interest in the object plane.
In the past decade, more sophisticated methods, using additional processing inspired by

advances in the domain of compressive sensing, have been proposed, e.g. enforcing sparsity
constraints in the object or data spaces [7,8] or in the wavelets domain [9–11]. Some methods use
several holograms acquired at different distances to improve the amount of information [9,11].
Very recently, approaches based on deep learning have adapted image restoration techniques to
phase retrieval [12, 13].

Phase retrieval requires the injection of constraints on the holographic objects,mostly in the form
of support constraints (objects of finite size, separated by empty regions). Correctly estimating the
support of the objects would require a good pre-estimation of the phase, but the phase cannot be
recovered without knowledge of the support: a chicken and egg problem that can only be addressed
by jointly recovering the phase information and the objects support. Inverse problems approaches
based on a fine model of hologram formation and including several constraints on the objects
(based on application-specific knowledge) are well suited to perform this joint estimation. Several
inverse problems methods have been proposed in digital holography [14–18] and applied to
various phase retrieval problems : in-line holography [17,19,20], off-axis holography [14,16,18]
and diffractive tomography [21]. A key point of such approaches is that they often need to solve a
non-smooth and non-convex optimization problem. In this context, proximal algorithms can be
applied to both convex [22, 23] and non-convex problems [17, 24].
The work presented here belongs to the latter. We propose a regularized inverse problems

approach to reconstruct the real and imaginary parts of the object’s complex transmittance (i.e.
phase and amplitude) starting from a single in-line hologram. In addition to using a non-linear
direct model of image formation, our approach includes several physical constraints (i.e. prior
information) on the transmittance plane, in the form of hard constraints (strictly enforced) and soft
constraints (penalization terms to favor regularity or sparsity). Our optimization problem therefore
includes non-linear constraints, smooth, non-smooth or non-convex terms. To tackle the difficulty
involved in minimization, we use a "variable splitting" strategy and derive the closed-form global
solution of the sub-problem that contains all the non-linear constraints and non-smooth terms, and
part of the non-convexity. This proximal operator is an important contribution of our work since
it forms the core of the reconstruction method and reduces the number of additional parameters
involved in the variable-splitting process [25].
In section 2, we present the inverse problem for the reconstruction of absorbing and phase

objects, the regularizations and constraints we propose in order to enforce prior information on
the objects to be reconstructed. Then in section 3, we describe the iterative reconstruction method,



i.e. the hierarchical optimization procedure based on the closed-form expression of our proximal
operator. In section 4, we show that our approach enables quantitative phase estimation of
micrometric objects, based on reconstructions of in-line holograms simulated using Lorenz-Mie
theory (LMT). Finally, we discuss the quality of the reconstructions based on experimental
in-line holograms obtained in two different applications: fluid mechanics with the tracking of an
evaporating droplet (size ∼ 100µm) and microscopy of bacteria (size ∼ 1µm).

2. Inverse problems formulation

2.1. Hologram formation model

The first step in any inverse problems formulation is defining the image formation model (i.e., the
direct model), to describe how given objects produce a hologram on the sensor under incident
lighting. Under the hypothesis that the objects of interest are optically thin and located at the
same distance from the sensor, they can be modeled by a complex transmittance plane t(x, y)
(complex-valued functions or quantities are underlined throughout this article). The amplitude
and phase of the transmittance t(x, y) comprise the information to be retrieved from the hologram.
The object transmittance plane is illuminated by an incident wave of amplitude A0(x, y) and
wavelength λ. Following the Huygens-Fresnel principle, the object’s plane produces a diffracted
wave with a complex amplitude in the hologram plane given by:

Az (x, y) =
(
hz ∗ (A0 · t)

)
(x, y), (1)

where z is the distance between the sensor and the object plane, hz is the propagation convolution
kernel and ∗ is the 2-D convolution operator. This kernel is derived from the Rayleigh-Sommerfeld
integrale [26] for which it writes:

hz(x, y) =
z

iλ
exp

(
ikr

)
r2 . (2)

where r =
√

x2 + y2 + z2 is the radial coordinate, and k = 2π
λ is wavenumber. Under paraxial

approximation, the Fresnel approximation can be considered (i.e., z3 � πl4/(64λ) where l stands
for a characteristic size of the object). The kernel hz then writes:

hz(x, y) =
1

iλz
exp

(
iπ(x2 + y2)

λz

)
. (3)

Assuming that the incident beam A0(x, y) = A is a plane wave, and hence uniform in the field
of view, the intensity of the hologram on the detector is defined by:

I(x, y) =
��A��2 m(x, y) with m(x, y) =

���(hz ∗ t
)
(x, y)

���2 . (4)

The numerical recording of the diffracted light by the camera induces a sampling of the
hologram intensity. The acquired data is then defined as a vector d ∈ RN , with N the number
of pixels of the sensor. The same discretization can be used in the object plane, the discretized
transmittance is then a complex-valued vector t ∈ CN (the unknowns in our problem). If we
represent the 2-D discrete convolution operator by the N × N complex-valued matrix H , the
diffraction pattern model m at the k-th pixel of the detector is given by:[

m(t)
]
k
=

�� [H t
]
k

��2 , (5)

where [·]k indicates the k-th element of a vector. This leads to the following data formation
model:

[d]k = c ·
[
m(t)

]
k
+ [n]k = c ·

�� [H t
]
k

��2 + [n]k (6)



in which we have introduced a scaling parameter c that includes the reference plane wave intensity
|A|2 and the conversion factor of the sensor. The vector n stands for the noise (detection and
electronic noise, modeling errors). In the following, the noise component is assumed to be
approximately Gaussian and independent on each pixel k.

