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Abstract 
Near-infrared and mid-infrared spectroscopies were currently used to analyze natural compounds. 
During the last ten years various multiblocks methods were developed such as Concatenated PLS, 
Hierarchical-PLS (H-PLS), and MultiBlock-PLS (MB-PLS). These three algorithms were used to 
analyze 55 lavender (Lavandula angustifolia) essential oil samples. The results obtained were 
compared to the ones obtained respectively in NIR and MIR ranges. The accuracies of the models 
depend on the spectroscopic technique, pretreatment and the PLS methods. The results showed 
that the choice of the factor numbers used to build the multiblock models was the most important 
parameter for the H-PLS and MB-PLS methods. 
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1. Introduction 
Vibrational spectroscopies such as NIR and MIR, when associated to multivariate analysis, have been proved to 
be a powerful tool in various product analyses like gasoline samples [1], diesels [2], fuel [3] [4], olive oils [5] [6] or 
lavandin essential oils [7]. These analytical spectroscopic methods, besides being shorter in time than the usual 
ones (ASTM methods), present good accuracy and precision; are non-destructive; and can be used for quality 
control. During the last decade, a lot of progress appeared in the analytic world. The time necessary to obtain 
analytic data decreases, so for one manufactured product, multiple measurements are done (NIR, MIR spectro-
scopies, liquid or gas chromatography, sensorial analysis). The data are considered as independents; the NIR or 
MIR data could be used to quantify compounds by using regression methods as Partial Least Square (PLS) re-
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gression. Each group of variables, or each matrix, is usually called a block and is measured on the same obser-
vations (in rows). It is possible to find complementary information using two different analytic methods. In this 
case the analyst could use multiples predictors blocks and multiblocks responses blocks. In the literature several 
multiblocks methods were described [8]. The first method called concatenated method consists in concatenating 
the descriptor block into the same matrix and then applying Partial Least Square (PLS) regression. Sometimes 
this method works well, but the individual blocks must be scaled to obtain interpretable results. The second 
method consists in considering each block independently at the beginning. Principal Component Analysis (PCA) 
could be applied on each block and then the scores obtained in each block are collected together to form a super 
matrix. The PLS regression is then applied on the super matrix. This method presented by Tenenhaus and Vinzi 
[9] is called Hierarchical-PLS (H-PLS). The third method is proposed by Wangen and Kowalski [10], the PLS 
regression is applied on each block and then the scores obtained in each block are collected together to form a 
super matrix. The PLS regression is then applied on the super matrix. This whole process is called MultiBlock- 
PLS (MB-PLS). The objective of this study is to realize the determination of the five main compounds which 
compose the lavender (Lavandula angustifolia) essential oil, using multiblock chemometric methods. This plant, 
native from the Mediterranean Basin, is widely cultivated for essential oil production. Pure L. angustifolia es-
sential oils are used in perfumery, cosmetic, for antimicrobial activity, and anti-colic properties [11]. These oils 
are characterized by high level of linalool and linalyl acetate, moderate levels of lavandulyl acetate, terpen-4-ol 
and lavandulol. The amount of 1,8-cineole and camphor often vary between very low to moderate [12]. In this 
work, five compounds of lavender’s essential oil were quantified by each chemometric method and these meth-
ods were compared. Four chemometric methods have been used to build the regression models: PLS method 
was used independently on NIR and MIR data, and three multiblock methods (concatenated, H-PLS and MB- 
PLS methods) were applied on NIR and MIR data in a simultaneous way.  

2. Experimental 
2.1. Essential Oil Samples 
The lavender (Lavandula angustifolia) essential oils investigated in this work were provided by the Office Na-
tional Interprofessionnel des Plantes à Parfum, Aromatiques et Médicinales (ONIPPAM) and they belong to the 
label “AOC Huiles essentielles de Lavande de Haute-Provence” (Origin Protected Designation of “Haute-Pro- 
vence”). The oils were obtained by vapor phase distillation of the flowery part recently cut, of the L. angustifolia 
species, spontaneous growing or cultivated in south of France. The samples were left in two groups, including a 
group of calibration (42 samples) and a group of validation (13 samples). The samples with the minimum and 
maximum contents for each compound investigated were added in calibration set. The other samples were ran-
domly selected between prediction and calibration set. 

