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Near-Infrared Spectroscopy Analysis of Heavy Fuel Oils Using a New Diffusing

Support

Nathlie Dupuy, Zeineb Brahem, Sandrine Amat,* Jacky Kister
Aix Marseijlle Université, LISA, EA4672, Equipe METICA, 13397 Marseille Cedex 20, France

The characterization of heavy fuel olls (HFQOs), used as fuel for
boats, requires the analysis of various properties that are essential
for engine optimization and pollution control. For some time, near-
infrared (NIR) spectroscopy combined with chemometric treatment
of the spectra was used for on-line analysis. This preliminary study
included 61 heavy fuels from Europe, America, and Asia with
different specifications according to their geographical origin; their
refining process; and their physicochemical properties, Including
density, flash point, viscosity, and sulfur content. We have
developed a new method for sampling heavy fuels on a fiberglass
cell support. This support offers the advantages of speed, easy
implementation, repeatable results, and freedom from problems
associated with tank cleaning. Two sample presentations, an
integrating sphere and an optical fiber, were used to collect the
NIR spectra. A theoretical study of the choice of the value of
resolution, scan number, and spectral region was conducted. The
best conditions were chosen as a function of the quality of
quantitative analysis results on viscosity, sulfur content, flash
point, and density. The two collecting methods were compared on
the same criteria.

Index Headings: Fuel; Near-infrared; NIR; Calcuiated carbon aroma-
ticlty index; CCALl; Sulfur content; Soft independent modeling of
class analogy ciasslfication; SIMCA; Partial least squares; PLS.

INTRODUCTION

Heavy fuel oils (HFOs) are products of crude oil
refining after a distillation process. According to the
nature of the refined crude oil, 10-20% of it is separated
out as HFOs, These heavy fuels are mainly used in boats
and power stations. Very complex matrices consisting of
chains of hydrocarbons, HFOs have degrees of alkylation
between 25 and 200 atoms of carbo hese samples
also contain high levels of heteroatoms, such as sulfur,
nitrogen, and oxygen, as well as metals, including nickel
and vanadium. The characterization of HFOs requires
the analysis of selected chemical and physical proper-
ties. The properties of HFOs depend on the geographical
origin of grude oil and on the refining processes. For
example@enezuelan crude oil is known for _jts high_ash
content, whereas crude oils from the {(Middle (Bast
generally have low sulfur content, The HFOs obtained
from those crude oils will present different physicochem-
ical characteristics, For an engine to run optimally, it is
essential to have a basic understanding of such fuel
characteristics and properties as viscosity,” carbon
residue, vanadium content, calculated carbon aromatic-
ity index (CCAIl), and flash point, and such contaminants

as nitrogen and water,? which affect fuel handling and
fuel treatment systems. Although heavy fuels must be in
accordance with the specifications required in all
countries, the complexity of the refining of crude oils
influences the variability of the quality of finished
products. Recently, infrared and fluorescence measure-
ments have been used in petrocleum development.
Investigations studied tank continuity® and evaluated
thermal maturity.*® Among several methods of spectro-
scopic data interpretation, we highlight the studies of
Kister et al.5” wherein indexes have been calculated
from areas of absorption bands to describe the global
structure of oils by Fourier transform infrared spectrom-
etry (FT-IR) and their aromatic structures by synchro-
nous excitation—emission ultraviolet fluorescence.
Fourier transform infrared spectrometry was used to
determine aliphatic, aromatic, and functionalized com-
pounds for each oil, whereas the condensation degree of
aromatic rings has been evaluated by synchronous
ultraviolet fluorescence analysis.®'® Traditionally, spec-
tral analysis by chemometrics proved their relevance to
analysis of crude oils,""2 petroleum fractions such as
gasoline,' and lubricant oils.’ Near-infrared spectros-
copy'® was used to control the oil refining process. In
this work, a new methodology for heavy fuels analysis is
proposed, with a new sampling method for heavy fuels.
This new sampling technique was tested to develop
calibrations for some physicochemical parameters of the
fuel samples to determine whether they could be
recognized as conforming to international standards.
Simultaneously, the same analysis could be done on the
spectral data to confirm the diagnostic obtained on the
physicochemical parameters. Then, the main parame-
ters, such as density, CCAl, and viscosity, and nitrogen,
vanadium, sulfur, and carbon residue contents, could be
predicted using chemometric treatment of spectra.
Furthermore, these data are relevant to combustion
parameters.

