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Feature-based Recursive Observer Design for
Homography Estimation and its Application to

Image Stabilization
Minh-Duc Hua, Jochen Trumpf, Tarek Hamel, Robert Mahony, and Pascal Morin

Abstract—This paper presents a new algorithm for online
estimation of a sequence of homographies applicable to image se-
quences obtained from robotic vehicles equipped with vision sen-
sors. The approach taken exploits the underlying Special Linear
group structure of the set of homographies along with gyroscope
measurements and direct point-feature correspondences between
images to develop temporal filter for the homography estimate.
Theoretical analysis and experimental results are provided to
demonstrate the robustness of the proposed algorithm. The
experimental results show excellent performance and robustness
even in the case of very fast camera motions (relative to frame
rate) and severe occlusions.

I. INTRODUCTION

When a robotic vehicle equipped with a vision sensor is ma-
noeuvering in a built environment, consisting primarily of pla-
nar or near planar surfaces, then the nature of the environment
can be exploited in the vision processing algorithms. Different
images of the same planar surface are related by homography
mappings, and homographies have been used extensively in
robotic applications as a vision primitive. Homography based
algorithms have been used for estimation of the rigid-body
pose of a vehicle equipped with a camera [23], [20], [22].
Navigation of robotic vehicles has been developed based on
homography sequences [5], [8], [11] and one of the most
successful visual servo control paradigms uses homographies
[15], [16]. Homography based methods are particularly well
suited to navigation of unmanned aerial vehicles [3], [19], [4]
where the ground terrain is viewed from a distance and the
relief of surface features is negligible compared to the vehicles
distance from the scene.

Computing homographies from point correspondences has
been extensively studied in the last fifteen years [10]. The
quality of the homography estimate obtained depends heavily
on the number and quality of the data points used in the
estimation as well as the algorithm employed. For a well
textured scene, the state-of-the-art methods can provide high
quality homography estimates at the cost of significant com-
putational effort (see [18] and references therein). For a scene
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with poor texture, and consequently few reliable feature point
correspondences, existing homography estimation algorithms
perform poorly. Robotic vehicle applications, however, pro-
vide temporal sequences of images and it seems natural to
exploit the temporal correlation rather than try to compute
individual raw homographies for each pair of frames. Zhang
et al [25] used image flow computed from a pair of images
to compute the relative homography, although this method
still only considers isolated pairs of images. In recent work
by the authors [16], [13] a nonlinear observer [2], [12] for
homography estimation was proposed based on the group
structure of the set of homographies, the Special Linear
group SL(3) [1]. This observer uses velocity information to
interpolate across a sequence of images and improve the
individual homography estimates. The observer proposed in
[16], [13] still requires individual image homographies to
be algebraically computed for each image, which are then
smoothed using filtering techniques. Although this approach
[16], [13] provides improved homography estimates, it comes
at the cost of running both a classical homography algorithm
as well as the temporal filter algorithm, and only functions if
each pair of images has sufficient data available to compute a
raw homography.

In this paper, we consider the question of deriving an ob-
server for a sequence of image homographies that takes image
point-feature correspondences directly as input. The proposed
approach takes a sequence of images associated with a contin-
uous variation of the reference image, the most common case
being a moving camera viewing a planar scene, a situation typ-
ical of robotic applications. The proposed nonlinear observer
is posed on the Special Linear group SL(3), that is in one-
to-one correspondence with the group of homographies [1],
and uses velocity measurements to propagate the homography
estimate and fuse this with new data as it becomes available
[16], [13]. A key advance on prior work by the authors is the
formulation of a point feature innovation for the observer that
incorporates point correspondences directly in the observer
without requiring reconstruction of individual image homo-
graphies. This saves considerable computational resources and
makes the proposed algorithm suitable for embedded systems
with simple point tracking software. In addition, the algorithm
is well posed even when there is insufficient data for full
reconstruction of a homography. For example, if the number
of corresponding points between two images drops below
four it is impossible to algebraically reconstruct an image
homography and the existing algorithms fail [10]. In such
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situations, the proposed observer will continue to operate,
incorporating what information is available and relying on
propagation of prior estimates where necessary. Finally, even
if a homography can be reconstructed from a small set of
feature correspondences, the estimate is often unreliable and
the associated error is difficult to characterize. The proposed
algorithm integrates information from a sequence of images,
and noise in the individual feature correspondences is filtered
through the natural low-pass response of the observer, resulting
in a highly robust estimate. As a result, the authors believe
that the proposed observer is ideally suited for estimation
of homographies based on small windows of image data
associated with specific planar objects in a scene, poorly
textured scenes, and real-time implementation; all of which
are characteristic of requirements for homography estimation
in robotic vehicle applications.