2.2. Gas Chromatography  
The composition of the 55 lavender essential oil samples, was determined by internal normalization using an 
Agilent 7890A GC System, equipped with a capillary column SUPELCOWAX 10 of 30 m (DI: 25 µm, phase 
thickness: 0.25 µm), a FID detector, dihydrogen as gas vector, and following the analysis protocol established 
by the French National Association for Normalization (AFNOR) [13]. The mean composition was done in the 
Table 1. 

2.3. FT-NIR 
FT-NIR spectra were recorded with a Nicolet Antaris spectrometer interfaced to a personal computer. Samples 
were filled into glass tubes of 2 mm. All spectra were computed at 8 cm−1 resolution between 4000 and 10,000 
cm−1, thanks to the software result integration 2.1 Thermo Nicolet. Co-addition of symmetrical interferograms 
on 100 scans was performed for each spectrum. A reference spectrum and sample spectrum was recorded with 
glass tubes of 2 mm. 

2.4. FT-MIR 
FT-MIR spectra were recorded with a Thermo Nicolet AVATAR 370 spectrometer interfaced to a personal 
computer. Samples were deposed on an Attenuated Total Reflectance (ATR) accessory. All spectra were com- 
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Table 1. Products identified by GC.                                   

 Retention time (s) Mean (%) 

3-octanone 314 0.88 

Limonene 385 0.54 

1,8-cineole 391 0.32 

(Z)-β-ocimene 405 3.08 

(E)-β-ocimene 428 1.92 

Linalool 572 28.96 

Camphor 662 0.29 

Borneol 722 0.91 

Lavandulol 751 3.56 

Terpinen-4-ol 789 0.49 

α terpineol 799 0.35 

Linalyl acetate 1042 37.03 

Lavandulyl acetate 1144 4.12 

E-β-caryophyllene 1545 3.73 

 
puted at 2 cm−1 resolution between 700 and 4000 cm−1. Co-addition of symmetrical interferograms on 100 scans 
was performed for each spectrum. A reference spectrum was recorded before each sample spectrum. 

2.5. Software 
The chemometric applications were performed by the UNSCRAMBLER software Version 9.2 from CAMO 
(Computer Aided Modelling, Trondheim, Norway) and by the MATLAB software Version 7.4 from The Math 
Works Inc. (Natick, Units States). 

3. Chemometric Methods 
3.1. Partial Component Analysis (PCA) 
Principal component analysis [14] involves a mathematical procedure that transforms a number of possibly cor-
related variables into a smaller number of uncorrelated variables called principal components. The first principal 
component accounts for as much of the variability in the data as possible, and each succeeding component ac-
counts for as much of the remaining variability as possible. Data sets with many variables can be simplified 
through variable reduction and thereby be more easily interpreted.  

3.2. Partial Least Square (PLS) Regression 
PLS is a supervised analysis that is based on the relation between the signal intensity and the characteristics of 
the sample [15]. Interference and overlapping of the spectral information may be overcome by using powerful 
multicomponent analysis such as PLS regression. PLS allows a sophisticated statistical approach using a spectral 
region rather than unique and isolated analytical bands [16] [17]. The algorithm is based on the ability to ma-
thematically correlate spectral data to a property matrix of interest while simultaneously accounting for all other 
significant spectral factors that perturb the spectrum. It is thus a multivariate regression method that uses a se-
lected spectral region and is based on the use of latent variables. To construct a model, the first step is to per-
form a calibration. This involves collecting a calibration set of reference samples which should contain all 
chemical and physical variations to be expected in the unknown samples, which will be predicted later. The 
purpose of this calibration is to establish a multiple linear regression between the NIR spectra data or MIR spec-
tra and the various parameters of the sample set [volatile compounds (water in the majority), lipid rates, or va-
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rietal origins]. Cross-validation was applied in regression to fix the required number of latent variables for mod-
el construction. So, the optimal number of latent variables is determined on the basis of prediction of samples 
kept out from the individual model. The second step is to validate the model using a prediction set (different 
from the calibration one), i.e. to compare the values obtained by the model to the values obtained by the refer-
ence method. 

