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A consequence of the negation of Strong Goldbach Conjecture Introduction

The Strong Goldbach Conjecture which states, with modifications, that (SGC) Every integer 2n, where n ≥ 3 is the sum of two odd primes [START_REF] Wang | The Goldbach Conjecture[END_REF] is reformulated below. Let n ∊ N, the set of natural numbers. Based on n, we define the following sets, i) Sn1 = {sx: sx ∊ N and sx ≤ n} and Sn2 = {sx: sx ∊ N and n < sx ≤ n} ii) Πn = {px: px is an odd prime, px > 1 and px ∊ Sn1} iii)

An= {ox: ox ∊ Sn2 and there exist a px ∊ Πn such that ox + px = 2n} (we shall call such a pair (ox, px) an additive pair (AP); an element of AP is called the additive partner of the other.)

With these sets in place we formulate statement (SGC) as (R).

(R) Given any number n ∊ 𝐍 -{1,2,3}, there is at least one prime element of set An.

It is to be noted that there is loss in generality in our formulation with the replacement of n ≥ 3 by n≥ 4. It may also be noted that our formulation makes the two primes distinct.

Negation and consequence

Negation of statement (R) gives the following statement.

(C) There exists at least one n ∊ 𝐍 -{1,2,3} for which there are no prime elements of An i.e.,

⋀ ⋁ (∼ 𝑃𝑜)

𝑜∈𝑨 𝒏 𝑛∈𝑵-{1,2,3} (where Px : x is prime).

We define three more sets. iv) py(An) = {ox: py is an odd prime factor of ox} v) Π(An)={ px(An): px ∊ Πn } vi) α(An) = { αx: αx. px= ox} Lemma 1. The prime factors of composite elements of An are exclusively from Πn.

Proof: By Bertrand's postulate [START_REF] Aigner | Proofs from the Book[END_REF], there is at least one prime in Sn2. To prove the lemma it is enough to show that no primes in Sn2 can be a prime factor of any element of An. Suppose a prime number from Sn2, say pa is a factor of an element of An, say oa. The smallest number that pa can be in Sn2 is n+1. Any natural number, other than 1, multiple of n+1 exceeds 2n. But the elements of An are here assumed to be composite numbers, so pa ≠oa. Therefore there are no prime factors of the composite elements of An.

Lemma 2. For any n ∊ N, pi-pj = oj -oi Proof: pi + oi =2n, pj + oj = 2n, by definition of the set An. From these the lemma follows by elementary substitution and rearrangement of terms.

We now prove statement (R) as a theorem.

Theorem. Given any number n ∊ 𝐍 -{1,2,3}, there is at least one prime element of set An.

Proof: For an indirect proof of the theorem we assume statement (C) -There exists at least one n ∊ 𝐍 -{1,2,3}for which there are no prime elements of An.

From this it follows that for some n ∊ N, all elements of An are composite, and their prime factors belong to the set Πn. Let us choose an element os ∊ pt(An).

os -ot = pt-ps (4) αspt-ot = pt-ps

(5)

Regarding the membership of ot, the following possibilities arises. We shall call such element of An, for which such possibilities arises as "rogue" element of An.

Case i) ot ∈ pt(An)

(5) then becomes αspt-αtpt = pt-ps ps=(1-αs+ αt)pt (6)

Since ps≠ pt≠0, (1-αs+ αt) ≠0. (6), therefore, is an absurd situation where a prime is expressed as an integral multiple of another prime.

Case ii) ot ∊ ps(An)

( Comparing terms, we have ps=pt, which is against our assumption that they are distinct.

Granting that they are identical, we reach a situation similar to that expressed in ( 6). An interpretation of these absurdities is that ot ∉ { ps(An) ∪ pt(An)}. So, it has to be Case iii) ot ∊ {Π(An) -(ps(An) ∪ pt(An))}.

The absurdities deplete the set Πn(An), in the sense that ot has a choice to be a member of a depleted set with cardinality (k -2), assuming that cardinality of Π(An) is k.

Let ot∊ pl(An). ot =αt pl (

But, pl= 2n -ol (10) We expand the 2n in terms of os and ps. pl = os + ps-ol pl = αs.pt + ps-ol (11)

From ( 6), (9), and (11), we get αs.pt -αt(αspt + ps-ol) = pt-ps (12) (12) initiates the depletion of Π(An) in the manner of that initiated by (5).

The following are the cases to consider regarding the membership of ol.

Case i) ol ∊ ps(An) Case ii) ol ∊ pt(An) Case iii) ol ∊ pl(An) Case iv) ol ∊ {Π(An) -(ps(An) ∪ pt(An) ∪ pl(An))}

It can be seen that Cases i) -iii) reduce to absurdities that we have encountered in the possibilities that initiated with (5). Therefore, the only option is Case iv) that depletes Π(An) as a field of choice for the rogue element ol of An. Explication of Case iv) shall bring into the equation ( 12) another rogue element that further depletes the field of choice in Π(An). Since, Π(An) has the finite cardinality, k, which is depleted with each consideration of the membership of rogue elements that surface, there shall be a point where Π(An) would be completely depleted. Let or be the rogue that is introduced in the situation where the field of choice is reduced to a set of cardinality (k-k). Let or ∊ pu(An). But pu(An) ∊ φ, the empty set. This defeats our assumption that all elements of An are composite. This leads to the negation of (C), ~⋀ ⋁ (∼ 𝑃𝑜)

𝑜∈𝑨 𝒏 𝑛∈𝑵-{1,2,3}
This negation, in turn, is equivalent to ⋁ ⋀ (𝑃𝑜) 𝑜∈𝑨 𝒏 𝑛∈𝑵 that is the statement of our theorem.

Conclusion

Statement (R), which is the statement of our theorem proved guarantees a prime element of An. At least one pi ∈ Πn, has a prime additive partner oi such that pi + oi=2n.

In domains of mathematical reasoning which accepts reductio ad absurdum as valid, a claim to the effect that Strong Goldbach Conjecture is true could be made based on our theorem.