The paper is organized into seven sections including the
introduction and the concluding sections. Section II presents
a brief recap of the Lie group structure of the set of homogra-
phies. In Section III, based on a recent advanced theory for
nonlinear observer design [14], a nonlinear observer on SL(3)
is proposed using direct measurements of known inertial di-
rections and the knowledge of the group velocity. A rigourous
stability analyses is provided in this section. In Section IV, the
homography and associated homography velocity are related to
rigid-body motion of the camera and two observers are derived
for the case where only the angular velocity of the camera is
known, a typical scenario in robotic applications. Simulation
results are provided in Section V. Section VI provides an
application of our approach to a real world problem in image
stabilization. In this section, offline and real-time experimental
validations are presented together with some useful practical
implementation aspects. Four video links, showing the results
of Sections VI, are also provided as supplementary material.
The results show excellent performance and robustness even
in the case of very fast camera motions (relative to frame rate)
and severe occlusions.

A preliminary version of the theoretical results in this
paper was presented at a conference [9]. The present version
provides a more formal derivation of the observer based on a
recent theory [14]. In particular, the M-estimator-like observer
design proposed in Subsection IV-C is the new result that
improves significantly the robustness of the proposed approach
with respect to unavoidable feature correspondence outliers
encountered in practice. Finally, extensive experimental vali-
dations for the image stabilization application as reported in
Section VI have also been recently carried out.

II. PRELIMINARY MATERIAL

A. Camera projections

Visual data is obtained via a projection of an observed scene
onto the camera image surface. The projection is parameterised
by two sets of parameters: intrinsic (“internal” parameters of
the camera such as the focal length, the pixel aspect ratio, etc.)
and extrinsic (the pose, i.e. the position and orientation of the
camera). Let Å (resp. A) denote projective coordinates for the
image plane of a camera Å (resp. A), and let {Å} (resp. {A})

denote its (right-hand) frame of reference. Let ξ ∈ R3 denote
the position of the frame {A} with respect to {Å} expressed in
{Å}. The orientation of the frame {A} with respect to {Å}, is
given by a rotation matrix R ∈ SO(3), where R : {A} → {Å}
as a mapping. The pose of the camera determines a rigid body
transformation from {A} to {Å} (and visa versa). One has

P̊ = RP + ξ (1)

as a relation between the coordinates of the same point in the
reference frame (P̊ ∈ {Å}) and in the current frame (P ∈
{A}). The camera internal parameters, in the commonly used
approximation [10], define a 3 × 3 matrix K so that we can
write1:

p̊ ∼= KP̊ , p ∼= KP, (2)

where p ∈ A is the image of a point when the camera is
aligned with frame {A}, and can be written as (x, y, w)> using
the homogeneous coordinate representation for that 2D image
point. Likewise, p̊ ∈ Å is the image of the same point viewed
when the camera is aligned with frame {Å}.

If the camera is calibrated (the intrinsic parameters are
known), then all quantities can be appropriately scaled and
the equation is written in a simple form:

p̊ ∼= P̊ , p ∼= P. (3)

B. Homographies

Since homographies describe image transformations of pla-
nar scenes, we begin by fixing a plane that contains the points
of interest (target points).

Assumption 1: Assume a calibrated camera and that there is
a planar surface Π containing a set of n target points (n ≥ 4)
so that

Π =
{
P̊ ∈ R3 : η̊>P̊ − d̊ = 0

}
,

where η̊ is the unit normal to the plane expressed in {Å} and
d̊ is the distance of the plane to the origin of {Å}.
From the rigid-body relationships (1), one has P = R>P̊ −
R>ξ. Define ζ = −R>ξ. Since all target points lie in a single
planar surface one has

Pi = R>P̊i +
ζη̊>

d̊
P̊i, i = {1, . . . , n}, (4)

and thus, using (3), the projected points obey

pi ∼=
(
R> +

ζη̊>

d̊

)
p̊i, i = {1, . . . , n}. (5)

The projective mapping H : A → Å, H :∼=
(
R> + ζη̊>

d̊

)−1

is termed a homography and it relates the images of points
on the plane Π when viewed from two poses defined by the
coordinate systems A and Å, respectively. It is straightforward
to verify that the homography H can be written as follows:

H ∼=
(
R+

ξη>

d

)
, (6)

1Most statements in projective geometry involve equality up to a multi-
plicative constant denoted by ∼=.
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where η is the normal to the observed planar surface expressed
in the frame {A} and d is the orthogonal distance of the plane
to the origin of {A}. One can verify that [1]:

η = R>η̊ (7)

d = d̊− η̊>ξ = d̊+ η>ζ. (8)

The homography matrix contains the pose information (R, ξ)
of the camera from the frame {A} (termed current frame) to
the frame {Å} (termed reference frame). However, since the
relationship between the image points and the homography is
a projective relationship, it is only possible to determine H up
to a scale factor (using the image points relationships alone).

C. Homographies as elements of the Special Linear Group
SL(3)

Recall that the Special Linear group SL(3) is defined as the
set of all real valued 3× 3 matrices with unit determinant:

SL(3) = {H ∈ R3×3 | detH = 1}.