The evaluation of the calibration performance is estimated by computing the standard error of calibration 
(RMSEC) after comparing the real modification with the computed one for each component. The formula for the 
standard error of calibration is [18]: 
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where Ci is the known value, iC′  is the calculated value, N is the number of samples and p is the number of in-
dependent variables in the regression. 

The standard error of prediction (RMSEP) gives an estimation of the prediction performance during the step 
of validation of the calibration equation: 
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where Ci is the known value, iC′  is the value calculated by the calibration equation, and M is the number of 
samples in the prediction set.  

The predictive ability of the model should also be expressed by the bias and the square of correlation coeffi-
cient (R2) also called determination coefficient, usually called Q2 in prediction. The regression coefficients are 
the numerical coefficients which express the link between the predictor variations and the response variations. 
The bias is systematic difference between predicted and measured values. The bias is computed as average value 
of the residuals. The residual is the measure of the variation which is not taken into account by the model. The 
residual for a given sample and a given variable is computed as the difference between observed value and fitted 
(projected or predicted) value of the variable on the sample. For this study, the full cross validation is chosen to 
validate all models. 

3.3. Multiblock Methods 
Nowadays, it is possible to arrange, for the same sets of samples, several blocks of analytical variables. These 
various data sets or these various blocks are obtained by means of various analytical methods, for example data 
stemming from the spectroscopy NIR and from the spectroscopy MIR. Every block contains information relative 
to the variance of samples and it was intended to use multiblock methods because. These methods are able to 
treat all the blocks in a simultaneous way and three multiblock methods were used for this study. 

3.4. Concatenated Matrix 
Data arrangement [19] for combined-PLS: 

X-block: virgin olive oil spectra data have been arranged in two ways by taking NIR and MIR absorbances as 
columns, yielding the X-matrix (the X-matrix data constituted the independent set of variables).  

Y-block: the Y-block data were the set of dependent variables. For combining NIR and MIR spectra, the data 
were normalized at the unit vector in order to give the same importance for the two spectral regions. 

3.5. H-PLS Models 
This method presented by Wold et al. [20] was called H-PLS.  

Data arrangement:  
X-block: PCA of the lavender oil NIR and MIR data have been calculated separately. PCA was performed on 

the calibration set and the same model was used for the decomposition of the prediction one. The scores of each 
PCA were extracted in order to build another data matrix named TT.  

Y-block: the Y-block data were the set dependent variable.  
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A PLS cycle [21] is done between TT and each predictor from which a super weight and an updated super 
score TT are obtained normalized to unit length [22]. These cycles are repeated until TT converged [23]. Evalua-
tion of error for this method is estimated as a classical PLS. The algorithm of the method H-PLS is very clearly 
presented in the publication of Westerhuis et al. [24]. 

3.6. MultiBlock-PLS (S-PLS) 
Data arrangement for S-PLS models: 

The third way was proposed by Wangen and Kowalski [10] Partial Least Square (PLS) regression was applied 
on each block and then the scores obtained in each block were collected together to form a super matrix. The 
PLS regression was then applied on the super matrix. This method was called S-PLS. The main difference be-
tween this algorithm and the algorithm of H-PLS is that for the S-PLS, the scores of every block of data are cal-
culated by means of a PLS associated with quantitative information. Then the blocks of scores are concatenated 
to form the “super block” matrix of and finally a new PLS is realized on this super block matrix. The method of 
the S-PLS was worked out to treat relations of variance (and of covariance) between several blocks of data. This 
method is able of taking into account the variances of K blocks of analytical variables and of putting them in 
connection with several blocks of variables to be explained (quantitative information). The algorithm of the me-
thod S-PLS is also clearly presented in the publication of Westerhuis et al. [25].  

