
HAL Id: hal-01765318
https://hal.science/hal-01765318

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A coupled model for flexible rotors
Eduardo Duran Venegas, Stéphane Le Dizès, Christophe Eloy

To cite this version:
Eduardo Duran Venegas, Stéphane Le Dizès, Christophe Eloy. A coupled model for flexible rotors.
BBVIV 7 7th Conference on Bluff Body Wakes and Vortex-Induced Vibrations, Jul 2018, Carry-le-
Rouet, France. �hal-01765318�

https://hal.science/hal-01765318
https://hal.archives-ouvertes.fr


A coupled model for flexible rotors
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Rotors are present in various applications ranging from wind turbines to helicopters and propellers.
The rotors are often made of flexible materials which implies that their geometry varies when the oper-
ational conditions change. The intrinsic difficulty of rotor modeling lies in the strong coupling between
the flow generated by the rotor and the rotor itself that can deform under the action of the flow. In this
talk, we propose a model where the strong coupling between the flexible rotor and its wake is taken into
account. We are particularly interested in configurations where the general momentum theory [1] cannot
be used (for example, for helicopters in descent flight).

The wake is described by a generalized Joukowski model. We assume that it is formed for each blade
of a bound vortex on the blade and two free vortices of opposite circulation, same core size a, emitted at
the radial locations Ri and Re (see figure 1). These parameters are computed from the circulation profile
Γ(r) obtained on the blade by applying locally at each radial location r the 2D Kutta-Joukowski formula

Γ(r) =
1

2
CL(α(r))U(r)c(r), (1)

where c(r) is the local chord, CL(α(r)) the lift coefficient of the chosen blade profile, α(r) the angle of
attack of the flow, and U(r) the norm of the velocity. The vortex circulation Γm is the maximum value of
Γ(r), and the emission locations Ri and Re are the radial distances of the centroid of ∂rΓ on both sides
of the maximum (see figure 1).

The wake is computed using a free-vortex method [2]. Each vortex is discretized in small vortex
segments for which the induced velocity can be explicitly obtained from the Biot-Savart law [3]. We are
considering helical wake structures that are stationary in the rotor frame. This frame is rotating at the
rotor angular velocity ΩR and translating at a velocity V∞ corresponding to an external axial wind. For
a prescribed rotor of N blades, the wake structure is characterized by five non-dimensional parameters

λ =
ΩRRb

V∞
, η =

Γm

ΩRR2
b

, R∗e =
Re

Rb
, R∗i =

Ri

Rb
, ε =

a

Rb
, (2)

where Rb is the blade length.

Figure 1: Generalized Joukowski model. The parameters (Γm, Ri and Re) of the model are computed
from the circulation profile Γ(r) on the blade as explained in the text.
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Figure 2: Illustration of the effect of blade flexibility on the wake structure and blade geometry. Dashed
lines: wake and blades for the rigid case. solid lines: wake and blades for the flexible case. The undeformed
blade is as illustrated in figure 1: it is a flat plate with a constant twist angle θ = −10◦ and a linearly
decreasing chord from c(r = 0.2Rb) = 0.1Rb to c(r = Rb) = 0.07Rb. The wake parameters of the
rigid rotor are λ = 6.67, η = 0.0218, R∗e = 0.99, R∗i = 0.24, ε = 0.01. The flexible blades have the
characteristics: E∗ = 106, ν = 0.5. (a) 3D geometry of the rotor and of the wake. Only the deformation
and the vortices emitted from a single blade are shown. (b) Locations of the vortices in the plane including
a blade and the rotor axis. (c) Twist angle of the blade. (d) Bending of the blade.

The aerodynamic forces exerted on the blade are calculated using the blade element theory [2]. From
the wake solution are deduced the angle of attack and the velocity amplitude at each radial location on
the blade in the rotor plane. Then, the loads are deduced from the lift and drag coefficients CL and CD

of the considered blade profile. The blade deformation is obtained using a ribbon model for the blade
[4]. This 1D model is a beam model that allows to describe the nonlinear coupling between bending and
torsion. In the simplest cases, we assume uniform elastic properties of the blades which are characterized
by a Poisson ratio ν and a non-dimensional Young modulus E∗ = E/ρbΩ

2R2
b , where ρb is the density of

the blade.
A typical example with a simple blade geometry is shown in figure 2. In these figures are shown

both the case of a rigid rotor and of a flexible rotor for the same operational conditions (same V∞ and
same ΩR). We do see the effect of blade flexibility. The blades do bend and twist in the presence of the
flow. Moreover, this bending and twisting also affect the wake. When the blade bends, the vortices move
streamwise and inward, which impacts the expansion of the wake. The vortex circulation is also slightly
modified as η changes from 0.0218 to 0.0216 when the blades bend.

Other examples will be presented and compared to available data. The question of the stability will
also be addressed. Both flow instabilities and instabilities associated with the blade flexibility will be
discussed.
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