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The structural, magnetic, and thermodynamic properties of the Au(001)/Fe(001) interface are investigated as a
function of the in-plane strain using density functional theory calculations for two different Au slab thicknesses:
2 and 8 monolayers. The structural and magnetic properties are analyzed by studying the interlayer distance in
the direction perpendicular to the interface and the atomic magnetic moments of Fe atoms, as a function of the
in-plane strain. The structural study evidences both the bulk elastic and surface and interface contributions. The
atomic magnetic moments of Fe atoms are essentially dependent on their local environment (number and distance
of the Fe first neighbors). Thermodynamic properties of the interface are investigated through the calculation
of the interface energy and interface stress. These thermodynamic quantities are subsequently used in a simple
model to evaluate the strain state of an ideal spherical symmetric Fe@Au core-shell nanoparticle. The surface
elastic effects are found to be significant for nanoparticles of diameter smaller than ∼20 nm and predominant for
diameters smaller than ∼2.3 nm. Interface elastic effects are weaker than surface elastic effects but can not be
neglected for very small nanoparticles (�1.9 nm) or for thin shells.
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I. INTRODUCTION

Targeted functionalization of nanoparticles is one of the
current major challenges for applications as diverse as optics,
catalysis, and biomedicine [1]. In particular, the combination
of two types of metals and/or semiconductors together with the
effects of the small size of the nanoparticles can significantly
increase their potential functionalization [2–4].

The case of bimetallic nanoparticles is especially interesting
since it combines the chemical order effects with the size effect.
Depending on the two considered metals and on the growth
conditions, different types of chemical order can occur (an
alloy or a Janus, core-shell, or multishell arrangement) [5].
However, beyond the sole effect of the chemical order, the
morphology of the nanoparticle can also affect its properties.
Indeed, the presence or absence of well-defined crystalline
facets on its surface can have a major impact on its properties,
in particular on its catalytic reactivity or, for biomedical
applications, on its ability to provide well-defined attachment
sites for targeted molecules.

In the last decade, investigations were conducted in order
to develop the synthesis of nanoparticles formed of well-
faceted heterostructures, with the aim to obtain specific
properties [3,4,6]. However, the emergence of a partic-
ular faceted morphology for a bimetallic nanoparticle is
still very poorly understood. It depends on many factors
which come into play, including the surface and interfa-
cial energies, the elastic energies, the chemical potentials,
etc.

In this work, we investigate the properties of the interface
between a gold layer and an iron substrate, encountered in
core-shell Fe@Au nanoparticles that were recently grown on
a UHV magnetron sputtering setup [7,8]. Such nanoparticles
are potentially interesting for applications since they combine
some of the Fe and Au properties. The crystalline iron core
shows a significant magnetization and magnetic anisotropy,
while the well-defined crystalline facets of the biocompatible

Au shell provide some well-controlled anchoring sites for
targeted molecules.

A model of the synthesized Fe@Au nanoparticles was
derived from the morphological and structural characteristics
evidenced by transmission electron microscopy (TEM). The
nanoparticles, 8–10 nm large, present a cubic bcc iron core
and an epitaxied truncated fcc gold pyramid on each iron cube
facet. A sketch of the model is displayed in Fig. 1.

Taking into account the epitaxial relationship at the
gold/iron interface, i.e., Au(001)[100]//Fe(001)[110], the lat-
tice mismatch mAu/Fe defined as

mAu/Fe = (aAu −
√

2aFe)/
√

2aFe (1)

is equal to +0.66% with aAu = 4.08 Å [9] and aFe = 2.866 Å
[10] being the Au and Fe lattice parameters. As a consequence,
regarding (volume) elastic energies, the Fe core is expected to
be slightly in expansion while the gold shell is expected to
be in compression. In the vicinity of the interface, one can
make the assumption that the strain field is biaxial and can be
decomposed into a parallel and a perpendicular component.

In addition to these (volume) elastic energies, due to
the very small size (few nanometers) of the nanoparticles,
the surface/interface effects, namely, the surface stress at the
free nanoparticle surface and the interface stress at the Au/Fe
interface, play a significant role in the strain field of the
nanoparticle [11].

Experimental studies of surface and interface properties are
difficult, so there is interest in computing these properties from
atomistic simulations. Among them, the density functional
theory (DFT) provides a relevant tool to the study of the
structural, electronic, and magnetic properties of materials.
Surface properties are provided by the DFT modeling of
an infinite slab while interface properties can be obtained
by the DFT modeling of two joined slabs, one of them
playing the role of the substrate. Most of the theoretical
works on metallic interfaces have considered an infinite, and
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FIG. 1. (Color online) Sketch of the Fe@Au nanoparticle as
deduced from high-resolution transmission electron microscopy
(HRTEM) images. Fe and Au atoms are represented in gray and
yellow, respectively. An eighth of the nanoparticle was removed to
show the Fe core.

thus unstrained, model substrate [8,12–16]. Accordingly, in
a previous work [8], we have investigated, using DFT, the
properties of the (001)Au/(001)Fe interface as a function of the
number of deposited Au layers for an infinite and unstrained
Fe substrate.

However, given the size of the observed Fe@Au nanoparti-
cles [7] and following the above arguments, the Fe cube is not
unstrained and its elastic state results from the contribution of
surface and interface energies and of volume elastic energies.

In this paper, we investigate the effects of the Au shell on the
Fe core by calculating the Au/Fe interface properties varying
the in-plane interface strain state from the Fe unstrained state
(0% of in-plane strain in Fe) to the Au unstrained state (0%
of in-plane strain in Au). Sections II and III, respectively,
report the simulations methods and the results of our study.
Especially, in Secs. III A and III B, the structural and magnetic
properties are analyzed in details as a function of the interface
strain state. In Sec. III C, the interface stress and energy are
extracted from the calculations. Finally, Sec. IV presents a
simple model used to evaluate the effects of the surface
and interface stresses on the strained state of the Fe@Au
nanoparticle.

II. SIMULATION DETAILS

In order to model the Au(001)/Fe(001) interface, a fcc
crystalline slab of Au is placed on top of a crystalline bcc
slab of Fe, with a rotation at 45◦ according to the epitaxial
relationship found in the Fe@Au nanoparticle (see Fig. 2).
Both crystals have the common crystalline [001] direction
(z axis) perpendicular to the free surfaces and the Au/Fe
interface. The x axis is defined along the [100] crystalline
direction of Au corresponding to the [11̄0] direction in Fe,
while the y axis, along the [010] of the Au crystal, corresponds
to the [110] of the Fe crystal. The Fe slab is composed of
nFe = 12 atomic layers corresponding to a thickness of eFe ≈
17 Å while two thicknesses eAu ≈ 17 and 4 Å of the Au
slab corresponding to nAu = 8 and 2 layers are investigated.
Periodic boundary conditions are applied in all directions, with
a vacuum of ≈12 Å in the [001] direction to separate the slabs
from their periodic images. The simulation box sizes Lx = Ly

in the x and y directions are chosen so that the simulation box

FIG. 2. (Color online) Sketch of the Au(001)/Fe(001) interface
model. Gray and yellow disks are Fe and Au atoms, respectively. Lx

and Ly indicate the simulation box sizes in the Au[100] and Au[010]
directions (adapted from Ref. [8]).

contains only one unit cell of the crystalline structure of both
materials in these directions. The in-plane strain of the slabs is
imposed by fixing the size of the simulation box in the x and
y directions.