X-block: PLS scores of the lavender oil NIR and MIR data have been calculated separately and concatenated.  
Y-block: the Y-block data were the set dependent variable.  

3.7. Data Pretreatment 
Data analysis was carried out using the full spectra. Mean centering was used to improve the smaller spectral 
differences removing the common information from the spectra. Absorbance normalized value was also em-
ployed. None of the other mathematical treatments (multiplicative scatter correction, second derivative [26], etc.) 
or wavelength ranges tested improved the prediction accuracy of models. During the data processing, the Stan-
dard Normal Variate (SNV) correction pretreatment [27] could be used. The SNV pretreatment is a row-oriented 
transformation that removes scatter effects from spectra by centering and scaling each individual spectrum. To 
perform the variable matrices, some pretreatments (or preprocessings) were done. This step is very important to 
study matrix of spectra. The pretreatments could be combined in order to optimize the models. In this work, in-
fluences of pretreatments were compared. 

4. Results and Discussion 
Compound identification of the lavender samples were done using retention indices and co-elution with authen-
tic samples of the five compounds investigated. The percentages were determined by the method of area norma-
lization and without the application of response factor corrections according to standard methods [25]. The va-
riables to be explain (quantitative content data) were obtained by internal normalization. 

In Table 2, the mean and range of the main five compounds, i.e. linalool, lavandulol, linalyl acetate, lavan- 
dulyl acetate and ß-caryophyllene are given with both calibration and validation sets according to the targeted 
compounds. As shown in this table, linalool and linalyl acetate are the main compounds (28.8% and 37.2% re- 
spectively for the calibration set). The three other compounds present a range around 5%, in the two sets. The 
spectroscopic variables from NIR and MIR were used for building chemometrics models using multiblock me-
thods, concatenated block, hierarchical PLS method and MB-PLS method. The efficiently of NIR and MIR 
ranges were first studied, then the 2 spectral ranges were concatenated, the H-PLS and S-PLS methods were 
checked. For each of following studies same groups of samples in calibration and in prediction were preserved. 

4.1. Near Infrared Studies 
Several models of regression were then elaborated with samples of calibration to predict contents in linalool, la-
vandulol, linalyl acetate, lavandulyl acetate and ß-caryophyllene in the [4500 - 5000 cm−1] and [6000 to 7200 
cm−1] spectral ranges. Various pretreatments were tested for each targeted compounds. The pretreatments which 
allowed obtaining the best regression models were baseline correction followed by SNV for the 5 compounds. 
The best calibration model characteristics appear in left part of Table 3. The number of factors used for each 
ofthese models of regression varies from 2 to 5 and R2 obtained for linalool (0.99), linalyl acetate (0.99) and la- 
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Table 2. Content of the five main compounds in lavender essential oil samples investigated.                            

  Linalool (%) Lavandulol (%) Linalyl acetate (%) Lavandulyl acetate (%) ß-caryophyllene (%) 

Calibration  
set N = 42 

Min-Max 23.4 - 33.8 1.75 - 5.31 28.5 - 41.5 3.05 - 4.90 0.49 - 5.48 

Mean 28.8 3.38 37.2 4.12 3.70 

Deviation standard 2.14 0.79 2.56 0.42 1.11 

Prediction  
set N = 13 

Min-Max 24.8 - 32.8 1.90 - 5.07 32.9 - 40.0 3.43 - 4.84 1.28 - 5.24 

Mean 29.4 3.91 36.8 4.12 3.78 

Deviation standard 1.92 0.66 1.96 0.36 1.18 

 
Table 3. Characteristics of PLS models regression (NIR, MIR and concatenated data).                       