MATERIALS AND METHODS

New Diffusing Support. A fiberglass cell support (Fig.
1) was tested in this study. This commercial product
(provided by the Duran Group) has the following
characteristics: a 15 mm diameter, a porosity of 2, and
10 St/pes. Different tests were carried out to define the
optimal volume of sample to be used, by considering
HFOs with lower and higher viscosities. This support
allowed the collection of repeatable NIR spectra of HFOs,
by using the constant volume of HFQ of 340 ul to be
impregnated.

Near-Infrared Spectra. The NIR heavy fuel spectra
were recorded with a Nicolet Antaris spectrometer,
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Fie. 1. Fiberglass support before and after impregnatian with HFO.

zquipped with an indium_galljum arsenidg detector, an
4> NIR source, and @ calcium fluoride/i?;eam splitter.
The measurements weFe i i an air-condi-

tioned room at 21 °C. Fourier transform NIR spectra were
recorded by collecting the NIR energy that scatters on
the surface of sample, by using an integrating sphere
with an accumulation of 64 scans and an optical fiber
with an accumulation of 800 scans, with the surface of the
fiber end directly in contact with the surface of the
sample to be analyzed. All spectra were computed with a
4 cm™" resolution, between 4000 and 10 000 cm~" (1100~
2500 nm), using Result Integration 2.1 software (Thermo
Nicolet). A background spectrum was collected under the
same conditions before each batch measurement.

Sampling for Near-Infrared Spectroscopy. Sixty-one
samples of HFOs were collected from several countries;
the reference analyses were conducted by Société
Générale de Surveillance (SGS). For each sample, 340
uL of HFO was placed onto a fiberglass support. Each
spectrum used for the classification was the average of
two independent spectra obtained with two different
fiberglass supports.

Principal Component Analysis (PCA). Principal
component analysis is an “unsupervised” method
describing a data set without any a priori knowledge of
the data structure.’™ PCA is oriented toward modeling
the variance—covariance structure of the data matrix into
a model that is based on the significant differences
(significant scores) and considers noise as an error.
Data are first centered and reduced, and principal
components (PCs) are all orthogonal to each other. The
number of PCs depends on the model complexity, but the
scores have to represent the best of variance of data and
explain a large part of the total variance. The first
component extracts the largest source of variance. The
scores and loadings of the individual PCs are recovered
from each PCA model. Scores describe the variation in
the samples compared with the dataset, whereas
loadings describe the correlations among variables.
Each vector of stone features can be considered in the
space defined by the PCs as values called component
scores.

Soft Independent Modeling of Class Analogy Clas-
sification (SIMCA). Soft independent modeling of class
analogy (SIMCA) is the most supervised pattern recog-
nition used of the class-modeling techniques.’ SIMCA

classification is based on disjoint PCA modeling realized
for each class in the calibration set. Unknown samples
are then compared to the class models and assigned to
classes according to their analogy with the calibration
samples. A new sample will be recognized as a member
of a class if it is similar enough to the other members;
otherwise, it will be rejected. Each class is modeled
using separate PCA models. A model distance limit
called Smax is used for classifying new samples, and
Smax is calculated for the class model m as follows:

Smax(m) = So(m)\/F; (1)

where Sy is the average distance within the model and F,
(Fisher criterion) is the critical value provided by the
Fisher-Snedecor tables. The F. value depends on the
percentage of risks and is generally set to 5%."" Class
membership is defined at a significance level of 2.5% of
Smax. Mean centering is applied before modeling. The
number of samples used in PCA is 29, and the prediction
set was formed by 32 samples.

Partial Least Squares (PLS) Regression. This su-
pervised analysis is based on the relation between the
signal intensity and the Y variable.'® Interference and
overlapping of the spectral information may be over-
come by using a powerful multicomponent analysis, such
as PLS."™ This method is a sophisticated statistical
approach using the full or partial spectral region rather
than unique and isolated analytical bands. The algorithm
is based on the ability to mathematicaily correlate
spectral data to a property matrix of interest while
simultaneously accounting for all other significant
spectral factors that disturb the spectrum. It is thus a
multivariate regression method that uses the full
spectral region selected and is based on the use of
factors. Models were built with a full cross-validation
method during the calibration developments. The eval-
uation of the errors in the calibration was carried out by
computing the standard error of calibration (SEC) after
comparing the real concentration with the computed
concentration for each component. The formula for the
SEC is as follows:

SEC = @)

where C’; is the known value, C; is the value calculated
by the calibration equation, N the number of samples,
and p is the number of independent variables in the
regression optimized by cross-validation. The standard
error of prediction (SEP) gives an estimation of the
prediction performance during the step of validation of
the calibration equation below:

(3)

where M is the number of samples in the prediction

set.
All models were built by full cross-validation.