The interface system was simulated in the DFT framework
using the VASP simulation package [17]. The simulations were
performed using projector augmented-wave pseudopotentials
with the 3d and 4s electrons as valence electrons for Fe
and with the 5d and 6s electrons as valence electrons for
Au. A cutoff energy of 600 eV ensures the convergence
of the results with respect to the plane-wave basis set. A
broadening, using the Methfessel and Paxton scheme of order 1
[18], was used with a smearing of 0.05 eV for the electron
occupation. A k-point grid of 12×12×1 was used following
the Monkhosrt-Pack scheme and the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) has been
used for the exchange and correlation energy. The choice of
this PBE exchange and correlation functional was thoroughly
discussed in Ref. [8]. Using this functional, the surface and
bulk characteristics of Fe compare well with experiments,
whereas those of Au are less satisfactory. In particular,
the Au lattice parameter and the (001) surface energy are,
respectively, overestimated by +2.3% and underestimated
by approximately −41.8%. The other tested exchange and
correlation functionals (LDA, PBEsol [19], and the optBP86
together with a van der Waals dispersion [20]) improve the
description of the bulk and surface properties of Au but
deteriorate the ones of Fe. Since the investigated Fe@Au
core-shell nanoparticles present a bigger iron core than the
Au shell, the PBE functional, well suited for the modeling
of iron, has been used throughout this study. A noticeable
consequence of this choice is the overestimated value of the
lattice mismatch mAu/Fe [Eq. (1)] which is found to be +4.11%
at the (001)Au/(001)Fe interface using DFT-PBE calculations,
compared to the experimental value of mexpt = +0.66%. The
error induced by this disagreement on surface and interface
properties has been discussed in detail and estimated in
Ref. [8].

In order to impose the in-plane strain of the slabs, the
Lx and Ly sizes of the simulation box are changed from

165437-2



STRAIN EFFECTS ON THE STRUCTURAL, MAGNETIC, . . . PHYSICAL REVIEW B 90, 165437 (2014)

Lx = Ly = √
2aFe = 4.009 Å to Lx = Ly = aAu = 4.174 Å,

corresponding, respectively, to the Fe and Au equilibrium
bulk lattice parameters obtained from DFT-PBE calculations.
Four intermediate values of Lx = Ly were investigated: 4.03,
4.06, 4.09, and 4.13 Å. The in-plane strain εFe

‖ or εAu
‖ can

be defined with respect to the unstrained Fe or Au bulk
crystals. Both definitions are equivalent and describe the same
physical system. These quantities and the relation linking them
are

εFe
‖ = εFe

xx = εFe
yy, (2)

εAu
‖ = εAu

xx = εAu
yy , (3)

εFe
‖ = aAu√

2aFe

εAu
‖ + mAu/Fe, (4)

where mAu/Fe is the lattice mismatch [Eq. (1)], εR
xx (resp. εR

yy)
is the strain tensor component in the xx (resp. yy) direction
using the reference R ∈ {Fe,Au}:

εFe
αα = Lα − √

2aFe√
2aFe

with α ∈ {x,y}, (5)

εAu
αα = Lα − aAu

aAu
with α ∈ {x,y}. (6)

In the following, we will also use the parameter ρ which is
defined as

ρ =
√

2aFe

aAu,
(7)

thus

mAu/Fe = ρ−1 − 1, (8)

εAu
‖ = ρ(εFe

‖ + 1) − 1, (9)

εFe
‖ = ρ−1(εAu

‖ + 1) − 1. (10)

The selected Lx = Ly values thus correspond to in-plane
strain values of εFe

‖ (resp. εAu
‖ ) equal to 0% (resp. −3.95%),

+0.52% (resp. −3.45%), +1.27% (resp. −2.73%), +2.02%
(resp. −2.01%), +3.02% (resp. −1.05%), and +4.11% (resp.
0%). For each Lx = Ly value, a full optimization of the atomic
positions has been performed.

Since the physical properties of the system can be described
using both references, either Fe or Au bulk crystals, we have
chosen to present the results as a function of the in-plane strain
εFe
‖ defined with respect to Fe, in the following.

III. RESULTS AND DISCUSSION

A. Structural properties

Figure 3 reports the evolution of the relative interlayer
distances �di in the [001] direction as a function of the
position i in the slab and for the different in-plane strains
εFe
‖ . Figures 3(a) and 3(b), respectively, report these data

for the systems with 2 Au ML and 8 Au ML. For i >

0, �d−i and �d+i , respectively, in the Fe and Au slabs,
write as

�d−i = di,i+1 − dFe

dFe
, (11)

�d+i = di,i+1 − dAu

dAu
, (12)

where di,i+1 is the interlayer distance between the two
consecutive ith and i + 1th (001) atomic planes in the slab (the
index of the layer in the slab being numbered starting from
the interface) and dFe and dAu are the corresponding values
in the unstrained bulk material, i.e., dFe = aFe/2 and dAu =
aAu/2. At the interface, the relative interlayer distance �d0 =
(d0 − dFeAu)/dFeAu is defined with respect to the average value
dFeAu between the Fe and the Au planes dFeAu = (aFe + aAu)/4,
and d0 is the interlayer distance between the Fe and Au (001)
atomic planes at the interface.

FIG. 3. (Color online) Relative interlayer distance in the Fe and Au slabs as a function of in-plane strains εFe
‖ : (a) for the system with

2 Au ML, (b) for the system with 8 Au ML. The index in the x axis corresponds to the position of the interlayer numbered from the interface
(see text).
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The structural characteristics of the two systems, with 2 Au
ML and with 8 Au ML, are very similar. We will first describe
and discuss the results obtained for the 8 Au ML system.