Compounds FN R2 RMSEC (%) REC (%) Q2 RMSEP (%) REC (%) 

Near infrared 

Linalool 5 0.99 0.199 0.69 0.96 0.399 1.4 

Lavandulol 3 0.92 0.254 7.5 0.71 0.321 9.5 

Linalyl acetate 5 0.99 0.247 0.67 0.76 1.58 4.2 

Lavandulyl acetate 2 0.76 0.202 4.9 0.54 0.331 8.0 

ß-caryophyllene 4 0.89 0.161 4.4 0.53 0.353 9.5 

Mid infrared 

Linalool 8 0.99 0.071 0.25 0.97 0.269 0.91 

Lavandulol 15 0.99 0.013 0.38 0.85 0.254 7.5 

Linalyl acetate 7 0.98 0.352 0.95 0.64 1.12 3.0 

Lavandulyl acetate 9 0.99 0.010 0.24 0.90 0.144 3.5 

ß-caryophyllene 13 0.99 0.011 0.30 0.78 0.261 7.0 

Concatenated matrix 

Linalool 10 0.99 0.048 0.17 0.98 0.277 0.94 

Lavandulol 8 0.99 0.045 1.3 0.70 0.323 9.6 

Linalyl acetate 10 0.99 0.061 0.16 0.74 1.09 2.9 

Lavandulyl acetate 13 0.99 0.012 0.29 0.79 0.243 5.9 

ß-caryophyllene 9 0.99 0.025 0.68 0.69 0.327 8.8 

FN: suggested number of factor used, R2: coefficient of regression, RMSEC: root mean square error of calibration, REC: relative error of 
calibration, Q2: coefficient of determination, RMSEP: root mean square error of prediction, REP: relative error of prediction. 

 
vandulol (0.92) are close to 1. On the other hand, for lavandulyl acetate and ß-caryophyllene, calculated R2 (0.76 
and 0.89 respectively) are low. 

The calculated RMSEC is included between 0.161% and 0.254%. These values are relatively close to some of 
the others and they express the error of prediction realized by the models to predict the compound contents. 
When the RMSEC is expressed with respect to the average compound content, we calculate the REC which are 
relative errors and allow more easily comparison models between them. So REC obtained for linalool (0.69%) 
and linalyl acetate (0.67%) are particularly close to zero (with regard to three other REC) and explain a good 
quality of prediction of these compounds contents in calibration samples. Then, the five models of regression are 
validated by means of the validation sample’s set. Q2 obtained are respectively lower than R2 and the RMSEP is 
respectively higher to RMSEC. The calculated REP translates a good prediction of the linalool content of the 
validation samples. The REP of the other models presented low prediction qualities in particular for the lavan-
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dulol and ß-caryophyllene because the REC obtained for these two compounds are around 10%. We can observe 
that the validation of the regression model of the lavandulyl acetate is bad because the REP is equal to 4.2% 
while the REC obtained during the calibration of this model was 0.67%. 

4.2. Medium Infrared Studies 
With calibration samples set, 5 regression models were then elaborated in the 700 and 1900 cm−1 spectral range 
to predict contents in linalool, lavandulol, linalyl acetate, lavandulyl acetate and ß-caryophyllene of the calibra-
tion set samples. The various pretreatments were tested for each compounds, however the best regression mod-
els were obtained without making any pretreatment. The best characteristics of regression models obtained are 
given in Table 3 which shows that, without any pretreatment, it was possible to elaborate good calibration mod-
els. R2 obtained are all very close to one. The RMSEC are very close to zero in comparison with those obtained 
with the NIR data. The models are then validated and the characteristics of the validation of each regression 
model are given in Table 2. Q2 obtained are respectively lower than R2 in particular for linalyl acetate regression 
model (0.64 and 0.98 respectively for this compound). The RMSEP are higher to the RMSEC (in particular for 
the linalyl acetate) and the REP obtained for linalool regression model is particularly successful (REP = 0.91%). 
Other regression models present relatively small REP (3% and 3.5% respectively for linalyl and lavandulyl ace-
tates; and 7% and 7.5% respectively for lavandulol and ß-caryophyllene). The pretreatments of baseline correc-
tion and SNV used with the NIR data allowed to improve regression models, while the MIR data allowed to ob-
tain good qualities of regression models without any pretreatment. On the other hand, factors number used with 
the MIR data is higher to those used by the NIR data and the REP obtained by means of the MIR data are small-
er than those obtained with the NIR data about is the targeted compound. In conclusion, MIR spectroscopy is the 
most suitable spectroscopic domain. However, it is possible that simultaneous use of these two spectroscopic 
domains allows elaborating even more precise regression models and it is in this optic that the multiblocks me-
thods were applied. 