2.2. Regularized inversion

The inverse problem consists in estimating the transmittance t in the objects plane from a
hologram d. Simple inversion of the hologram formation model Eq. (6) is not possible (N
complex-valued unknowns while the hologram has only N real values). It is essential to introduce
constraints in addition to requiring that the reconstructed transmittance leads to a hologram
model that matches the actual hologram well. These constraints can take two forms: (i) hard
constraints that are enforced on all reconstructed transmittances, and (ii) soft constraints that
favor solutions with desired properties (e.g., spatial smoothness). Hard constraints restricts
feasible transmittances to the set Λ that fulfill the constraints. Soft constraints take the form of a
penalization term R. The estimation of the transmittance t can then be turned into a minimization
problem of the form:

t̂ = arg min
t ∈Λ

{
min
c
D

(
t, c

)}
+ R

(
t
)
, (7)

where the data-fidelity term D corresponds to the opposite of the log-likelihood under our
assumption of uncorrelated Gaussian noise:

D
(
t, c

)
= ‖c · m(t) − d‖2W , (8)

and W is a diagonal matrix with the k-th diagonal entry corresponding to the inverse of the
noise variance at pixel k ([W ]k,k = 0 in the absence of measurement) [27–30]. The scalar factor
c is generally not useful, but it is important to set it in order to match the scale of the data
d while keeping a normalized transmittance t between 0 and 1, as described in section 2.2.2.
The minimization problem Eq. (7) takes the classical form of a maximum a posteriori (MAP)
estimation, with R the opposite of the log prior and a prior probability P(t < Λ) = 0.

2.2.1. Estimation of the optimal scaling parameter c∗

The optimal scaling parameter c∗ is given by minimizing the data term Eq. (8) with respect to the
unknown c :

c∗
(
t
)
= arg min

c
‖c · m(t) − d‖2W . (9)

which leads to the solution:

c∗
(
t
)
=

m(t)TWd

m(t)TWm(t)
. (10)

Substituting c by c∗
(
t
)
in Eq. (8) defines a data term that depends only on t:

D∗
(
t
)
= ‖c∗

(
t
)
· m(t) − d‖2W . (11)

2.2.2. Physical constraints on the transmittance of the objects

Several physically-grounded constraints on the transmittance of the objects can be considered.
Remember that the transmittance t is complex-valued, so let us introduce the notation Re(t) and
Im(t) which stands for the real and imaginary parts of t, respectively. Let us also introduce
another possible notation for t as a decomposition in a modulus | t | and a phase term ϕ(t) ∈]−π, π]
as follows:

t = | t |.eiϕ(t). (12)



Table 1. Physical constraints considered by our reconstruction method.
Physical prior Mathematical constraint on t = |t |.eiϕ(t ) (see Eq. 12)

Diluted medium R1(t) :
∑

k

��1 − |[t]k |�� (1 − |t | has a low L1 norm)
(absorbing objects cover a small fraction of the plane)
Diluted medium R2(t) :

∑
k |Im([t]k ) | (Im(t) has a low L1 norm)

(phase objects cover a small fraction of the plane)
Spatial smoothness of absorption and phase shifts RεTV(t) (relaxed TV-norm, cf. Eq. 13)
Passive medium (absorbing) t ∈ Ω =

{
t ∈ CN , ∀k ∈ ~1, N�, |[t]k | ≤ 1

}
Thin objects and small refractive index contrast t ∈ Ψ =

{
t ∈ CN , ∀k ∈ ~1, N�, ϕmin ≤ ϕ

(
[t]k

)
≤ ϕmax

}

Table 1 lists the constraints we use in this paper. The first two constraints are soft constraints
that favor transmittances such that many pixels are fully transparent (|[t]k | = 1 for many k) and/or
introduce no phase shift (Im([t]k) = 0, thus ϕ([t]k) = 0 for many k). The third constraint favors
transmittances that are spatially smooth, while preserving sharp edges (the boundaries of the
objects). It uses a generalization of the total-variation to complex-valued images and includes a
parameter ε that help prevent a staircasing effect:

RεTV
(
t
)
=

∑
k

√(
∆xk Re(t)

)2
+

(
∆
y
k
Re(t)

)2
+

(
∆xk Im(t)

)2
+

(
∆
y
k
Im(t)

)2
+ ε2. (13)

where ∆xk is a linear operator that performs the difference between the value at the k-th pixel and
the value at the pixel immediately afterward in the x direction, and ∆xk performs the same kind of
difference in the y direction.