For εFe
‖ = 0% [black circles in Fig. 3(b)] in the 8 Au ML

system, the Fe slab is not subject to any in-plane strain.
The relative interlayer distances in Fe are close to the bulk
one in the center of the slab and deviate from it at the
free surface and at the interface. At the free Fe surface, the
relative interlayer distance of the last couple of (001) planes is
contracted (�d−11 ≈ −2.0%), while the next one is expanded
(�d−10 ≈ +3.5%). Inside the Au slab, the relative interlayer
distance converges to a value of ≈+6.8% in the center of the
Au slab. This latter value can relevantly be compared to the
expectation value εAu

⊥ given by the linear elasticity theory:
The out-of-plane strain can be expressed as a function of the
in-plane strain and of the CAu

11 and CAu
12 Au elastic constants in

cubic crystals following:

[εAu
⊥ ]elast = −2CAu

12

CAu
11

εAu
‖ (13)

yielding [εAu
⊥ ]elast = +5.4%. The discrepancy between our

results and this prediction is mainly attributed to the failure
of the linear elasticity theory to accurately describe highly
strained (larger than 1% or 2%) systems. Indeed, by computing
εAu
⊥ as a function of εAu

‖ in the Au bulk, we found that deviations
from the linearity occur around 1%. For εAu

‖ = −3.95%
(i.e., εFe

‖ = 0%), εAu
⊥ in the bulk is ≈ +6.7%, close to the

value ≈+6.8% reported in Fig. 3(b) inside the Au slab. The
remaining difference between the bulk value εAu

⊥ = +6.7%
and the reported one is attributed to the limited thickness of
the Au slab. At the free Au surface, the Au relative interlayer
distance �d7 ≈ +5.6% is slightly contracted with respect to
the one in the center of the slab. In the vicinity of the interface,
expansions of the Fe and Au relative interlayer distances are
observed �d−1 ≈ +2.5% and �d1 ≈ +7.1%. These results
concerning the relative interlayer distances for εFe

‖ = 0% are
consistent with our previous results [8].

For εFe
‖ = +4.11%, or equivalently for an unstrained Au

slab εAu
‖ = 0%, the Fe relative interlayer distance converges

to a value of �d ≈ −3.5% in the center of the Fe slab. The
prediction of the linear elasticity theory is

[εFe
⊥ ]elast = −2CFe

12

CFe
11

εFe
‖ (14)

yielding [εFe
⊥ ]elast = −4.4%. Again, the discrepancy between

our results and this prediction is attributed to nonlinear elastic
effects and to the limited thickness of the slab. Computing εFe

⊥
for εFe

‖ = +4.11% in the Fe bulk, we find εFe
⊥ = −3.6% in

close agreement with the reported value in Fig. 3(b). At the
free Fe surface, the system behaves similarly to the case of
the unstrained Fe slab, but this behavior is here enhanced: The
relative interlayer distance between the last couple of (001)Fe
planes is very strongly contracted �d−11 = −10.5%, while
the next one �d−10 = −0.2% almost corresponds the Fe bulk
value. Inside the Au slab, the interlayer distance in the center
of the Au slab is, as expected, very close from the unstrained
bulk one. At the free surface of the Au slab, and similarly to
the observation done in the case of a strained Au slab [8], a

contraction is observed �d7 ≈ −1.3%. This contraction only
concerns the two (001) planes of the Au slab close to the
surface. In the vicinity of the interface, the relative interlayer
distance �d1 ≈ +1.4% is significantly larger than in the center
of the slab: This phenomenon, already observed in the case of
a strained Au slab, is more pronounced here. Beneath the
interface, the Fe relative interlayer distance �d−1 ≈ −6.6%
is strongly contracted while the next one �d−2 ≈ −1.7% is
significantly larger than the one in the center of the Fe slab.
For values of εFe

‖ between 0% and +4.11%, a monotonous
evolution of the relative interlayer distances in both the Fe
and the Au slabs is observed. This monotonous evolution is,
however, different for the interlayer distances inside the slabs,
and for the ones at the surface (or interface).

In order to investigate the surface and interface effects on
the relative interlayer distances as a function of the in-plane
strain independently on the bulk elastic properties, we define
the corrected relative interlayer distance δcordi as the difference
of the relative interlayer distances and the relative interlayer
distances in the bulk material:

δcordi = �di − �bulkdi,

where �bulkdi is the bulk relative interlayer distance in Au and
Fe for positive and negative values of i. For i = 0, �bulkd0

is defined as the average value between the Au and Fe bulk
relative interlayer distances. The resulting values δcordi thus
report the perpendicular excess strain at the free Fe and Au
surfaces and at the Au/Fe interface, due to the in-plane strain.
Such excess strain can be related to the surface strain [11].

Figure 4 reports the corrected relative interlayer distances
for different in-plane strains. Inside the Au and Fe slabs,
for all the in-plane strains, the corrected relative interlayer
distance δcordi almost cancels: The small remaining excess of
perpendicular excess strain is attributed to the finite thickness
of the Au and Fe slabs. More interestingly, at the surface and
interface of the Fe slab, a strong excess of perpendicular strain

FIG. 4. (Color online) Corrected relative interlayer distance in
the Fe and Au slabs as a function of in-plane strains εFe

‖ for the system
with 8 Au ML. The index in the x axis corresponds to the position
of the interlayer numbered from the interface. Inset: Evolution of
δcord−11, δcord−1, and δcord0 as a function of the in-plane strain εFe

‖ .
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dependent on the in-plane strain is observed: The inset of Fig. 4
reports δcord−1 and δcord−11 as a function of εFe

‖ . δcord−1 and
δcord−11 are linearly dependent on the in-plane strain, with a
very similar slope. On the contrary, the excess of perpendicular
strain at the surface and interface of the Au slab, characterized
by δcord7 and δcord1, are roughly independent on the in-plane
strain. Finally, the corrected relative interlayer distance δcord0

related to the Fe-Au distances decreases with the in-plane
strain following a linear relation, with a coefficient smaller
than δcord−1 and δcord−11 (inset of Fig. 4).

Let us now discuss the relative interlayer distances for the
2 Au ML system reported Fig. 3(a). They behave in a similar
way than the ones presented in Fig. 3(b) for the system with
8 Au ML. However, the interlayer distances at the interface,
i.e., �d0, are slightly larger in the 2 Au ML system than
in the 8 Au ML system, whatever the in-plane strain. The
Au slab is thus closer to the Fe interface layer when more
Au layers are deposited. This result will be discussed in
the light of the results obtained on the interface energy and
on the charge-transfer calculations, which are presented in
Sec. III C.

Finally, it is worth noticing that, for all the investigated
in-plane strain values, the relative interlayer distance at the
free Au surface �d1 is different in the 2 Au ML system with
respect to the one in the 8 Au ML system, due to the proximity
between the Au surface and the interface.

B. Magnetic properties

Figure 5 reports the atomic magnetic moment of the Fe
atoms as a function of their positions in the slab for different
in-plane strain values in the systems with 8 and with 2 Au ML.

For the two Au slab thicknesses, the Fe atomic magnetic
moment follows a similar evolution as a function of the
atomic positions. For εFe

‖ = 0%, focusing on the 8 Au ML
system, the Fe magnetic moment converges to a value of
2.17 μB/at., very close to its bulk value (2.2 μB/at.) in
the center of the Fe slab. At the free Fe surface, the atomic
magnetic moment is strongly enhanced reaching a value of
2.94 μB/at.. Near the interface, the atomic magnetic moment

is also enhanced, although the enhancement is slightly smaller,
yielding 2.77 μB/at.. Both enhancements of the atomic mag-
netic moment near the free surface and the Au/Fe interface are
a consequence of the reduced number of Fe neighbors for these
atoms.