712 TABLE lll. Results obtained using integrating sphere in the spectral range 6500-5000 cm~1.
NIR22 Range R? RMSECP Lve 2 RMSEP?
CCAl (a.u.) 867-789 0.96 3.53 8 0.87 8.78
Density (kg/m?) 1007-941 0.82 10.97 4 0.72 9.39
Carbon residue % (w/w) 16.7-7.7 0.89 1.07 o 0.68 1.29
Sulfur % (w/w) 0.22-3.49 0.82 0.51 6 0.81 0.55
Vanadium (ppm) 2-365 0.83 50.87 7 0.7 59 89
Nitrogen (ppm) 5175-1958 0.60 543 4 0.66 667
Net energy (MJ/kg) 41.82-39.81 0.88 0.20 7 0.84 0.24
2 NIR2, ; a.u., arbitrary units; ppm, parts per million.
5 RMSEC, root mean square error of calibration.
¢ LV, latent variable.
¢ RMSEP, root mean square error of prediction.
TABLE IV. Results obtalned using fiber optic in the spectral range 4000-5000 cm .
NIR1 | ] Range R? RMSEC® Lve ” RMSEP®
CCAl (a.u.) 867-789 0.82 7.52 5 0.69 15.37
Density (kg/m3) 1007-941 0.79 8.62 5 0.73 14.97
Carbon residue % (w/w) 16.7-7.7 0.80 1.24 5 0.80 1.39
Sulfur % (w/w) 0.22-3.49 0.67 0.66 5 0.62 0.71
Vanadium {ppm) 2-365 0.92 32.05 9 0.74 63.86
Nitrogen (ppm) 5175-1959 0.55 590 4 0.27 741
Net energy (MJ/kg) 41.82-39,81 0.78 0.26 5 0.73 0.35
*NIRY’, ; a.u., arbitrary units; ppm, parts per million.
5 RMSEC, root mean square error of calibration.
© LV, latent variable.
¢ RMSEP, roct mean square error of prediction.
TABLE V. Results obtalned using fiber optic in the spectral range 6500-5000 cm-1.
NIR22 Range R? RMSEC® Lve r? RMSEP?
CCAl (a.u.) 867-789 0.79 8.22 4 0.7 15.26
Density (kg/m?®) 1007-941 0.80 8.82 4 0.70 15.42
Carbon residue % (w/w) 16.7-7.7 0.86 1.05 6 0.77 1.58
Sulfur % {w/w) 0.22-3.49 0.85 0.27 10 0.81 0.52
Vanadium (ppm) 2-365 0.78 54.48 6 0.71 67.59
Nitrogen (ppm) 5175-1950 NC NC NC NC NC
Net energy (MJ/kg) 41.82-39.81 0.91 017 8 0.81 0.32

2 NIR2’, ; a.u.,, arbitrary units; ppm, parts per million,
® RMSEC, root mean square error of calibration.

© LV, latent variable,

¢ RMSEP, root mean square error of prediction.

analyser must have to be as cheaper as possible, what
induces a right choice of spectral range.

Two spectral ranges were compared using the two
sampling methods: 4000~-5000 cm~' attributed to the
combination of C-H or C-O and 6500-5000 cm~,
corresponding to the first overtone. The optimal factor
was chosen as a function of the quality of guantitative
analysis results on the viscosity, sulfur content, flash
point, and density using a full cross-validation. For the
integrating sphere, in the 4000-5000 ¢m~— spectral
range, the results (Table il) were very good for CCAl,
density, nitrogen content, and energy and good for
carbon residue and sulfur and vanadium contents.
Concerning vanadium content, NIR enables to study
interactions between vanadium and other functional

groups, but not metal absorption directly. It should be
noted that sulfur is much more concentrated in heavy
tfuels than in other fuels, such as gasoline and diesel,
with a wide range according to the known origins. In the
6500-5000 cm~" range, the results (Table I11l) were very
good for CCAI, density, nitrogen content, and energy and
good for carbon residue and sulfur and vanadium
contents. It was possible to see a slight degradation of
the results in this range compared with the previous
analyses.