The last two constraints are hard constraints, that is to say that they are fully enforced. The first
hard constraint prevents the reconstruction of a transmittance with a modulus larger than 1 (no
amplification by the medium). Notice that this last constraint, as well as the soft constraint R1,
requires that t be normalized between 0 and 1 by adjusting the scaling factor c. The second hard
constraint can be used to restrict the set of possible phase shifts produced when the incident wave
crosses the transmittance plane.

Simple considerations on the sample thickness and maximum contrast between the refractive
index of the medium and of the object lead to a bound on the minimum / maximum phase shifts.

The minimization problem including the various physical constraints just discussed is summa-
rized in the next equation:

t̂ = arg min
t ∈Ω∩Ψ

D∗
(
t
)
+ α1R1

(
t
)
+ α2R2

(
t
)
+ α3RεTV

(
Re(t),Im(t)

)
(14)

where {α1, α2, α3} ∈ R+ are so-called hyper-parameters that balance the importance of each
physical constraint.

3. Proposed iterative reconstruction algorithm

In the previous section, we gave a formulation of the reconstruction problem as an optimization
problem. Solving the optimization Eq. (14) is challenging given the large number of unknowns
involved (as many as the number of pixels in the hologram), the non-differentiability of terms
R1 and R2, the non-linearity of the constraint t ∈ Ω ⇔

√
Re(t)2 + Im(t)2 ≤ 1, and the

non-convexity of terms D and R1. To tackle this problem, we use a variable splitting strategy, i.e.
we introduce additional variables a ∈ RN and b ∈ RN such that at convergence t = a + ib. We
then recast the optimization problem Eq. (14) as an equivalent constrained optimization problem:




t̂ = arg min

t, a, b
fα3 (t) + gα1,α2 (a, b)

s.t. Re(t) = a,Im(t) = b, and
(
a + ib

)
∈ Ω ∩ Ψ,

(15)

where fα3 (t) = D∗
(
t
)
+ α3RεTV

(
Re(t),Im(t)

)
is a smooth non-convex function, and

gα1,α2 (a, b) = α1
∑

k

(
1 −

√
a2
k
+ b2

k

)
+ α2

∑
k |bk | is a non-smooth and non-convex function. To

handle this constrained optimization problem, we can form the augmented Lagrangian Lβ and
search for a saddle point:

Lβ
(
t, a, b, u

)
= fα3 (t) + gα1,α2 (a, b) + β



t − (
a + ib

)
+ u



2
2 (16)

where u is the scaled dual variable, and β > 0 is the augmented Lagrangian penalization
parameter, see [31]. To find a saddle point, two steps can be repeated: minimization with respect
to the primal variables and update of the dual variables:

{
t (j+1), a(j+1), b(j+1)

}
= arg min

t,(a+ib)∈Ω∩Ψ
Lβ

(
t, a, b, u(j)

)
(17)

dual update: u(j+1) = u(j) + t (j+1) −
(
a(j+1) + ib(j+1)

)
(18)

where j corresponds to the iteration number.
Mourya et al. [25] showed that optimization Eq. (17) could be performed efficiently by

hierarchical optimization when minimizing with respect to some of the variables could be
performed in closed form. Following this approach, the algorithm (cf. Eq. (17)-(18)) can be
turned into two steps: (i) the minimization of a (non-convex) smooth function, and (ii) a dual
update:

t (j+1) = arg min
t

fα3 (t) + gα1,α2

(
a∗(t), b∗(t)

)
+ β




t − (
a∗(t) + ib∗(t)

)
+ u(j)




2

2
(19)

with
{
a∗(t), b∗(t)

}
= arg min
(a+ib)∈Ω∩Ψ

gα1,α2 (a, b) + β



t − (

a + ib
)
+ u(j)




2

2
(20)

dual update: u(j+1) = u(j) + t (j+1) −
(
a∗

(
t (j+1)

)
+ ib∗

(
t (j+1)

))
(21)

Evaluations of the cost function in Eq. (19) and its gradient require finding the optimal values
{a∗(t), b∗(t)}. Given the non-linear constraints, the non-differentiability and non-convexity of
the cost function, this is not trivial. However, the problem is separable and can thus be solved
independently at each pixel. In appendix A, we show that a closed-form expression of the global
minimum can be obtained. This closed-form expression is the key to the simplicity and efficiency
of our iterative reconstruction algorithm.
The minimization problem Eq. (19) is non-convex but differentiable, a local minimum can

then be found using a quasi-Newton algorithm. Here we use the Variable Metric Limited
Memory (VMLM) algorithm [32], including a variant for dealing with linear bound constraints
(VMLM-B) [33].