For εFe
‖ = +4.11%, the Fe magnetic moment significantly

increases inside the Fe slab reaching a value of 2.39 μB/at..
The modification of the atomic magnetic moment as a function
of the strain field has already been studied in magnetic
materials [21] and in particular in Fe [22]. In the Fe slab,
the net result of the increase of the in-plane strain εFe

‖ and of
the simultaneous decrease of the out-of-plane strain εFe

⊥ (see
Sec. III A) is a global increase of the average first-neighbor
Fe-Fe distance from d̄Fe-Fe ≈ 2.45 Å (for εFe

‖ = 0%) to

d̄Fe-Fe ≈ 2.50 Å (for εFe
‖ = +4.11%). This induces a change

of the orbital hybridization and yields an increase of the
atomic magnetic moment inside the slab from 2.17 μB/at to
2.39 μB/at.

At the free Fe surface and at the Au/Fe interface, whatever
the in-plane strain and the number of Au planes, the atomic
magnetic moments are enhanced reaching approximately the
values of 2.94 and 2.77 μB/at. Taking into account both the
out-of-plane and in-plane strains, the average first-neighbor
Fe-Fe distance d̄Fe-Fe barely changes with the in-plane strain in
the vicinity of the surface or interface. It varies from d̄Fe-Fe ≈
2.43 Å (for εFe

‖ = 0%) to d̄Fe-Fe ≈ 2.44 Å (for εFe
‖ = +4.11%)

in the close vicinity of the surface, and between d̄Fe-Fe ≈ 2.48 Å
(for εFe

‖ = 0%) and d̄Fe-Fe ≈ 2.47 Å (for εFe
‖ = +4.11%) in the

close vicinity of the interface. The atomic magnetic moments
of the Fe atoms at the interface and at the surface are hence
barely affected by the in-plane strain.

For values of εFe
‖ between 0% and +4.11%, a monotonous

evolution of the atomic magnetic moments as a function of the
atomic positions is observed between the two extreme cases
detailed above.

Finally, a small magnetic moment of ≈0.06 μB/at. is found
on the Au atoms in the vicinity of the interface. however, this
value scarcely changes with the number of Au planes, or with
the in-plane strain.

FIG. 5. (Color online) Evolution of the atomic magnetic moment of the Fe atoms as a function of the position of the layer in the Fe(001)
slab, for the different values of in-plane strains εFe

‖ in the system with 8 Au ML (left) and 2 Au ML (right).
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C. Thermodynamic properties

In this section, the interface thermodynamic properties are
investigated, modeled using the surface/interface elasticity
theory and correlated to the electronic properties.

The energy difference �E(Lx,Ly) required to reversibly
separate an interface into two free surfaces is studied as a
function of the cell sizes Lx and Ly which are related to the
in-plane strains εFe

‖ and εAu
‖ [Eqs. (2) and (3)]. This energy

difference is related to the work of adhesion Wad through
Wad = �E(Lx,Ly)/A, A being the interface area. �E(Lx,Ly)
can be estimated using

�E(Lx,Ly) = E(001)Au(Lx,Ly) + E(001)Fe(Lx,Ly)

−EAu/Fe(Lx,Ly). (15)

EAu/Fe(Lx,Ly) is the total energy of the (001)Au/(001)Fe
system with the cell sizes Lx and Ly , while E(001)Au(Lx,Ly)
and E(001)Fe(Lx,Ly) are the total energies of the (001)Au
and (001)Fe free slabs, with the same cell sizes and with
the same number of Au and Fe atoms. The calculations
of EAu/Fe(Lx,Ly), E(001)Au(Lx,Ly), and E(001)Fe(Lx,Ly) are
performed using the same DFT conditions (same cutoff energy
and same number of k points).

Figure 6 reports the energy difference �E(Lx,Ly) for the
two (001)Au/Fe(001) systems, respectively, composed of 2
and 8 Au ML, that is depicted as a function of the in-plane
strain εFe

‖ [which is related to Lx and Ly through Eq. (2)] for
simplicity.

The energy difference �E(Lx,Ly) increases linearly with
the in-plane strain εFe

‖ . The bonding between Au and Fe is
stronger when the system is subject to a positive in-plane strain
εFe
‖ . Moreover, the energy difference is larger for the system

with 2 Au ML than for the system with 8 ML, whatever the
in-plane strain.

FIG. 6. (Color online) Energy difference �E(Lx,Ly) [Eq. (15)]
as a function of the in-plane strain εFe

‖ for the two systems, with 2 Au
ML (blue squares) and with 8 Au ML (red circles) calculated using
different simulation box sizes Lx = Ly = 4.009, 4.03, 4.06, 4.09,
4.013, and 4.174 Å. The straight lines are linear fits.

TABLE I. Bader atomic charges (in e) of the Au and Fe atoms
close to the interface, for the two extreme values of the in-plane strain
and for the two systems with 8 Au ML and with 2 Au ML.

2 Au ML 8 Au ML

εFe
‖ (%) 0 4.11 0 4.11

Auint+1 11.058 11.063 11.022 11.023
Auint 11.240 11.264 11.269 11.296
Feint 7.695 7.696 7.701 7.703
Feint−1 8.002 7.998 8.013 7.998
Feint−2 7.992 7.975 7.990 7.975

1. Charge transfer

The larger bonding for the 2 Au ML system compared to
the 8 ML system in the case of an unstrained Fe slab εFe

‖ = 0%
has been previously related to the electronic properties of the
interface and, more precisely, has been attributed to the very
strong coupling between the orbitals of the Fe atoms at the
interface and those of the Au atoms at the free surface [8].
The coupling between the orbitals of the Fe atoms and those
of the Au atoms in the vicinity of the interface is related to
the charge transfer, which can be evaluated by computing the
atomic charges following the Bader approach [23]. For an
unstrained Fe slab εFe

‖ = 0%, we previously found that this
coupling decreases with the distance between the Au atoms
at the free Au surface and the Fe atoms in the vicinity of the
interface as soon as more than 3 Au layers are deposited.

We here extend the study of the charge transfer to the
general case of a strained Fe/Au system. Table I reports the
atomic charges for the Fe and Au atoms close to the interface
for the two extreme values of the in-plane strain εFe

‖ = 0% and
εFe
‖ = +4.11%. The charges computation only considers the

valence electrons so that the Fe and Au atoms charges are,
respectively, expected to be 8e and 11e in the bulk unstrained
materials. Feint (resp. Auint) designates here the Fe (resp. Au)
monolayer at the interface in contact with the Au (resp. Fe)
atoms, Feint−1 (resp. Auint+1) the monolayer beneath (resp.
over) Feint (resp. Auint).

The analysis of the Bader charges clearly shows a charge
transfer at the interface from the Fe atoms to the Au atoms,
independently on the in-plane strain. This charge transfer
mainly concerns the Fe and Au atoms in the close vicinity
of the interface. In addition, this charge transfer is sensitive to
the in-plane strain εFe

‖ and more weakly sensitive to the number
of Au ML.