4.3. Multiblock Method: NIR + MIR Studies 
The multiblock method allowed organizing chemical information from NIR and MIR data. Three multiblock 
methods were compared: the concatenated matrix (CONC) method, the hierarchical PLS (H-PLS) method and 
the MultiBlock-PLS (MB-PLS) method. All the regression models were elaborated from NIR and MIR data of 
the calibration sample set. The pretreatments used were baseline correction followed by a SNV on NIR data and 
no pretreatment on MIR data. The spectral ranges previously determined, were kept for application of multib-
lock methods. 

4.3.1. Study on Concatenated Matrix 
The two calibration matrixes sample set were normalized after the pretreatment then the data were concatenated. 
The calibration model characteristics are presented according to the targeted compound, in Table 3. The regres-
sion models elaborated for each compound presented good accuracy. Indeed R² are very close to 1 and the 
RMSEC are close to 0. The calculated REC are thus low. The regression models were then validated with the 
validation sample set. Q2 are smaller than R2 (for the same compound) in particular for ß-caryophyllene of 
which R2 is 0.998 while Q2 is 0.69. The obtained RMSEP are significantly higher in relation to RMSEC. The 
REP obtained for linalyl acetate is particularly interesting because it is lower than the obtained REP (for the 
same compound) by using only MIR data (3.0% with MIR data and 2.9% with the concatenated matrix method). 
The bias of validation of each model is relatively low in relation to the mean content of corresponding com-
pound. The Figure 1 presents the first vectors of regression of the five targeted compounds. These regression 
vectors are expressed according to NIR and MIR spectroscopic variables. The regression coefficients stemming 
from MIR data are on the left of the dotted line and those stemming from NIR data are positioned to the right of 
this line. The intensity of the coefficients stemming from MIR data is higher than those outcomes from NIR data. 
This observation confirms the relevance of the MIR data with regard to the NIR data. 

4.3.2. Study on H-PLS 
The method of hierarchical PLS (H-PLS) was organized by following the algorithm described by Westerhuis 
[24]. To estimate the optimal factor number used for the first stage of H-PLS (the PCA stage), a “test set” was  
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Figure 1. First vector of regression of 5 targeted compounds (CONC).                           

 
set up with the calibration samples set. Previously, 42 samples participated in the calibration. 10 of these sam-
ples were chosen to constitute the “test set” of H-PLS. Then, by means of 32 remaining calibration samples, 31 
regression models of H-PLS were elaborated with a PCA vector score number varying between 1 to 31. The 
great matrices scores thus obtained present dimensions going from 2 to 62 variables because the number of vec-
tors scores calculated for every block of data is identical. 31 regression models of H-PLS were then validated by 
means of the “test set”. Figure 2 concerns only linalool content and shows on vertical axis, the RMSEP’s inten-
sity of the test set, in function of 2 variables. The first variable (in-depth axis) is the number of PCA score vector 
calculated for each block (NIR and MIR block) during the first stage of H-PLS. The second variable (horizontal 
axis) is the number of PLS score vector calculated during the second stage of H-PLS. This Figure 2 has the 
shape of a quarter of bowl. When the number of vectors scores is low, the test set’s RMSEP values are high and 
they exceed the scale of the RMSEP. 