The Lie-algebra sl(3) for SL(3) is the set of matrices with
trace equal to zero:

sl(3) = {X ∈ R3×3 | tr(X) = 0}.

The adjoint operator is a mapping Ad : SL(3)× sl(3)→ sl(3)
defined by:

AdHX = HXH−1, H ∈ SL(3), X ∈ sl(3).

Since a homography matrix H is only defined up to scale
then any homography matrix is associated with a unique
matrix H̄ ∈ SL(3) by re-scaling

H̄ =
1

det(H)
1
3

H (9)

such that det(H̄) = 1. Every such matrix H̄ ∈ SL(3) occurs
as a homography. Moreover, the map

w : SL(3)× P2 −→ P2,

(H, p) 7→ w(H, p) ∼=
Hp

|Hp|

is a group action of SL(3) on the projective space P2 since

w(H1, w(H2, p)) = w(H1H2, p), w(I, p) = p,

where H1, H2 and H1H2 ∈ SL(3) and I is the identity matrix,
the unit element of SL(3). The geometrical meaning of the
above property is that the 3D motion of the camera between
views A0 and A1, followed by the 3D motion between views
A1 and A2 is the same as the 3D motion between views A0

and A2. As a consequence, we can think of homographies as
described by elements of SL(3).

Since any homography is defined up to a scale factor, we
assume from now on that H ∈ SL(3):

H = γ

(
R+

ξη>

d

)
. (10)

There are numerous approaches for determining H , up to this
scale factor, cf. for example [17]. Note that direct computation

of the determinant of H in combination with the expression of
d (8) and using the fact that det(H) = 1, shows that γ = (d

d̊
)

1
3 .

Extracting R and ξ
d from H is in general quite complex [1],

[6], [17], [27], [24] and is beyond the scope of this paper.

III. NONLINEAR OBSERVER DESIGN ON SL(3) BASED ON
DIRECT MEASUREMENTS

In this section, the design of an observer for H ∈ SL(3) is
based on a recent theory for nonlinear observer design directly
on the output space [14].

A. Kinematics and measurements

Consider the kinematics of SL(3) given by

Ḣ = F (H,U) := HU, (11)

with U ∈ sl(3) the group velocity. Assume that U is measured.
Furthermore, we dispose of a set of n measurements pi ∈ P2

in the body-fixed frame:

pi = h(H, p̊i) :=
H−1p̊i
|H−1p̊i|

, i = {1 . . . n}, (12)

where p̊i ∈ P2 are constant and known. For later use, define

p̊ := (p̊1, · · · , p̊n), p := (p1, · · · , pn).

Definition 1: A setMn of n ≥ 4 vector directions p̊i ∈ P2,
with i = {1 . . . n}, is called consistent, if it contains a subset
M4 ⊂Mn of 4 constant vector directions such that all vector
triplets in M4 are linearly independent.
This definition implies that if the setMn is consistent then, for
all p̊i ∈ M4 there exists a unique set of three non vanishing
scalars bj 6= 0 (j 6= i) such that

p̊i =
yi
|yi|

where yi =

4∑
j=1(j 6=i)

bj p̊j .

We verify that SL(3) is a symmetry group with group
actions φ : SL(3)× SL(3) −→ SL(3), ψ : SL(3)× sl(3) −→
sl(3) and ρ : SL(3)× P2 −→ P2 defined by

φ(Q,H) := HQ,
ψ(Q,U) := AdQ−1U = Q−1UQ,

ρ(Q, p) := Q−1p
|Q−1p| .

In effect, it is straightforward to verify that φ, ψ, and ρ are
right group actions in the sense that φ(Q2, φ(Q1, H)) =
φ(Q1Q2, H), ψ(Q2, ψ(Q1, U)) = ψ(Q1Q2, U), and
ρ(Q2, ρ(Q1, p)) = ρ(Q1Q2, p), for all Q1, Q2, H ∈ SL(3),
U ∈ sl(3), and p ∈ P2. Clearly,

ρ(Q, h(H, p̊i)) =
Q−1 H−1p̊i

|H−1p̊i|∣∣Q−1 H−1pi
|H−1p̊i|

∣∣ = h(φ(Q,H), p̊i),

dφQ(H)[F (H,U)] = HUQ = (HQ)(Q−1UQ)
= F (φ(Q,H), ψ(Q,U)).

Thus, the kinematics are right equivariant (see [14]). This is
an important property so that the observer design framework
proposed in [14] can be used.
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B. Nonlinear observer design

Let Ĥ ∈ SL(3) denote the estimate of H . Define the right
group error E = ĤH−1 ∈ SL(3) and the output errors ei ∈
P2:

ei := ρ(Ĥ−1, pi) =
Ĥpi

|Ĥpi|
=

Ep̊i
|Ep̊i|

. (13)

The proposed observer takes the form

˙̂
H = ĤU −∆(Ĥ, p)Ĥ, (14)

where ∆(Ĥ, p) ∈ sl(3) is the innovation term to be designed
and must be right equivariant in the sense that for all Q ∈
SL(3):

∆(ĤQ, ρ(Q, p1), · · · , ρ(Q, pn)) = ∆(Ĥ, p1, · · · , pn).