In regularized inverse problems approaches, the difficulty of tuning the hyper-parameter for
each a priori is a central problem which is more complex in this approach that includes three



regularization hyper-parameters (α1,α2,α3), and 2 bound constraints on the phase (ϕmin,ϕmax)
which are needed to be tuned. Experience shows that the tuning of regularizations requires a
tradeoff between the quality of the recovered signal in terms of SNR while keeping a good spatial
resolution. As it is complicated to get precise quantitative criterions to evaluate the quality of the
reconstruction when the inverse problem uses non-linear regularizations and constraints (e.g.
Cramer-Rao lower bounds are inapplicable in this context), the quality criterion is most of the
time empirical.
Moreover another critical point is the automatic tuning of the hyper-parameters. Different

tests showed that a good combination tuned by "hand" for one hologram can be applied to
other holograms recorded in the same configuration. This is due to the normalization of the
transmittance (its modulus is always in [0, 1]) that make the scale of the spatial gradients and L1
norms comparable from one reconstruction to another. To further simplify the tuning of these
hyper-parameters, we normalize each hologram by its maximum value so that the range of the
data term is similar from one acquisition to another. There are some special cases that suggest
some particular settings of the hyper-parameters:

• to reconstruct purely absorbing objects, a very large value can be used for the hyper-
parameter α2 (α2 →∞),

• to reconstruct purely phase objects, a very large value can be set for the hyper-parameter
α1 (α1 →∞),

• when the difference of refractive index n0 − nobject ≤ 0, we can set ϕmin = 0, and if
n0 − nobject ≥ 0 then ϕmax = 0.

• to produce a smoother reconstruction of the phase and modulus, the value of the hyper-
parameter α3 should be increased.

The parameter ε is used to prevent from producing staircase artifacts, it can be set between
10−4 and 10−3. Using a very small value for ε gives piecewise-constant reconstructions - it tends
to an exact TV regularization - and significantly slows down the convergence of the algorithm
(by up to one order of magnitude).

With the augmented Lagrangian methods, the parameter β controls the convergence rate of
the algorithm. For convex problems, Mourya et al. [25] have shown that the value of β has a
very limited impact on the convergence speed. Our optimization problem being non-convex, the
value of β may also impact the local optimum obtained by the algorithm. In practice, we have
found that values for β in the range [5, 1000] lead to a satisfying convergence speed and very
close reconstruction results.

4. Results

4.1. Application in fluid mechanics

4.1.1. Context and experiments

The reconstruction procedure is tested in the field of fluid mechanics. The experiments consist
in imaging droplets of diethyl ether, evaporating in a turbulent flow. The experimental setup
comprises a droplet generation device, a turbulence generation and control device and an in-line
holographic arrangement, as described in reference [34–36], using the experimental set up
Fig. 1(a). The droplets, with a diameter of ∼100 µm, are illuminated by a monochromatic
divergent beam of wavelength λ = 532 nm. In-line holograms of these droplets are recorded on
the CMOS sensor of a Phantom V611 high speed camera at a framerate of 3 kHz. The sensor is
composed of 1280 × 800 pixels with a pixel pitch of 20 µm. The distance z from the sensor plane
to the droplets is about 630 mm. Note that the beam divergence introduces a magnification ratio



6.4 mm

a) b)

Fig. 1. a) Experimental setup for observing evaporating droplets dedicated to fluid mechanics
studies. b) Experimental hologram. The red rectangle corresponds to the field of view of
interest in the reconstructions shown in Fig. 4 in section 4.1.3.

of about 1.5, which varies weakly with the distance z. The holograms of the droplets are then
equivalent to holograms recorded with a plane wave illumination for droplet sizes of about 150
µm and a recording distance of about 1 m. Figure 1(b) shows an experimental hologram obtained
at one stage of the acquisition.