For systems with 8 Au ML, the charge transfer on the
first two Au layers close to the interface (Auint and Auint+1)
is equal to +0.291e for εFe

‖ = 0% and to +0.319e for εFe
‖ =

+4.11%. This charge transfer comes from Fe orbitals of atoms
in the first Fe layers close to the interface (Feint and Feint−1).
The larger transfer observed when the Fe slab is subject to a
positive in-plane strain (εFe

‖ = +4.11%) is consistent with a
larger energy difference �E (Fig. 6) and a smaller interface
distance [Fig. 3(b)].

For systems with 2 Au ML deposited on the Fe slab, at a
given εFe

‖ , the charge transfer is slightly more pronounced than
for the 8 Au ML system. If these charge transfers are very
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small (and in the limit of accuracy of the charge estimation
using the Bader method), the repartition of this charge transfer
on the first layers close to the interface significantly differs
for the 2 and 8 ML system. Note also that small discrepancies
are observed between the present atomic charges and those
presented in Ref. [8] which suggests that these quantities are
quite sensitive to the system size and to geometrical constraints
(number of layers of each metal, number of fixed layers, etc.).

From this study of the Bader charges, one can conclude that
the variation of the energy difference �E(Lx,Ly) as a function
of the in-plane strain εFe

‖ is accompanied by a modification of
the charge transfer on the two first Au layers close to the
interface, as if the system behaved as a rigid-band model in
this specific situation.

2. Interface energy and stress

In this section, the interface thermodynamic properties are
modeled using the surface/interface elasticity theory [11].
To this end, the E(001)Au(Lx,Ly), E(001)Fe(Lx,Ly) and
EAu/Fe(Lx,Ly) quantities involved in Eq. (15) are specified.
Two descriptions, the Eulerian or the Lagrangian one, can be
used to do so. In the first case, the area A relates to the deformed
interface A = LxLy , while in the second, the area A relates to
a reference state area A0 for the interface. We have decided to
work in the framework of the Lagrangian description for all
the following calculations.

The energy E(001)Au(Lx,Ly) of a homogeneous Au free slab
writes as

E(001)Au(Lx,Ly) = NAuE
Au
bulk + 2γ Au

0 AAu
0

+uAu
el V Au

0 + 4 σ Au
0 εAu

‖ AAu
0 , (16)

where NAu is the number of Au atoms in the slab, EAu
bulk is the

Au bulk energy per atom, V Au
0 and AAu

0 are the volume and
area of the Au reference slab, taken here as an unstrained Au
slab (εAu

‖ = εAu
⊥ = 0%). γ Au

0 is the surface energy per unit area
of the Au reference slab and σ Au

0 is the surface stress.
The Au slab is homogeneously strained so that, in the frame

of the linear elasticity theory, the elastic energy per unit volume
can be expressed as a function of the in-plane strain:

uAu
el =

[
CAu

11 + CAu
12 − 2

CAu
12

2

CAu
11

]
(εAu

‖ )2, (17)

CAu
12 and CAu

11 being the Au elastic constants. Similar expres-
sions can be obtained for the strained Fe slab:

E(001)Fe(Lx,Ly) = NFeE
Fe
bulk + 2γ Fe

0 AFe
0

+uFe
el V

Fe
0 + 4 σ Fe

0 εFe
‖ AFe

0 (18)

and

uFe
el =

[
CFe

11 + CFe
12 − 2

CFe
12

2

CFe
11

]
(εFe

‖ )2 (19)

in which the elastic constants, the bulk energy, and the elastic
energy per unit volume refer to Fe. The reference slab for the Fe
system corresponds to an unstrained Fe slab (εFe

‖ = εFe
⊥ = 0%).

Note that we have assumed for simplicity the validity of the
linear elasticity theory for the Au and Fe bulk in Eqs. (17)
and (19). However, since the bulk elastic energies terms will

cancel in Eq. (21) from Eqs. (20), (16), and (18), Eq. (21)
will remain reliable beyond the linear elasticity assumption
for bulk materials.

Using similar definitions for the reference interface area
AAu/Fe

0 , the interface energy γ Au/Fe
0 and the interface stress

σ Au/Fe
0 , the total energy of the (001)Au/(001)Fe system reads

as

EAu/Fe(Lx,Ly)

= NAuE
Au
bulk + NFeE

Fe
bulk + uAu

el V Au
0 + uFe

el V
Fe

0

+ (
γ Au

0 + 2σ Au
0 εAu

‖
)
AAu

0 + (
γ Fe

0 + 2σ Fe
0 εFe

‖
)
AFe

0

+ (
γ Au/Fe

0 + 2σ Au/Fe
0 εAu/Fe

‖
)
AAu/Fe

0 , (20)

where εAu/Fe
‖ is the in-plane strain defined with respect to

the interface reference state. So, combining Eqs. (16), (18),
and (20), the expression of �E(Lx,Ly) finally reads as

�E(Lx,Ly) = (
γ Au

0 + 2σ Au
0 εAu

‖
)
AAu

0 + (
γ Fe

0 + 2σ Fe
0 εFe

‖
)
AFe

0

− (
γ Au/Fe

0 + 2σ Au/Fe
0 εAu/Fe

‖
)
AAu/Fe

0 . (21)

In Eq. (20), the unstrained Fe (resp. Au) slab has been taken
as a reference for the Fe (resp. Au) part of the Au/Fe system.
Since there is no natural choice for the interface reference state,
two reference systems will be considered in the following: the
unstrained Au slab and the unstrained Fe slab. Of course,
these two descriptions using two different reference systems
are fully equivalent and describe the same physical system.

In the following, to unambiguously define an interface
quantity B (B ∈ {γ Au/Fe

0 ,σ Au/Fe
0 ,εAu/Fe

‖ ,AAu/Fe
0 }), its reference

state x will be mentioned using a subscript [B]x with x ∈
{Au,Fe}.

Au reference. Assuming that the reference state for the
interface is the unstrained Au slab: [AAu/Fe

0 ]Au = AAu
0 and

[εAu/Fe
‖ ]Au = εAu

‖ . Using Eqs. (4), (7), and (10), Eq. (21) reads
as

�E(εAu
‖ ) = [

γ Au
0 + ρ2γ Fe

0 − [
γ Au/Fe

0

]
Au + ρ(1 − ρ)σ Fe

0

+ 2
(
σ Au

0 + ρσ Fe
0 − [

σ Au/Fe
0

]
Au

)
εAu
‖

]
AAu

0 . (22)

Fe reference. The reference state for the interface is the one
corresponding to the unstrained Fe slab. Hence, [AAu/Fe

0 ]Fe =
AFe

0 and [εAu/Fe
‖ ]Fe = εFe

‖ . Equation (21) now reads as

�E(εFe
‖ ) = [

γ Fe
0 + ρ−2γ Au

0 − [
γ Au/Fe

0

]
Fe + 2ρ−1(1 − ρ−1)σ Au

0

+ 2
(
σ Fe

0 + ρ−1σ Au
0 − [

σ Au/Fe
0

]
Fe

)
εFe
‖

]
AFe

0 . (23)

Note that Eqs. (22) and (23) are equivalent provided a change
of the superscript Au by Fe and of ρ by ρ−1.