For the fiber optic in the region 4000-5000 cm=', the
results (Table IV) were good, but the precision of values
predicted decrease compared to the resulis obtained
from spectra coliected with the integrating sphere. The
impact of the loss of scattering was visible. With the fiber
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Fie. 4. PCA results on reference data (a) and NIR data (b).
TABLE Il. Results obtained using integrating sphere in the spectral range 4000-5000 cm~1.
NIR12 8peetral range (cm™") R? RMSEC? Lve r* RMSEP?
CCAl (a.u.) 867-789 0.91 5.61 4 0.85 575
Density (kg/m®) 1007-941 0.84 10.43 4 0.72 9.04
Carbon residue % (w/w) 16.7-7.7 0.88 1.14 7 0.82 1.02
Sulfur % (w/w) 0.22-3.49 0.91 0.37 7 0.91 0.38
Vanadium (ppm) 2-365 0.74 61.93 5 0.7 57.26
Nitrogen {ppm) 5175-1959 0.77 426 8 0.75 510
41.82-39.81 0.90 0.20 7 0.88 0.20

Net energy (MJ/kg)

2 NIR1, ; a.u., arbitrary units; ppm, parts per million.
® RMSEC, rool mean square error of calibration.

€ LV, latent variable.

¢ RMSEP, root mean square error of prediction.
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Fia. 3. Coefficient of variation for spectra of HFO collected using an integrating sphere (a) and optical fiber (h).

in the Fig. 4a for the reference data and in Fig. 4b for the
integrating sphere data. For the reference data, the two
first PCs represented 68% of the total variance (43 and
25%, respectively). Two samples were outliers: Outlier 1
and Outlier 2. The examination of the correlation
loadings given in Fig. 4a showed that Outlier 1 presented
high water content and Outlier 2 low viscosity and high
energy values. For the NIR data, in the space of the first
and third PCs, corresponding to 92% of the spectral
variance, the same samples could be reported as
outliers. Similar results were ocbtained for spectra
collected with the optical fiber. Given that the same
samples could be excluded by the two methods,
discriminant analysis could be used to explore the
conformity of heavy fuels samples. Twenty-nine samples
with good-quality results, from several countries, were
used to control the conformity of all the other samples by
using SIMCA analysis. The 32 other samples were
classified by using the model built from the first set of
29 samples. Identification allows assigning new objects
to the class to which they show the most similarity. The

results obtained for all the samples used in the
prediction set show that two samples were rejected,
again the same samples as those in the PCA step,
whereas all the other samples are accepted as “con-
forming™ samples, The total number of samples used in
the study was 59. These physicochemical parameters
are important for the fuel combustion process. The
corresponding NIR spectra were pretreated by SNV
correction to eliminate drift in baseline variation?* before
the construction of the PLS models. For the fiber optic
sampling, the impact of the spectral resolution was
studied on the carbon residue data (Table Il). The
calibration coefficient of determination appeared to be
best at an 8 cm™' resolution, but the predicted results
were very poor; thus, 4 cm™ resolution was selected for
further analysis.

Different spectral ranges were studied to evaluate the
ability to predict properties values, taking into account
the purpose of the study—to develop an NIR analyzer. In
particular, the detector that will be chosen to design this

TABLE I. Characteristic values of HFO used.

Minimum Maximum Mean Specification range SD
Density (kg/m3) 920 1007 975 1010 20,2
Viscosity (mm?2/s) 120 618.6 315 700 1337
Carbon residue 7.7 16.4 12.8 Not specified 273
Sulfur % (w/w) 0.34 3.49 1.61 +4% 0.91
Flash point 61 135 87 Not specified 19
Vanadium (ppm)? 2 283 104 Not specified 89
Nitrogen (ppm) 2260 4852 3584 Not specified 826
CCAl (a.u.)? 789 867 839 880 23
Energy (MJ/kg) 42.0 44.0 43 Not specified 0.6
Net energy (MJ/kg)} 39.8 41.5 40.8 Not specified 0.5
Water % (w/w) 0 a1 0.1 fo.1 0.4

® ppm, parts per million; a.u., arbitrary units.
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Fiz. 2. NIR spectrum of HFO obtained using fiber optic {a) and an integrating sphere (b).
(line a) Combination of the CH stretching vibration with other vibrational modes.
(line b) First overtone of CH stretching vibration {methyl, methylene, and ethylene groups).