4.1.2. Simulations of evaporating droplets using the Mie theory

In the context of the fluid mechanics experiments described above, our reconstruction method
was first tested on synthetic holograms simulated by Lorenz-Mie Theory (LMT), simulating
holograms of fluid particles. LMT provides a rigorous solution to the problem of light scattering
by a perfect homogeneous and isotropic sphere [37, 38]. This solution has been extended to
the case of radially inhomogeneous spheres [39, 40]. This extended formulation can be used to
simulate the hologram of a liquid droplet surrounded by a vapor cloud [35], at any distance z
from the droplet. Synthetic images were generated from LMT simulations, taking into account
the integration over sensor pixels. The spherical droplet was defined by a radius rd = 50 µm
and a complex refractive index nd = 1.35. The droplet is illuminated by a monochromatic plane
wave of wavelength λ = 532 nm. The vapor cloud, assumed to be spherical, was defined by
a refractive index nv(r), r being the radial distance in spherical coordinates. In the following,
we simply used an exponential decay from ns = 1 + 10−4 (at the droplet surface) to 1 far from
the droplet, according to the formula nv(r) − 1 = (ns − 1) exp (−(r − rd)/σ) where the decay
parameter σ = 100 µm. The sensor is composed of 1000 × 1000 pixels with a pixel pitch of 20
µm. The recording distance between the droplet and the sensor is z = 0.5 m. In the vapor cloud,
the refractive index is close to 1 and varies slowly. Thus, it can be considered mostly as a phase
object. On the contrary, the liquid droplet behaves as an amplitude object (nearly opaque). The
complex diffracting object composed of the droplet and the vapor cloud is then a phase-shifting
and absorbing object and the reconstructed transmittance is expected to be complex-valued. For
the propagation distance considered in this simulation (z = 0.5 m), simulated holograms of a
transparent (nd = 1.35) and an absorbing sphere (nd = 1.35 − 0.1i) are found to be identical,
because the light refracted through the droplet diverges faster and is negligible compared to
the diffracted light. Thus, at large distances, both absorbing and transparent droplets can be
considered as absorbing objects. Figure 2(a) shows the synthetic hologram, and Fig. 2(b) shows
the phase (on a zoomed field of view) of the back-propagation obtained from the fully complex
hologram - with the phase - which is considered as the ground truth phase image. Two noisy
holograms are generated, adding a uniform and independent Gaussian noise with a signal to
noise ratio (SNR) of 100 and 50, respectively. At the location of the central droplet, as it is a
purely absorbing object, the values of the phase are inconsistent. Hence we mask these values
to 0 to better concentrate on the vapor cloud’s phase. The mask operates on all pixels whose
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Fig. 2. Simulation of an evaporating droplet of index nd = 1.35 and radius rd = 50
µm, with an isotropic vapor cloud modeled by a refractive index decay nv(r) − 1 =
(ns − 1) exp (−(r − rd)/σ), illuminated by a plane wave of wavelength λ = 532 nm, and
recorded at a distance z = 0.5 m. a) Synthetic hologram of the phase-shifting and absorbing
object. b) Ground truth phase images obtained by back-propagation of the corresponding
complex holograms (i.e., including the phase in the hologram plane). The field of view
corresponds to the red square shown on the holograms.

modulus is lower than 0.5.
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Fig. 3. Reconstructions of simulation of the phase-shifting and absorbing object. a) Recon-
struction phase for a data SNR of 100. b) Absolute value of the phase difference (error map)
between the ground truth phase of Fig. 2(b) and the reconstruction, for data SNR = 100.
Normalized maximum error EMAX ' 15.18% and normalized root mean squared error
RMSE ' 1.53%. c) Reconstruction phase for data SNR = 50. d) Absolute value of the phase
difference (error map) between the ground truth of Fig. 2(b) and the reconstruction, for
the data SNR = 50. Normalized maximum error EMAX ' 14.91% and normalized root
mean squared error RMSE ' 1.68%. e) Reconstruction phase for data SNR = 100 with the
Error-Reduction Fienup’s algorithm with a known-support constraint. f) Absolute value of
the phase difference (error map) between the ground truth of Fig. 2(b) and the reconstruction,
for the data SNR = 100. Normalized maximum error EMAX ' 49.41% and normalized root
mean squared error RMSE ' 10.67%.

The reconstructions were performed with our method involving 16 dual updates with 30



iterations between each update to ensure the good convergence of the algorithm. The 5 hyper-
paremeters (α1, α2, α3, ε, β) were tuned "by hand" to obtain a convincing result. The calculation
time was about 5 minutes.

For comparison, a reconstruction of the simulated hologram with SNR = 100 was performed
with an Error-Reduction Fienup’s algorithm [6] including a support constraint at each iteration.
The support is supposed to be known and is the disk of radius 6σ = 600 µm (recall that σ is
the decay parameter of the refractive index radial profile of the simulated vapor cloud). At this
distance, the phase shift is less than 1 % of the maximum phase shift at the interface between the
droplet and the vapor cloud, so it is negligible because it is hidden in the noise.

Figure 3 compares the reconstruction of the phase with the ground truth phase of Fig. 2(b). We
show the reconstructed phases (a,c,e) and the error maps (b,d,f) for the 2 data holograms at SNR
= 100 (a,b) and 50 (c,d). The reconstruction at SNR = 100 with Fienup’s algorithm is shown in
Fig. 3(e,f). The error maps are defined as the absolute difference between the reconstruction and
the ground truth. As already said for the ground truth, we mask the pixels corresponding to the
central droplet which is considered as a purely absorbing object, thus leading to inconsistent
phase values. Masking operation is done in the same way as for the ground truth image, i.e. on all
pixels whose modulus is lower than 0.5. We chose not to show the results of reconstructions of
the modulus so as to concentrate on analysis of phase quantification.
At first glance, the reconstructions of the phase are close to the ground truth, showing the