From a linear fitting of �E(Lx,Ly) as a function of
εFe
‖ in Fig. 6 and the use of Eq. (23), the interface energy

[γ Au/Fe
0 ]Fe and stress [σ Au/Fe

0 ]Fe are extracted. Similarly, from
the plot of �E(Lx,Ly) as a function of εAu

‖ (not shown)
and the use of Eq. (22), we extract the quantities [γ Au/Fe

0 ]Au

and [σ Au/Fe
0 ]Au. Note that the determination of these interface

quantities requires the knowledge of the (001)Au and (001)Fe
surface energies and stresses. These quantities have been
computed at the same level of theory (DFT-PBE, same cutoff
energy, and same number of k points) than in the Au/Fe
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TABLE II. Interface energy and stress obtained using the Au or
Fe references for the interface.

[mJ/m2] 8 Au ML 2 Au ML

Reference Au [γ Au/Fe
0 ]Au 310.7 213.6

[σ Au/Fe
0 ]Au −438.7 −729.5

Reference Fe [γ Au/Fe
0 ]Fe 374.6 291.8

[σ Au/Fe
0 ]Fe −456.8 −700.6

system. The surface energies of (001)Au and (001)Fe and
the surface stress of (001)Au have been computed previously
and are equal to 873, 2478, and 1836 mJ/m2, respectively [8].
The surface stress of (001)Fe has been computed following
the same protocol used for (001)Au in Ref. [8] and is equal to
1328 mJ/m2.

Table II reports the interface thermodynamic properties
using both Au or Fe reference states. As already suggested,
the thermodynamics properties of the interface described using
the Au and Fe reference states are related since they describe
the same physical system. From Eqs. (22) and (23),

[
σ Au/Fe

0

]
Fe = ρ−1[σ Au/Fe

0

]
Au,[

γ Au/Fe
0

]
Fe = ρ−2

([
γ Au/Fe

0

]
Au − 2(1 − ρ)

[
σ Au/Fe

0

]
Au

)
.

Note that in our previous study [8], we found a slightly different
value 356 mJ/m2 for the interface energy with the Fe reference
[γ Au/Fe

0 ]Fe: The previous calculations were not performed in
exactly the same conditions as the present ones (the thicknesses
of the Fe and Au slabs were different and the atoms at the
free surface of the Fe slab were fixed to the bulk positions).
The procedure to measure the interface energy, and especially
the limited size of the investigated system, can hence lead to
non-negiligible variations of the resulting γ Au/Fe

0 and σ Au/Fe
0

(≈ ±5%).
The interfacial energy Eint is defined in the following:

Eint = γ Au/FeAAu/Fe
0 = (

γ Au/Fe
0 + 2σ Au/Fe

0 εAu/Fe
‖

)
AAu/Fe

0 . (24)

The interfacial energy does not depend on the choice of the
reference state (Au or Fe). The Au(001)/Fe(001) interface
defined by AAu/Fe

0 = AFe
0 = 2a2

Fe with a in-plane strain εFe
‖ =

0% using the Fe reference state can equivalently be described
using the Au reference state by AAu/Fe

0 = AAu
0 = a2

Au with an
in-plane strain εAu

‖ = −3.95. Both descriptions yield the same
interfacial energy: Eint = 376 meV. The same interface subject
to tensile in-plane strain (εFe

‖ = +4.11% and AAu/Fe
0 = AFe

0 =
2a2

Fe using the Fe reference) presents an interfacial energy of
Eint = 338 meV. These two interfacial energies agree fairly
well with an estimation obtained following the approach of
Ref. [24], giving a value of 0.5 mJ/m2 [25]. Moreover, the
interfacial energy is found to be lower when the Fe substrate
is subject to a positive in-plane strain, and the Au slab is
undeformed. This result agrees with the more important charge
transfer that was found in this case (see Table I) and with the
negative value of the interface stress: The presence of the inter-
face tends to expand slightly the Fe/Au system in the [100] and
[010] directions.

D. Effect of the interface/surface stresses
on the strain field of a nanoparticle

In this section, the effect of the surface and interface stresses
on the strained state of a Fe@Au core-shell nanoparticle in
vacuum is evaluated using a simple model. Our aim here is
to establish an order of magnitude of the deformation induced
by the surface and interface stresses in the nanoparticle as a
function of the size of the nanoparticle and of the ratio between
the Au and Fe volumes. In order to do this evaluation, we make
the following crude approximations:

(1) The nanoparticle has a spherical symmetry: both Fe
core and nanoparticle are spherical with the same center and
DFe and DNP (DFe < DNP) are their respective diameters.

(2) The strain field is homogeneous in the Fe core and Au
shell.

(3) The elastic energy of the nanoparticle is described in
the framework of the linear elasticity theory.

(4) Thermodynamic surface and interface properties are
independent of their crystalline orientation.

(5) At the Au/Fe interface, there is an epitaxial relationship
of the type Au(001)/Fe(001) as if the interface was planar.

(6) Surfaces or interface energies and stresses are indepen-
dent of the Au shell thickness and are described by those of the
planar Au(001) free surface and by the planar Au(001)/Fe(001)
interfaces.
Within these approximations, the total energy ENP(εFe

‖ ) of a
Fe@Au nanoparticle as a function of the in-plane strain writes
as

ENP(ε‖) = NAuE
Au
bulk + NFeE

Fe
bulk

+uAu
el V Au

0 + uFe
el V

Fe
0 + (

γ Au
0 + 2σ Au

0 εAu
‖

)
AAu

0

+ ([
γ Au/Fe

0

]
Fe + 2

[
σ Au/Fe

0

]
Feε

Fe
‖

)[
AAu/Fe

0

]
Fe, (25)

where the Fe reference was chosen for the interface. V Au
0

and AAu
0 refer to the volume and free-surface area of the

unstrained Au shell. V Fe
0 and [AAu/Fe

0 ]Fe refer to the unstrained
Fe core volume and to the Au/Fe interface area. Here, since we
assume an epitaxial relationship of the type Au(001)/Fe(001)
at the Au/Fe interface as if it was planar, the meaning of
other quantities, defined previously for a slab, transposes
straightforwardly to the case of the nanoparticle.