Interestingly, if the innovation term ∆ is right equivariant, the
dynamics of the canonical error E is autonomous and given
by [14, Th. 1]:

Ė = −∆(E, p̊)E. (15)

In order to determine ∆(Ĥ, p), we need a non-degenerate
right-invariant cost function. To this purpose, let us first define
individual degenerate right-invariant costs at p̊i on the output
space P2 as follows:

Cip̊i : SL(3)× P2 −→ R+,

(Ĥ, pi) 7→ Cip̊i(Ĥ, pi) :=
ki
2

∣∣∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣∣∣
2

with ki positive gains, chosen depending on the relative
confidence in the measurements. One verifies that Cip̊i(Ĥ, pi)
are right-invariant in the sense that Cip̊i(ĤQ, ρ(Q, pi)) =

Cip̊i(Ĥ, pi) for all Q ∈ SL(3). The costs Cip̊i(Ĥ, pi) are
degenerate since by taking pi = p̊i there exists an infinity
of Ĥ such that Cip̊i(Ĥ, p̊i) = 0.

Then, the aggregate cost is defined as the sum of all the
individual costs as follows:

Cp̊ : SL(3)×(P2 × · · · × P2)−→ R+,

(Ĥ, p) 7→ Cp̊(Ĥ, p) :=

n∑
i=1

ki
2

∣∣∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣∣∣
2

(16)

It is straightforward that Cp̊(Ĥ, p) is right-invariant. According
to [14, Lem. 3], the aggregate cost is non-degenerate if

n⋂
i=1

stabρ(p̊i) = {I}

where the stabilizer stabρ(p) of an element p ∈ P2 is
defined by stabρ(p) = {Q ∈ SL(3) | ρ(Q, p) = p}. In
fact,

⋂n
i=1 stabρ(p̊i) = {I} is equivalent to

⋂n
i=1 si = {0},

where si = ker(dρp̊i(I)) is the Lie-algebra associated with
stabρ(p̊i).

Lemma 1: Assume that the set Mn of the measured di-
rections p̊i is consistent. Then, the aggregate cost Cp̊(Ĥ, p)
defined by (16) is non-degenerate. As a consequence, (I, p̊) is
a global minimum of the aggregate cost Cp̊.

Proof: One computes the derivative

dρp̊i(H)[HU ] = d
(
H−1p̊i
|H−1p̊i|

)
[HU ]

=
(
I − (H−1p̊i)(H

−1p̊i)
>

|H−1p̊i|2

)
UH−1p̊i
|H−1p̊i|

(17)

with some U ∈ sl(3). From (17), one deduces that

si = ker(dρp̊i(I)) = {U ∈ sl(3) | πp̊iUp̊i = 0}

with πx := (I − xx>) for all x ∈ S2. Thus,
n⋂
i=1

si = {U ∈ sl(3) | πp̊iUp̊i = 0,∀i = 1, · · · , n}

Now, let us determine U ∈ sl(3) such that πp̊iUp̊i = 0, for
all i = 1, · · · , n. The relation πp̊iUp̊i = 0 can be equivalently
written as

Up̊i = λip̊i,

with λi := (p̊>i Up̊i). From here, one deduces that λi are
eigenvalues of U and p̊i are the associated eigenvectors.
Since the set Mn of the measured directions p̊i is consis-
tent, without loss of generality we assume that the subset
M4 = {p̊1, p̊2, p̊3, p̊4} is consistent. Thus, there exist 3 non-
null numbers b1, b2, and b3 such that p̊4 =

∑3
i=1 bip̊i. From

here, one deduces that
3∑
i=1

biλip̊i =

3∑
i=1

biλ4p̊i, (18)

using the fact that

Up̊4 = U

3∑
i=1

b1p̊1 =

3∑
i=1

b1Up̊1 =

3∑
i=1

biλip̊i

and

Up̊4 = λ4p̊4 = λ4

3∑
i=1

bip̊i =

3∑
i=1

biλ4p̊i.

Since bi (with i = 1, 2, 3) are non-null and the 3 unit vectors
p̊i (with i = 1, 2, 3) are linearly independent, (18) directly
yields λ1 = λ2 = λ3 = λ4. Let λ denote the value of these
four identical eigenvalues.