correct expected range of values. The same observation is made on the reconstructions of the
modulus. The error maps allow a finer comparison, and we logically observe that the errors
are more important for data SNR = 50. At SNR = 100, our method gives a much better phase
estimation than Fienup’s reconstruction. The error map of this reconstruction shown in Fig. 3(f)
illustrates the higher errors - the display range of error values has been enlarged to show
how far the error increases. This can be due to the fact that in this simulation, the support is
too large to eliminate properly the twin-image artifacts involved by the central droplet. Thus
Fienup’s algorithm fails in properly separating phase and absorption information. In the case of
experimental holograms of evaporating droplets (see section 4.1.3), this problem will be enforced
by the fact that the support of the vapor cloud will be very difficult to estimate precisely because
we have no a priori information about its shape. For reconstructions of holograms of bacteria
(see section 4.2.2), Fienup’s algorithm could perform better because the phase and absorption
information is located at the same place. However the problem of estimating correctly the support
of unknown-shaped bacteria would remain challenging. On the contrary, our method seems to
distinguish properly phase and absorption information even if it is spacially separated. Moreover,
sparse regularizations act as an adaptive estimation of the support of the objects both in phase
and amplitude.
To better quantify the errors, we calculate 2 metrics EMAX and RMSE that correspond

to the normalized maximum error and the normalized root mean squared error, respectively.
Normalization is obtained by dividing the absolute maximum error and root mean square error
by the maximum value of the ground truth. These quantitative results confirm the previous
observations: a lower SNR yields larger errors. EMAX is very important with values around 15%,
while RMSE goes from 1.53% for SNR = 100 to 1.68% for SNR = 50, showing that the global
phase estimation is very accurate. Quantified errors at SNR = 100 for Fienup’s reconstruction
are much higher with EMAX = 49.41% and RMSE = 10.67%, which confirms our previous
observations.

4.1.3. Reconstructions from the sequence of experimental holograms

Figure 4(a) shows 3 holograms of the same droplet at successive time steps, extracted from an
evaporation time sequence (See Visualization 1). The holograms show the typical circular fringes
associated to the droplet and the trace of a vapor wake, whose orientation changes with the flow
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Fig. 4. Reconstructions of a time sequence of experimental holograms of evaporating droplets
(See Visualization 1) with the proposed method (See Visualization 2). a) Data at 3 different
time steps of the acquisition. The red rectangles corresponds to the field of view shown in
the reconstructions on the rows below. b) Reconstructions of the phase at the same 3 stages.
The evaporating cloud is clearly visible as a purely phase information. c) Reconstructions of
the modulus at the same 3 stages. Only the droplet is visible as a purely absorbing object.

direction. The inversion results are also presented in Fig. 4(b,c) with focus on the reconstructed
phase (see Fig. 4(b)) and modulus (see Fig. 4(c)). These results do not quantitatively validate the
reconstruction method but illustrate the potential of the method for this particular application.
Note however that the order of magnitude of the maximum phase shift, close to the droplet can be
estimated by ϕ = l ∗ ns ∗ 2π/λ , where l is an estimation of the wake depth and ns is the refractive
index of the ether vapor / air mixture at the droplet surface. Considering l equals twice the droplet
diameter (about 200 µm) and ns ≈ 1.5 + 10−4 (based on measurements made on millimeter sized
suspended drops [41]) the maximum phase shift is in the order of 0.35 rad. In [36], droplet
hologram sequences were reconstructed using an alternative method [27,28]. This parametric
method provides highly accurate quantitative measurement of droplet size and position. Note
that the z position estimated by this method is taken as the focus distance for calibrating our
propagation kernel hz (see Eqs. (2) and (3)). However it is limited to qualitative information
on the vapor wake. In the context of fluid mechanics, measuring and tracking both the droplet
and the vapor wake is crucial to understand the role played by turbulence in the evaporation of
the droplets and more specifically, some deviations observed in [36] in comparison with the
evaporation rates predicted by quasi-steady evaporation and drag force modeling. In this context,
the results obtained with the proposed method are promising for quantifying both the droplet and
the vapor wake.
From a qualitative point of view, Fig. 5 shows that the pseudo hologram data obtained from

the repropagation of the reconstruction (see Fig. 5(b)) has a high fidelity with the experimental
hologram (see Fig. 5(a)), while reducing a significant proportion of the experimental noise
(sensor noise, outliers in the other planes, etc.).

Reconstructions in Fig. 4 are performed with our method involving 16 dual updates with 50
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Fig. 5. Qualitative comparison between a) the experimental hologram and b) the hologram
model c∗ · m(t) obtained from the repropagation of the reconstruction.

iterations between each update to ensure the good convergence of the algorithm. The calculation
has been launched on a CPU Intel Core i7-3630QM (2,40 GHz). The calculation time is
approximately 15-20 minutes. Figure 6 shows the phase reconstruction of the hologram at the
top-left in Fig. 4 at different iteration steps. If the best results are given for the optimization
strategy used for the reconstructions shown in Fig. 4 (see Fig. 6(c)), we can see that we have
pretty good reconstructions in almost a few minutes after less iterations and/or updates (see
Fig. 6(a,b)), even if the convergence is not reached in these cases.
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Fig. 6. Reconstructed phase at different optimization steps. a) 2 dual updates with 30 iterations
(calculation time ∼ 1 minute). b) 4 dual updates with 30 iterations (calculation time ∼ 3
minutes). c) 16 dual updates with 50 iterations (strategy used for the reconstructions shown
in Fig. 4) (calculation time ∼ 15 minutes). Calculation times are given for reconstructions
performed on a CPU Intel Core i7-3630QM (2,40 GHz).