In Appendix, the total energy ENP(ε‖) of the nanoparticle is
specified. The in-plane Fe strain εFe

‖ that minimizes this energy
is given by

εFe
‖ =

[
ρ(1 − ρ)CAu

el (β3 − 1) − 6β3

DNP
σ Au

0 ρ

− 6β

DNP

[
σ Au/Fe

0

]
Fe

] /[
ρ2CAu

el (β3 − 1) + CFe
el

]
, (26)

where the following quantities were defined:

CAu
el = CAu

11 + CAu
12 − 2

CAu
12

2

CAu
11

,

CFe
el = CFe

11 + CFe
12 − 2

CFe
12

2

CFe
11

, (27)

β = DNP

DFe
.
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This strain εFe
‖ [Eq. (26)] gives an order of magnitude of the

deformation induced by the surface and interface stresses in a
Fe@Au nanoparticle as a function of its characteristics. The
first term of the right-hand side of Eq. (26), referred as [εFe

‖ ]bulk

in the following, originates from the lattice mismatch between
Fe and Au and arises from the bulk elastic energies. The
two next terms, respectively referred as [εFe

‖ ]surf and [εFe
‖ ]inter,

originate from the nanoparticle surface and from the Au/Fe
interface. The values of the surface σ Au

0 and interface [σ Au/Fe
0 ]Fe

stresses evaluated previously for a slab are used in Eq. (26).
Following this simple model, we are not only able to

calculate the in-plane strain in the Fe core but also the relative
importance of the volume, surface, and interface effects on
the equilibrium state of the Fe@Au nanoparticle. We first
fix the diameter of the Fe core to a value of DFe = 1
nm and compute the in-plane Fe strain calculated following
Eq. (26). Figure 7(a) reports the values of εFe

‖ (solid lines) and
[εFe

‖ ]bulk(dashed line) as a function of the diameter DNP of the
Fe@Au nanoparticle. The diameter DNP is varied from 1.5 to
40 nm. The in-plane Fe strain εFe

‖ is an increasing function of
the nanoparticle diameter. Eluding the surface and interface
effects, the Au shell tries to impose its lattice parameter to
the Fe core yielding a Fe core in tension in agreement with
the positive value of [εFe

‖ ]bulk regardless the nanoparticle size.
Nevertheless, below a diameter of DNP ≈ 2.3 nm, the Fe core is
found in compression (εFe

‖ < 0) in Fig. 7(a) which underlines
some surface or interface effects. The surface or interface
effects compress the nanoparticle analogously to the pressure
increase inside a soap bubble (Laplace law): such effect has
already been experimentally and theoretically observed in
metallic nanoparticles [26,27].

FIG. 7. (Color online) (a) In-plane Fe strain εFe
‖ (bold line) and

its bulk contribution [εFe
‖ ]bulk (dashed line) in the Fe core for

a fixed Fe core diameter DFe = 1 nm, as a function of the
Fe@Au nanoparticle diameter DNP (solid line). The gray and yellow
disks represent schematically the Fe core and Au shell relative
sizes in the Fe@Au nanoparticle. (b) Relative contributions of
the surface λ and interface μ to the in-plane Fe strain in the Fe core
compared to the bulk contribution as a function of the nanoparticle
diameter.

The surface and interface effects are directly related to
the difference between εFe

‖ and [εFe
‖ ]bulk. In order to precisely

evaluate the relative weight of the surface and interface effects
on the in-plane Fe strain, Fig. 7(b) reports the surface to bulk
λ and interface to bulk μ contribution ratios:

λ = [εFe
‖ ]surf

[εFe
‖ ]bulk

, (28)

μ = [εFe
‖ ]inter

[εFe
‖ ]bulk

. (29)

Surface stress effects are found to be significant as soon as
the nanoparticle diameter is smaller than 20 nm: |λ| > 0.1
for DNP < 20 nm. They become comparable to the elastic
bulk ones for nanoparticles with a diameter of 2.3 nm
(λ = −1 for DNP = 2.3 nm) and predominant below this
diameter.

In turn, interface stress effects have a small contribution on
the in-plane Fe strain compared to the surface ones except for
small nanoparticles. The interface stress effects contribution
represent less than 5% of the surface effects contribution
(|μ

λ
| < 0.05) for DNP > 2.3 nm. However, these interface

effects become significant for very small nanoparticles and
are no longer negligible (μ > 0.1 for DNP < 1.9 nm).

The effects of the Fe to Au volume ratio for a nanoparticle
of fixed diameter are now investigated. Figure 8(a) reports
the in-plane Fe strain εFe

‖ (solid lines) and its bulk contribution
[εFe

‖ ]bulk (dashed line) as a function of the core diameter DFe for
a nanoparticle with fixed diameter DNP = 8 nm, corresponding
to the size of recently synthesized Fe@Au nanoparticles [7].

FIG. 8. (Color online) (a) In-plane Fe strain εFe
‖ (bold line) and its

bulk contribution [εFe
‖ ]bulk (dashed line) in the Fe core as a function of

the core diameter DFe in a Fe@Au nanoparticle with a fixed diameter
DNP = 8 nm. The gray and yellow disks represent schematically
the Fe core and Au shell relative sizes in the Fe@Au nanoparticle.
(b) Relative contributions of the surface λ (blue line) and interface μ

(red line) to the in-plane Fe strain in the Fe core compared to the bulk
contribution as a function of the nanoparticle diameter.
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The diameter DFe is varied from ∼0 to 7.6 nm. The in-plane
strain is a decreasing function of the core diameter DFe.
Eluding the surface and interface effects, the Fe to Au volume
ratio increases with the core diameter DFe and thus the elastic
bulk effects of the Au shell decrease in agreement with the
decrease of [εFe

‖ ]bulk.
In Fig. 8(b), the relative contributions of the surface λ and

interface μ effects to the in-plane Fe strain, compared to the
bulk contribution, are shown as a function of the Fe core
diameter. The surface contribution is significant |λ| > 0.25
for all investigated core diameters. This result agrees with the
above conclusion: Surface stress effects are significant as soon
as the nanoparticle diameter is smaller than 20 nm. Moreover,
the surface effects contribution increases (in absolute value)
with the Fe core diameter in agreement with the decrease of
the Au shell volume with DFe, while the Au surface AAu is
independent of DFe.

Finally, the interface effects contribution μ compared to
bulk ones increases with DFe. Indeed, the Au to Fe volume
ratio and thus the bulk contribution decrease with DFe while
the Fe interface area [AAu/Fe

0 ]Fe increases. The contribution
of interface effects, although always smaller than the surface
one, represents more than 5% of the surface contribution for
DFe > 4 nm and should therefore not be neglected in a rigorous
calculation.

As already mentioned, this model is very simplified and
suffers from several assumptions. First, for a nanoparticle with
DNP ≈ 2 nm and DFe = 1 nm in Fig. 7 or DNP ≈ 8 nm and
DFe = 7 nm in Fig. 8, the Au shell typically corresponds to
about 2 ML so that the approximations of the present simple
model (spherical core and shell, surface and interface energies
and stresses independent on the Au layer thickness and on the
surface orientation) become more questionable. Especially,
we previously showed that surface and interface energies and
stresses are not independent on the Au shell thickness below
a 3 Au ML [8]. Nevertheless, we believe that the correction
induced by these physical ingredients would not significantly
alter the surface and interface effects contribution to the in-
plane Fe strain.