(line ¢) Combination of the CH stretching vibration.

Standard Normal Variate (SNV). During the data
processing, the SNV correction pretreatment was used.
This pretreatment is a row-oriented transformation that
removes scatter effects from spectra by centering and
scaling each individual spectrum.

Software. Chemometric applications are performed
by The Unscrambler version X10.2 (Camo Software,
Trondheim, Norway).

RESULTS AND DISCUSSION

Usually, for spectroscopic analysis, heavy fuels are
placed into transmission cells with a short optical path
as, for example, described by Laxalde et al.,?° who used
a 0.5 mm heated cell. This study was a part of a project
whose objective was to develop an NIR analyzer, at line
to control HFO quality. The use of solvents and the need
to clean the transmission cell were not acceptable in
terms of specifications in various cases (e.g., coal-fired
power stations, boats). We developed a new method for
the analysis of heavy fuels on a fiberglass support (Fig.
1). The use of fiberglass supports offered the distinct
advantages of being fast and easy to implement and it
provided repeatable results. The volume of sample was
optimized to obtain a totally impregnated support without
HFO oozing. In our case, 340 pL represented an
appropriate compromise. Even if this value is not ideal,
it is the same scale of size as the value used by Laxalde
et al."” Two methods were used to collect the FT-NIR
spectra:?"?2 an integrating sphere and an optical fiber.
For the fiber optic method, the number of scans (800)
accumulated to record the spectra was high to obtain a
good signal-to-noise ratic. The spectra of the same
sample obtained by both ways (Figs. 2a and 2b) showed

some variations. The spectrum obtained using the fiber
optic appeared to be less specific in the 40004500 cm~"
range, but the general aspect was similar: (1) combina-
tion of the CH stretching vibration with other vibrational
modes, (2) first overtone of CH stretching vibration
(methyl, methylene, and ethylene groups), and (3)
combination of the CH stretching vibration.?® To evaluate
the repeatability of the sampling, the standard deviation
was calculated on 10 spectra of a same sample (Figs. 3a
and 3b). For each sample, two glass fibers were used to
include the variability of the fiberglass support in the
model, and five spectra were collected on each support
using the integrating sphere and fiber optic. The results
showed that the standard deviation is less than 2.5% for
all the wavenumbers and that there was no significant
variation between the two sampling methods. The
spectral range that presented the highest variation
corresponded to the lower absorption zone, 4900-4600
em~', Thus, the use of a fiberglass support is a suitable
means for heavy fuel analysis. The use of the classical
cell involves problems of cleaning with an organic
solvent and regulating temperature. Physicochemical
properties, such as density, CCAI, viscosity, flash point,
energy, and net energy, and the nitrogen, vanadium,
sulfur, water, and carbon residue contents of samples
were measured using reference techniques by the SGS
laboratory. Table | shows minimum and maximum
values of each parameter for the samples in the
database and the ranges of values. Clearly, some
samples were outside the limits, especially for water
content.

To check whether the sample presentation maintains
sample composition of the HFOs, PCA was applied to
reference data and to NIR spectra. The results are given



optic in the region 6500-5000 cm™" (Table V), the results
obtained were good for CCAl, vanadium content, net
energy, and density; correct for sulfur content; but poorer
for carbon residue and nitrogen content.

CONCLUSIONS

This preliminary study showed the feasibility of
analyzing heavy fuels by NIR spectroscopy. The use of
a diffusing support allowed freedom from cleaning of the
tank. The classification of samples as “conforming “ or
“not conforming” can be done on reference data (e.qg.,
CCAl; density; viscosity; flash point; sulfur, vanadium,
and nitrogen contents; energy and net energy) as well as
on spectral data. Thus, the physicochemical character-
istics were successfully predicted by chemometrics
treatment from spectral data. The accuracy of analysis
depends on the sampling, but with a fiber optic in the
range of first overtone, the principal physicochemical
data were correctly predicted. This point is very
important for a better environmentally friendly use of
these fuels.
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