From here, one easily deduces that the geometric mul-
tiplicity of the eigenvalue λ (defined as the dimension of
the eigenspace associated with λ) is equal to 3, since the 3
eigenvectors p̊i (with i = 1, 2, 3) associated with λ are linearly
independent. Since the algebraic multiplicity of the eigenvalue
λ is no less than the corresponding geometric multiplicity, one
deduces that it is also equal to 3. This means that U has a
triple eigenvalue λ. Since the number of linearly independent
eigenvectors of U is equal to 3, the matrix U is diagonalizable.
Then, the diagonalizability of U along with the fact that it
has a triple eigenvalue implies that U = λI . This in turn
yields tr(U) = 3λ, which is null since U is an element of
sl(3). Consequently, λ = 0 and U = 0. One then deduces⋂n
i=1 si = {0} which concludes the proof.

Now that the non-degenerate right-invariant cost function
Cp̊(Ĥ, p) is defined, we compute the innovation term ∆(Ĥ, p)
as [14, Eq. (40)]

∆(Ĥ, p) := (grad1Cp̊(Ĥ, p))Ĥ−1, (19)
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where grad1 is the gradient in the first variable, using a right-
invariant Riemannian metric on SL(3). Let 〈·, ·〉 : sl(3) ×
sl(3) −→ R be a positive definite inner product on sl(3),
chosen to be the Euclidean matrix inner product on R3×3.
Then, a right-invariant Riemannian metric on SL(3) induced
by the inner product 〈·, ·〉 is defined by

〈U1H,U2H〉H := 〈U1, U2〉.

Lemma 2: The innovation term ∆(Ĥ, p) defined by (19) is
right equivariant and explicitly given by

∆(Ĥ, p) = −
n∑
i=1

kiπei p̊ie
>
i , with ei =

Ĥpi

|Ĥpi|
. (20)

Proof: The proof for ∆(Ĥ, p) to be equivariant is a direct
result of [14]. Now, using standard rules for transformations of
Riemannian gradients and the fact that the Riemannian metric
is right-invariant, one obtains

D1Cp̊(Ĥ, p)[UĤ] = 〈grad1Cp̊(Ĥ, p), UĤ〉H
= 〈grad1Cp̊(Ĥ, p)Ĥ−1Ĥ, UĤ〉H
= 〈grad1Cp̊(Ĥ, p)Ĥ−1, U〉
= 〈∆(Ĥ, p), U〉,

(21)

with some U ∈ sl(3). Besides, in view of (16) one has

D1Cp̊(Ĥ, p)[UĤ] = dĤCp̊(Ĥ, p)[UĤ]

=
∑n
i=1 ki

(
Ĥpi
|Ĥpi|

− p̊i
)>(

I − (Ĥpi)(Ĥpi)
>

|Ĥpi|2

)
(UĤ)pi
|Ĥpi|

=
∑n
i=1 ki(ei − p̊i)>(I − eie>i )Uei

= tr
(∑n

i=1 kiei(ei − p̊i)>(I − eie>i )U
)

= −tr
(∑n

i=1 kieip̊
>
i πeiU

)
=
〈
−
∑n
i=1 kiπei p̊ie

>
i , U

〉
.

(22)
Finally, the explicit expression of ∆(Ĥ, p) given by (20) is
directly obtained from (21) and (22).

One deduces from (20) that

∆(E, p̊) = −
n∑
i=1

kiπei p̊ie
>
i , with ei =

Ep̊i
|Ep̊i|

,

and, consequently, from (15) that

Ė =

(
n∑
i=1

kiπei p̊ie
>
i

)
E = −grad1Cp̊(E, p̊). (23)

Theorem 1: Consider the kinematics (11) and assume that
the velocity group U ∈ sl(3) is known. Consider the nonlinear
observer defined by (14), with the innovation term ∆(Ĥ, p) ∈
sl(3) defined by (20). Then, if the set Mn of the measured
directions p̊i is consistent, then the equilibrium E = I of the
autonomous system (23) is locally asymptotically stable.

Proof: This theorem can be seen as a direct result of
Theorem 2 in [14], but it can also be proved using classical
Lyapunov theory. The candidate Lyapunov function under
consideration is L0 := Cp̊(E, p̊). Using the consistency of the
set Mn, one can ensure that L0 is locally a positive definite

function of E. The time-derivative of L0 along the error flow
(23) verifies

L̇0 = d
dt

∑n
i=1

ki
2

∣∣∣ Ep̊i|Ep̊i| − p̊i
∣∣∣2

=
∑n
i=1 ki(

Ep̊i
|Ep̊i| − p̊i)

>(I − (Ep̊i)(Ep̊i)
>

|Ep̊i|2 ) Ėp̊i
|Ep̊i|

= −
∑n
i=1 ki(ei − p̊i)>πei∆ei

= tr(
∑n
i=1 kieip̊

>
i πei∆)

= −||∆(E, p̊)||2,

with || · || denoting the Frobenius norm defined by ||A|| =√
〈A,A〉 for any real valued square matrix A. From here, one

ensures that E is locally bounded. Moreover, by application
of LaSalle’s theorem, one deduces that ∆(E, p̊) converges to
zero. From the definitions of ∆ (20) and ei (13), one deduces
that

∆E−> =

n∑
i=1

(
I − Ep̊ip̊

>
i E
>

|Ep̊i|2

)
p̊ip̊
>
i

|Ep̊i|
.