However a minimum of test set’s RMSEP is observed. The coordinates of this minimum are registered in the 
white box on Figure 2. For each compound the number of PCA scores included in the model varied and the best 
results are obtained for 21 scores for the linalool, 12 scores for the lavandulol, 9 for linalyl acetate, 8 for lavan-
dulyl acetate and 7 for ß-caryophyllene. Then, new regressions models were elaborated by means of 42 calibra-
tion samples of calibration set. NIR and MIR data were used in the algorithm of the H-PLS after the variable 
pretreatments (baseline correction + SNV for NIR data) and by using only the selected spectroscopic variables. 
For each compound, the optimal number of vector scores calculated by blocks is given in Table 4. 

These numbers were optimized by means of the test set (in this way, the dimension of the H-PLS great matrix 
scores, is equal to the double of the number of vector scores calculated by block, because two blocks of data are 
used in this study). The characteristics of the regression models obtained for each targeted compounds are given 
in Table 4 (in H-PLS part). R2 calculated are close to 1 with the exception of lavandulyl acetate (0.76) and of 
ß-caryophyllene (0.52). Obtained RMSEC are small with regard to the average contents of targeted compounds 
(with the exception of ß-caryophyllene). The H-PLS model is then validated with the validation sample set. 
Characteristics of validation are given in Table 3. Q2 concerning the regression model of linalool (0.89) is the 
closest to one. Q2 for other regression models between 0.8 and 0.3, indicate a relatively bad validation. The ob- 
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Figure 2. Test set’s RMSEP in function of the number of score calculated for each block (first stage of H-PLS) 
and in function of regression number vector (second stage of H-PLS) for linalool analysis.                    

 
Table 4. Characteristics of H-PLS regression models.                                                 

Compounds FN R2 RMSEC (%) REC (%) Q2 RMSEP (%) REC (%) 

Linalool 4 0.94 0.496 1.7 0.89 0.536 1.8 

Lavandulol 16 0.99 0.073 2.2 0.67 0.495 14 

Linalyl acetate 14 0.97 0.416 1.1 0.78 1.01 3.0 

Lavandulyl acetate 8 0.76 0.197 4.8 0.32 0.313 7.6 

ß-caryophyllene 12 0.52 0.719 19 0.39 0.913 24 

FN: suggested number of factor used, R2: coefficient of regression, RMSEC: root mean square error of calibration, REC: relative error of 
calibration, Q2: coefficient of determination, RMSEP: root mean square error of prediction, REP: relative error of prediction. 

 
tained REP are also high, particularly for the lavandulol (14.7%) and ß-caryophyllene (24.7%). For the linalool, 
the first regression vector calculated using the H-PLS method includes 42 variables. These variables correspond 
to PCA vector scores, normalized and concatenated. These vectors form the super score matrix and it is from 
this matrix that the regression vectors are calculated. Figure 3 gives a graphic representation of the H-PLS first 
regression vector of linalool. Variables stemming from vectors score PCA of MIR data is to the left of the dotted 
line and those outcomes of vectors score PCA of NIR data is positioned to the right. This vector of regression 
allows observing the weight of vectors scores PCA stemming from MIR and NIR spectroscopic domains. The 
vectors scores 5 and 13 are the most important concerning the block of MIR data. This report is surprising be-
cause it is the first vectors calculated scores which explain the maximum of variance. It thus means that the use-
ful information is scattered in the data and it is not significant towards the general variance of the data. The first 
vector scores calculated with the block of NIR data is the one which has most importance for this spectral do-
main.  
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Figure 3. First vector of regression of linalool (H-PLS).                                                

4.3.3. Study on MultiBlock-PLS 
The multiblock PLS (S-PLS) method was organized by following the algorithm described by Westerhuis [24]. 
As for H-PLS study, the optimal PLS score number calculated, to make the super score matrix, was estimated by 
means of a “test set” by 10 samples. The 31 supers scores matrixes were built by means of 32 remaining samples 
of calibration (outside the test set). The dimensions of these matrices are included between 2 and 62. 31 models 
of regression S-PLS are then validated by means of the test set. However a minimum of test set’s RMSEP is ob-
served. The number of PLS scores calculated for each block was optimized to 9 for the linalool, 3 for the lavan-
dulol, 10 for linalyl acetate, 3 for lavandulyl acetate and for ß-caryophyllene. Then, models of regression are 
elaborated by means of 42 samples of calibration set. NIR and MIR data were used in the algorithm of the S- 
PLS after the pretreatment. For each compound, the number of vector scores calculated by block is given in Ta-
ble 5. 