4.2. Application in defocused microscopy for micro-biology

4.2.1. Context and experimental bench

The reconstruction was also tested in the field of micro-biology. The experiment consists in
imaging stained bacteria with a microscope setup (see Fig. 7). The objects are bacteria that are
either gram negative rods (Escherichia coli, noted E. coli) or gram positive cocci (Staphylococcus
epidermidis, noted S. epidermidis). A clonal population of both of these bacteria is isolated on a
Petri plate, then both of the isolates are smeared on a microscope slide. The bacteria are then
Gram-stained using standard procedure (bioMérieux PreviColor Gram system). The resulting
objects immobilized on the surface of the slide are pink (gram negative) or violet (gram positive),
with a typical size of ∼ 1µm.

These objects are then imaged using two different microscopic setups (see Fig. 7(a)):

• The first ("reference") setup is similar to the one typically used in routine in-vitro diagnotics
laboratories. It consists in a white-light, transmission, oil-immersion microscope setup,
with a color camera, mounted in a standard instrument (Olympus BX-61). The light source
is a white LED (5500 K, Mightex FCS-0000-000), coupled with a 600µm-core optical fiber
bundle. The end of the optical fiber is positioned in a distance of a few centimeters from



the slide, which is placed on a motorized stage. The objects are positioned by the operator
at the focal plane of the objective. The image is collected through a 60X/NA1.4 objective
(Olympus), a 10x tube lens, and a 5Mpix color camera (Basler, pixel size 3.45µm).

• Using the same mount, a second setup can be implemented. Using another fiber of the
bundle, the light source is switched to a monochromatic LED source (617nm, Mightex
FCS-0617-000). Using the motorized stage, the objects are positioned at 32 µm distance
from the focal plane of the objective. A band-pass filter (610nm, 5nm width) is positioned
between the objective and the tube lens. This allows acquiring an in-line hologram of the
objects (see Fig. 7(b)). For sake of comparisons, images of the object positioned in the
focal plane are also acquired with this mount (see Fig. 8).

Fig. 7. a) Inline holographic microscopic setup dedicated to the imaging of bacteria. b)
Defocused hologram (z = 32 µm) of Gram stained bacteria at illumination wavelength
λ = 610 nm.

4.2.2. Reconstructions from holograms of bacteria

B

white-light illumination at focus
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a) b)
illumination     = 610 nm at focus

Fig. 8. Intensity images of the biological sample acquired at the focal plane of the objective
(experimental ground truth images). A, B and C are 3 regions of interest (see Fig. 10). a)
White-light illumination. b) Monochromatic illumination at λ = 610 nm.

Figure 7(b) shows a defocused hologram at z = 32 µm of a biological sample containing the
two species of bacteria, S. epidermidis and E. coli (E.coli). Figure 8(a) shows the white-light
illuminated intensity image of the biological sample at focus which stands for the reference
image. Figure 8(b) shows the intensity image, at the focal plane of the objective, of the biological



sample at the illumination wavelength λ = 610 nm. Figure 9(a,b) respectively show the modulus
and phase of the reconstruction obtained with our method from the defocused hologram of
Fig. 7(b). In the experiment, bacteria are Gram stained, in pink color (chromophore Safranin) for
E.coli bacteria (gram-negative), and violet color (chromophore Crystal Violet) for S. epidermidis
(gram-positive). For the 610 nm illumination wavelength, E.coli does not absorb and behaves
mostly as a phase object, while s. epidermidis both absorbs light and shifts the phase. These
results are coherent with the expected absorptions of the chromophores for the wavelength 610
nm (see Fig. 11).
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Fig. 9. Reconstructions from the defocused hologram (z = 32 µm) of Fig. 7(b) at illumination
wavelength λ = 610 nm. A, B and C are 3 regions of interest (see Fig. 10).