Computing the trace of ∆E−>, it follows:

tr(∆E−>) =

n∑
i=1

1

|Ep̊i|3
(
|Ep̊i|2|p̊i|2 − ((Ep̊i)

>p̊i)
2
)
.

Define Xi = Ep̊i and Yi = p̊i, and it is straightforward to
verify that

tr(∆E−>) =

n∑
i=1

1

|Xi|3
(
|Xi|2|Yi|2 − (X>i Yi)

2
)
≥ 0

Using the fact that ∆ = 0 at the equilibrium and therefore
tr(∆E−>) = 0, as well as the Cauchy-Schwarz inequality, it
follows that X>i Yi = ±|Xi||Yi| and consequently one has:

(Ep̊i)
>p̊i = ±|Ep̊i||p̊i|, ∀i = {1, · · · , n},

which in turn implies the existence of some scalars λi =
±|Ep̊i| such that

Ep̊i = λip̊i. (24)

Using (24) and exploiting the consistency of the set Mn, one
can proceed analogously to the proof of Lemma 1 to deduce
that E has a triple eigenvalue λ and E = λI . Then, evoking
the fact that det(E) = 1, one deduces that λ = 1 and E = I .
Consequently, E converges asymptotically to the identity I .

Remark 1: The boundaries of the stability domain associ-
ated with Theorem 1 are extremely difficult, and probably
impossible, to analytically characterise. The nature of the
Lyapunov function L0 is always well conditioned in the
neighbourhood of the correct homography matrix, but the
global geometry of SL(3) is complex and there will be
critical points and non-convex cost structure when the rotation
component of the homography matrix has errors approaching
π rads from the true homography. The authors believe, based
on extensive simulation and experimental studies (cf. Sections
V and VI) and our intuition for such problems, that the stability
domain is very large in practice, encompassing all realistic
scenarios where the camera actually observes the desired scene
(rotations of less than π/2 rads and moderate displacements).
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IV. APPLICATION TO ROBOTIC SYSTEMS

A. Homography kinematics from a camera moving with rigid-
body motion

In this section, we consider the case where a sequence
of homographies is generated by a moving camera viewing
a stationary planar surface. The goal is to develop a non-
linear filter for the image homography sequence using the
velocity associated with the rigid-body motion of the camera
rather than the group velocity of the homography sequence,
as was assumed in Section III. In fact, any group velocity
(infinitesimal variation of the homography) must be associated
with an instantaneous variation in measurement of the current
image A and not with a variation in the reference image Å.
This imposes constraints on two degrees of freedom in the
homography velocity, namely those associated with variation
of the normal to the reference image, and leaves the remaining
six degrees of freedom in the homography group velocity
depending on the rigid-body velocities of the camera.

Denote the rigid-body angular velocity and linear velocity
of {A} with respect to {Å} expressed in {A} by Ω and V ,
respectively. The rigid body kinematics of (R, ξ) are given by:

Ṙ = RΩ× (25)

ξ̇ = RV (26)

where Ω× is the skew symmetric matrix associated with the
vector cross-product, i.e. Ω×y = Ω× y, for all y ∈ R3.

Recalling (8), it is easily verified that:

ḋ = −η>V, d

dt
d̊ = 0.

This constraint on the variation of η and d̊ is precisely the
velocity constraint associated with the fact that the reference
image is stationary.

Consider a camera attached to the moving frame A moving
with kinematics (25) and (26) viewing a stationary planar
scene. The group velocity U ∈ sl(3) induced by the rigid-
body motion, and such that the dynamics of H satisfies (11),
is given by [13, Lem. 5.3]

U =

(
Ω× +

V η>

d
− η>V

3d
I

)
.

Note that the group velocity U induced by camera motion
depends on the additional variables η and d that define the
scene geometry at time t as well as the scale factor γ. Since
these variables are unmeasurable and cannot be extracted
directly from the measurements, in the sequel, we rewrite:

U := (Ω× + Γ) , with Γ =
V η>

d
− η>V

3d
I. (27)

Since {Å} is stationary by assumption, the vector Ω can be
directly obtained from the set of embedded gyroscopes. The
term Γ is related to the translational motion expressed in the
current frame {A}. If we assume that ξ̇

d is constant (e.g. the
situation in which the camera moves with a constant velocity
parallel to the scene or converges exponentially toward it), and

using the fact that V = R>ξ̇, it is straightforward to verify
that

Γ̇ = [Γ,Ω×], (28)

where [Γ,Ω×] = ΓΩ× − Ω×Γ is the Lie bracket.
However, if we assume that V

d is constant (the situation in
which the camera follows a circular trajectory over the scene
or performs an exponential convergence towards it), it follows
that