Five regression models were elaborated and the characteristics of these models are given in Table 5. Calcu-
lated R2 are close to one for linalool and linalyl acetate. Concerning lavandulol and lavandulyl acetate, R2 are 
respectively equal to 0.73 and 0.70. It indicates that the regression models concerning these two products are of 
less efficient than the regression models concerning linalool and linalyl acetate. R2 obtained for ß-caryophyllene, 
is around 0.6 showing a bad regression model. The obtained RMSEC are not small any more with regard to the 
average content of the targeted compounds. So, the obtained REC are high, in particular for ß-caryophyllene of 
which the REC is 18%. The S-PLS regression models were validated by validation sample set and the validation 
characteristics are given in Table 5. Q2 obtained are sharply lower than corresponding R2, respectively for each 
of targeted compounds. The RMSEP are then more brought up than the RMSEC and the obtained REP are thus 
of less good quality than the REC. For example for the lavandulol, the REC is equal to 12% while the REP is 
16%. The model of regression of linalool presented satisfactory characteristics of validation since the REP is 
1.95%. The validation characteristics of linalyl and lavandulyl acetate models are less good because the calcu-
lated REP for these models is 3.45% and 6.86% respectively. The ß-caryophyllene regression model is bad with 
a REP higher than 25%. 

Figure 4 gives a graphic representation of the first S-PLS regression vector concerning linalool. Regression  
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Figure 4. First vector of regression of linalool (S-PLS).                                                    

 
Table 5. Characteristics of S-PLS regression models.                                                 

Compounds FN R2 RMSEC (%) REC (%) Q2 RMSEP (%) REC (%) 

Linalool 5 0.099 0.104 0.36 0.87 0.57 2.0 

Lavandulol 5 0.73 0.408 12 0.45 0.54 16 

Linalyl acetate 4 0.99 0.254 0.68 0.67 1.28 3.5 

Lavandulyl acetate 13 0.70 0.217 5.3 0.46 0.282 6.9 

ß-caryophyllene 6 0.60 0.661 18 0.52 0.931 21 

FN: suggested number of factor used, R2: coefficient of regression, RMSEC: root mean square error of calibration, REC: relative error of 
calibration, Q2: coefficient of determination, RMSEP: root mean square error of prediction, REP: relative error of prediction. 

 
coefficients stemming from vectors score PLS of MIR data are to the left of the dotted line and those stemming 
from vectors score PLS of NIR data is positioned to the right of this dotted line. The percentages given in brack-
ets indicate the proportion of variance explained. This regression vector allows observing the weight of PLS 
vector scores stemming from spectroscopic domains. We can notice that it is the first calculated PLS vector 
scores which have most importance concerning the block of MIR data. Whereas calculated PLS vector scores 
with the block of NIR data present low intensities in regression coefficient except for vector scores 2 and 9 for 
the NIR block (vectors scores 11 and 18 on Figure 4). The vector score 18 explain a small proportion of the va-
riance (lower than 1%) but the corresponding regression coefficient has its vector score is brought up. It means 
that a very low variance influenced strongly the regression. 

5. Conclusion 
This study on the determination of main compounds of lavender essential oil samples illustrates capacities and 
limits of the multiblock methods. Although numerous compounds characterized this essential oil, the range con-
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tent of these last ones is relatively low. From this little variation in composition, chemometric methods allowed 
elaborating reliable methods of quantification for the five principal compounds contained in these essential oils: 
linalool, lavandulol, linalyl acetate, lavandulyl acetate and ß-caryophyllene. The affected accuracy is included 
between 1% for linalool and 8% for ß-caryophyllene. For this study, MIR data were the most adapted data to the 
implementation of the regression models. The method of concatenated table gave interesting results but other 
multiblock methods did not show particular capacity.  
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