Acquiring defocused intensity images (holograms) brings information from phase objects that
can not be recorded at the focus plane. From the field of view shown in Fig. 9, we extract 3
regions of interest A, B, and C. Figure 10 show zooms on these 3 regions, for each reference and
reconstruction images (see Figs. 8 and 9). We can observe that E.coli bacteria are reconstructed
by our method like a purely phase object (third and fourth columns), whereas E.coli bacteria
cannot be observed on the "red"-light intensity image at focus (second column). S. epidermidis
bacteria are reconstructed by the proposed algorithm like phase and absorbing objects (third
and fourth columns). These results show that phase information is promising to discriminate the
two populations involved in this experiment, because their phase and modulus characteristics
are different. Hence our reconstruction algorithm demonstrates its ability to correctly retrieve
phase and absorption information, in accordance with what is physically expected from Fig. 11: a
bacteria colored by crystal violet will absorb red light at the wavelength 610 nm while another that
is colored by safranin will absorb very little light. No contrast is expected in terms of absorption.
Only the phase shift produced by the bacteria makes it visible in a defocused image. This fits
with our reconstruction where bacteria colored by crystal violet are visible in the reconstructed
modulus, while safranin-colored bacteria are visible only in the reconstructed phase.
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Fig. 10. Zooms on the 3 regions of interest A, B and C, of the ground truth images at the
focal plane of Fig. 8, and of the reconstructions of Fig. 9.

Fig. 11. Absorbance spectra of the chromophores used for standard Gram stain of bacteria.

5. Conclusion & discussion

We have devised a regularized inverse problems approach to quantitatively reconstruct the
transmittance of absorbing and phase objects from a single in-line hologram. The originality
of the proposed method is the inclusion of several physical constraints and the derivation
of an efficient algorithm based on the closed-form expression of the global minimum of a
non-convex, non-smooth optimization sub-problem that involves non-linear constraints. From a
robustness point of view, this approach was successfully applied on several in-line holography
configurations for different applications: fluid mechanics and micro-biology. The performance of
the phase reconstruction has been demonstrated both quantitatively with simulated holograms and
qualitatively with experimental holograms for applications in fluids mechanics and micro-biology.
Particularly, our method have demonstrated its ability to correctly separate phase and absorption
information in a coherent way, showing at the same time that phase information is of primary
importance for the targeted applications.



A critical point of our method is the large calculation time. For the moment, our algorithm
has involved no optimization for its implementation, as it has been initially developed on a
single CPU. Other works in this field have shown that GPU acceleration can drastically speed
up reconstructions, using fast GPU implementations of modelization and optimization tools
classically used in digital holography [42], or applyingGPU-accelerated deep neural networks [12].
An implementation on GPU is also possible for our algorithm, as many parts of it can be highly
parallelized: (i) the forward model which uses Fast Fourier Transforms ; (ii) the proximal operator
which is separable on each pixel of the image.

A limitation could be that the reconstruction is based on a hologram formation model based
on the 2-D projection of 3-D objects, which is only valid for thin objects. The proposed inverse
problem approach can be easily adapted to reconstruct several absorbing and phase objects
located in different 2-D planes at various distances z from the sensor plane.

A. Appendix A

Closed-form expression of the solution to problem Eq. (20) pixel by pixel (a and b are scalar):

The proximal operator

proxβ−1gα1,α2
(p, q) =


arg min

a,b
β(p − a)2 + β(q − b)2 + gα1,α2 (a, b)

s.t. a2 + b2 ≤ 1, and ϕmin ≤ ϕ(a + ib) ≤ ϕmax

(22)

can be obtained in closed-form:

• in the case where the constraints are not active, it corresponds to the solution of the
following problem:

arg min
a,b

β(p − a)2 + β(q − b)2 + gα1,α2 (a, b) (23)

which writes:

(a∗, b∗) =
(
p +

α1
2β

p
|p + iSα2/2β(q)|

, Sα2/2β(q) +
α1
2β

Sα2/2β(q)
|p + iSα2/2β(q)|

)
(24)

where Sα2/2β(q) corresponds to the soft-thresholding of q:

Sα2/2β(q) ≡


q − α2

2β if q ≥ α2
2β

0 if q ∈
[
−α2

2β ,
α2
2β

]
q + α2

2β if q ≤ −α2
2β

(25)

Special case: if p=0 and q=0

(a∗, b∗) = (α1
2β
, 0) (26)

• if the constraint on the modulus a2 + b2 ≤ 1 is active:

(a∗, b∗) =
(

p
|p + iSα2/2β(q)|

,
Sα2/2β(q)

|p + iSα2/2β(q)|

)
(27)



• if the constraint on the phase is active, then ϕ(a∗ + ib∗) = ϕmin or ϕ(a∗ + ib∗) = ϕmax and
the associated modulus |a∗ + ib∗ | gives:

|a∗ + ib∗ | =


1 if ρ∗(ϕ∗) ≥ 1
ρ∗(ϕ∗) if ρ∗(ϕ∗) ∈ [0, 1]
0 if ρ∗(ϕ∗) ≤ 0

(28)

with

ρ∗(ϕ) = p cos(ϕ) + q sin(ϕ) + α1
2β
− α2

2β
| sin(ϕ)| (29)

and

ϕ∗ = arg min
ϕ∈{ϕmin,ϕmax }

β(p − ρ∗(ϕ) cos(ϕ))2 (30)

+ β(q − ρ∗(ϕ) sin(ϕ))2

+ α1(1 − ρ∗(ϕ))
+ α2ρ

∗(ϕ)| sin(ϕ)| .
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