Γ̇1 = Γ1Ω×, with Γ1 =
V

d
η>. (29)

B. Observer with partially known velocity of the rigid body

In this section we assume that the group velocity U in (27)
is not available, but the angular velocity Ω is. The goal is to
provide an estimate Ĥ ∈ SL(3) for H ∈ SL(3) to drive the
group error E (= ĤH−1) to the identity matrix I and the
error term Γ̃ = Γ − Γ̂ (resp. Γ̃1 = Γ1 − Γ̂1) to 0 if Γ (resp.
Γ1) is constant or slowly time varying. The observer when ξ̇

d
is constant is chosen as follows (compare to (14)):

˙̂
H = Ĥ(Ω× + Γ̂)−∆(Ĥ, p)Ĥ, (30)
˙̂
Γ = [Γ̂,Ω×]− kIAdĤ>∆(Ĥ, p). (31)

and the observer when V
d is constant is defined as follows:

˙̂
H = Ĥ(Ω× + Γ̂1 −

1

3
tr(Γ̂1)I)−∆(Ĥ, p)Ĥ, (32)

˙̂
Γ1 = Γ̂1Ω× − kIAdĤ>∆(Ĥ, p). (33)

with some positive gain kI and ∆(Ĥ, p) given by (20).
Proposition 1: Consider a camera moving with kinematics

(25) and (26) viewing a planar scene. Assume that Å is
stationary and that the orientation velocity Ω ∈ {A} is
measured and bounded. Let H : A → Å denote the calibrated
homography (10) and consider the kinematics (11) along with
(27). Assume that H is bounded and that Γ (resp. Γ1) is such
that it obeys (28) (resp. (29)).
Consider the nonlinear observer defined by (30–31), (resp.
(32–33)) along with the innovation ∆(Ĥ, p) ∈ sl(3) given
by (20). Then, if the set Mn of the measured directions p̊i is
consistent, the equilibrium (E, Γ̃) = (I, 0) (resp. (E, Γ̃1) =
(I, 0)) is locally asymptotically stable.

Proof: We will consider only the situation where the esti-
mate of Γ is used. The same arguments can also be used for
the case where the estimate of Γ1 is considered. Differentiating
ei (13) and using (30) yields

ėi = −πei(∆ + AdĤ Γ̃)ei.

Define the following candidate Lyapunov function:

L = L0 + 1
2kI
||Γ̃‖2

=
∑n
i=1

ki
2 |ei − p̊i|

2
+ 1

2kI
||Γ̃‖2.

(34)

Differentiating L and using the fact that tr
(

Γ̃>
([

Γ̃,Ω
]))

=

0, it follows:

L̇ =

n∑
i=1

ki(ei − p̊i)>ėi + tr
(

Γ̃>AdĤT ∆
)
.
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Introducing the above expression of ėi and using the fact that
tr(AB) = tr(B>A>), it follows:

L̇ = −
n∑
i=1

ki(ei−p̊i)>πei(∆+AdĤ Γ̃)ei+tr
(

AdĤ−1∆>Γ̃
)

=

n∑
i=1

kip̊
>
i πei(∆ + AdĤ Γ̃)ei + tr

(
AdĤ−1∆>Γ̃

)
=tr

(
n∑
i=1

kieip̊
>
i πei(∆ + AdĤ Γ̃) + AdĤ−1∆>Γ̃

)

=tr

(
n∑
i=1

kieip̊
>
i πei∆+AdĤ−1(∆>+

n∑
i=1

kieip̊
>
i πei)Γ̃

)
Finally, introducing the expression of ∆ (20), one gets

L̇ = −‖∆‖2.

The derivative of the Lyapunov function is negative semi-
definite, and equal to zero when ∆ = 0. Given that Ω is
bounded, it is easily verified that L̇ is uniformly continuous
and Barbalat’s Lemma can be used to prove asymptotic
convergence of ∆ → 0. Using the same arguments as in the
proof of Theorem 1, it is straightforward to verify that E → I .
Consequently the left-hand side of the Lyapunov expression
(34) converges to zero and ‖Γ̃‖2 converges to a constant.

Computing the time derivative of E and using the fact that
∆ converges to zero and E converges to I , it is straightforward
to show that

lim
t→∞

Ė = −AdĤ Γ̃ = 0.

Using boundedness of H , one ensures limt→∞ Γ̃ = 0.