Second, the evolution of the Fe in-plane strain was
computed with numerical values for the mismatch of +3.95%
between Au(001) and Fe(001) extracted from DFT-PBE
calculations which overestimates by a factor 6 the experimental
one 0.66%. Comparing the surface to bulk λexpt and interface
to bulk μexpt contribution ratios using the experimental lattice
parameters, and assuming all other calculated quantities
(surface and interface energies and stresses) accurate, we find
that

λexpt/λPBE = 1 − ρPBE

1 − ρexpt
,

μexpt/μPBE = ρPBE(1 − ρPBE)

ρexpt(1 − ρexp)
,

where ρPBE = ρ = 0.960 41 and ρexpt = 0.993 42. A subscript
PBE has been added here to all the DFT calculations quantities.
We find that λexpt/λPBE ≈ 6.0 and μexpt/μPBE ≈ 5.8 whatever
the nanoparticle diameter. Hence, within these assumptions,
the surface and interface effects are expected to be even more
important than the above calculated ones. Note that if we have

assumed that the calculated surface and interface stresses are
comparable to the experimental ones, even an error of ≈50%
on the surface and interface stresses would not change this
conclusion.

Finally, we made the crude approximation of a homoge-
neous strain in the nanoparticle and that both the spherical
core and the nanoparticle have the same center. However,
an inhomogeneous strain or an asymmetrization of the core
position would presumably relax the core stress by decreasing
the bulk elastic energy [28] of both the Fe and Au systems
while, in the mean time, surface and interface energies would
not be drastically modified. A consequence of an asymmetric
core position would thus be an increase of the surface λ and
interface μ effects to the in-plane Fe strain.

As a net result of this discussion on the regardless physical
ingredients of our crude model, we conclude that the relative
contributions of the surface λ and interface μ is certainly
underestimated in our simple model.

IV. CONCLUSION

Using first-principles calculations based on DFT, we have
investigated the structural, magnetic, and thermodynamic
properties of the Au(001)/Fe(001) interface subject to an
in-plane strain for two Au slab thicknesses: 2 and 8 ML. The
structural properties and especially the perpendicular strain
in the system through the relative interlayer distance have
been investigated. Our calculations show that the interlayer
distance at the interface Au(001)/Fe(001) decreases with the
in-plane strain, suggesting a tendency for (001)Au to bind
more strongly to (001)Fe when the Fe slab is in tension.
The atomic magnetic moments of Fe atoms at the surface
and at the interface, due to the reduced numbers of Fe first
neighbors are enhanced compared to bulk ones and are found
to be independent on the in-plane strain. Inside the Fe slab, the
atomic magnetic moments of the Fe atoms increase with the
in-plane strain in agreement with the increase of the average
first-neighbor Fe-Fe distance. Finally, the interface energy
and stress characterizing the thermodynamic properties of the
interface have been calculated and subsequently used in a
simple model developed in order to evaluate the strain state of
an ideal spherical Fe@Au core-shell nanoparticle. The surface
elastic effects are found to be significant for nanoparticles of
diameter smaller than ∼20 nm and predominant for diameters
smaller than ∼2.3 nm. Interface elastic effects are weaker than
surface elastic effects but can not be neglected for very small
nanoparticles (�1.9 nm) or for thin shells. Nevertheless, this
model is very simple and omits several significant physical
ingredients, which effects need to be evaluated by further
calculations. Aside from the cited ones, the effect of a matrix or
a liquid surrounding the nanoparticle has not been considered
and would ask the determination of the elastic properties
of the interface between the shell and this surrounding
medium.

Finally, if these conclusions are dependent of the specific
properties of the metals investigated in this study, they show
that the interface and surface elastic effects can not be
neglected when studying small core-shell nanoparticles, and
that they can even become the predominant effects compared
to elastic volume effects.
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APPENDIX

In this appendix, the total energy of the spherical core-shell
nanoparticle in the simple model is specified in the Fe reference
and is then minimized with respect to the Fe strain state εFe

‖ .
Using Eqs. (17) and (19),

ENP(ε‖) = NAuE
Au
bulk + NFeE

Fe
bulk

+
[
CAu

11 + CAu
12 − 2

CAu
12

2

CAu
11

]
(εAu

‖ )2V Au
0

+
[
CFe

11 + CFe
12 − 2

CFe
12

2

CFe
11

]
(εFe

‖ )2V Fe
0

+ (
γ Au

0 + 2σ Au
0 εAu

‖
)
AAu

0

+ ([
γ Au/Fe

0

]
Fe + 2

[
σ Au/Fe

0

]
Feε

Fe
‖

)[
AAu/Fe

0

]
Fe. (A1)

ENP(ε‖) can be expressed as a function of εFe
‖ only using the

relation between εAu
‖ and εFe

‖ [Eq. (4)]:

ENP(εFe
‖ ) = NAuE

Au
bulk + NFeE

Fe
bulk + γ Au

0 AAu
0

+ [
γ Au/Fe

0

]
Fe

[
AAu/Fe

0

]
Fe + 2(ρ − 1)σ Au

0 AAu
0

+ (ρ − 1)2CAu
el V Au

0

+ 2
{

ρ(ρ − 1)CAu
el V Au

0 + ρσ Au
0 AAu

0

+ [
σ Au/Fe

0

]
Fe

[
AAu/Fe

0

]
Fe

}
εFe
‖

+ (
ρ2CAu

el V Au
0 + CFe

el V Fe
0

)(
εFe
‖

)2
, (A2)

where

CAu
el = CAu

11 + CAu
12 − 2

CAu
12

2

CAu
11

,

CFe
el = CFe

11 + CFe
12 − 2

CFe
12

2

CFe
11

.

The equilibrium state of the nanoparticle requires that the
strain state εFe

‖ of the nanoparticle minimizes ENP(ε‖). So,

∂ENP

∂εFe
‖

= 2
{(

ρ2CAu
el V Au

0 + CFe
el V Fe

0

)
εFe
‖

+ ρ(ρ − 1)CAu
el V Au

0 + ρσ Au
0 AAu

0

+ [
σ Au/Fe

0

]
Fe

[
AAu/Fe

0

]
Fe

}
= 0,

which gives an expression for εFe
‖ :

εFe
‖ = {

ρ(1 − ρ)CAu
el V Au

0 − ρσ Au
0 AAu

0

− [
σ Au/Fe

0

]
Fe

[
AAu/Fe

0

]
Fe

}/(
ρ2CAu

el V Au
0 + CFe

el V Fe
0

)
.

(A3)
To go beyond this result, we specify approximate expres-

sions of the volume of the Fe core, of the area of the Au/Fe
interface, of the volume of the Au shell, and of the area of the
nanoparticle surface:

VFe = π

6
D3

Fe,[
AAu/Fe

0

]
Fe = πD2

Fe,

VAu = π

6

[
D3

NP − D3
Fe

]
,

AAu = πD2
NP.

Using these expressions and defining β = DNP
DFe

, Eq. (A3) yields
Eq. (26).
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