C. Outlier rejection with M-estimator-like nonlinear observer

The cost function (16) previously used for observer design
is the sum of individual squared residuals r2

i , with ri :=∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣. This function is, however, extremely unstable
when outliers are present in the measurements. In our case,
outliers are a result of wrong feature matching, which is almost
unavoidable in practice. Inspired by the robust M-estimator
techniques (see, e.g., [26] and the references therein), we
consider the following cost function [instead of (16)]:

Cp̊(Ĥ, p) :=

n∑
i=1

kiρ(ri), (35)

where ρ is a symmetric, positive-definite function with a
unique minimum at zero, and is chosen less increasing than
square. From there, the proposed observer is still given by
the general form (14) and the innovation term ∆(Ĥ, p) is still
derived from (19). From (35) and analogously to (22), one
deduces

D1Cp̊(Ĥ, p)[UĤ] = dĤCp̊(Ĥ, p)[UĤ]

=

n∑
i=1

kiw(ri)
(
Ĥpi
|Ĥpi|

− p̊i
)>(

I − (Ĥpi)(Ĥpi)
>

|Ĥpi|2

)
(UĤ)pi
|Ĥpi|

=

〈
−

n∑
i=1

kiw(ri)πei p̊ie
>
i , U

〉
,

(36)

where w(·) is the weight function defined by

w(x) :=
1

x

dρ(x)

dx
.

Several possible choices of ρ and its associated w function are
discussed in [26]. For instance, the Tukey-ρ function, which
is chosen for the experimental Section VI, is given by

ρ(x) =

{
(c2/6)(1− [1− (x/c)2]3) if |x| ≤ c
c2/6 if |x| > c

and, thus,

w(x) =

{
[1− (x/c)2]2 if |x| ≤ c
0 if |x| > c

From (21) and (36) one obtains [instead of (20)]

∆(Ĥ, p) = −
n∑
i=1

kiw(ri)πei p̊ie
>
i . (37)

From there, the same results as in Theorem 1 and Proposition
1 can be stated but with the innovation term ∆(Ĥ, p) given
by (37) instead of (20). The proofs proceed identically to the
proofs of Theorem 1 and Proposition 1 where the function L0

is chosen equal to Cp̊(Ĥ, p) defined in (35) instead of (16).

V. SIMULATION RESULTS

In this section, we illustrate the performance and robustness
of the proposed observers through simulation results. The
camera is assumed to be attached to an aerial vehicle moving
in a circular trajectory which stays in a plane parallel to the
ground. The reference camera frame {Å} is chosen as the
NED (North-East-Down) frame situated above four observed
points on the ground. The four observed points form a square
whose center lies on the Z-axis of the NED frame {Å}. The
vehicle’s trajectory is chosen such that the term Γ1 defined
by (29) remains constant, and the observer (32-33) is applied
with the following gains: kP = 4, kI = 1. Distributed noise
of variance 0.01 is added on the measurement of the angular
velocity Ω. The chosen initial estimated homography Ĥ(0)
corresponds to i) an error of π/2 in both pitch and yaw angles
of the attitude, and ii) an estimated translation equal to zero.
The initial value of Γ̂1 is set to zero. From 40s to 45s, we
assumed that the measurements of two observed points are
lost. Then, from 45s we regain the measurements of all four
points as previously.

The results reported in Fig. 1 show a good convergence
rate of the estimated homography to the real homography (see
from 0 to 40s and from 45s). The loss of point measurements
marginally affects the global performance of the proposed
observed. Note that in this situation, no existing method for
extracting the homography from measurements of only two
points is available.

VI. APPLICATION TO IMAGE STABILIZATION WITH
REAL-TIME IMPLEMENTATION

A. Experimental implementation aspects
Feature detection and matching: Our code has been

implemented in C++ with OpenCV library. Due to real-
time constraints, feature detection and descriptor extraction in
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Fig. 1. Estimated homography components (solid line) and true homography
ones (dashed line) vs. time.

images are carried out using the FAST Feature Detector and
ORB Descriptor Extractor algorithms already implemented
in the OpenCV library. Then, feature matching is performed
using OpenCV’s brute-force matcher routine with L2-norm.
We have purposefully avoided using more sophisticated image
processing routines in order to demonstrate the raw perfor-
mance of our observer.

It is quite unrealistic to track one and the same set of
point-features through a long image sequence. We have hence
opted to match point-features between the reference image and
each subsequent image frame separately. To do this, we first
compute a predicted homography estimate Ĥ+

k that will be

used to transform the current image Ik (i.e. warp the current
image using Ĥ+

k to obtain a prediction of the reference image)
using the OpenCV’s warpPerspective function before
applying feature extraction and matching. More precisely, in
case where the angular velocity measurements are available,
Ĥ+
k is obtained by forward integrating the observer equations

(30)–(31) during the time period [tk−1, tk] using only the
gyrometer measurements (i.e. setting the observer gains ki
(i = 1, · · · , n) and kI to zero) and using (Ĥk−1, Γ̂k−1) as
initial conditions. Note that the brute-force matching algorithm
is well suited to this approach since it favors translational mo-
tion over rotational motion, and most of the rotational motion
has already been compensated for by forward integrating the
angular velocity. On the other hand, in case of absence of
angular velocity measurements, Ĥ+

k is simply set equal to
Ĥk−1.

Note that the procedure described above does not satisfy the
assumptions of our theoretical convergence results, not least
because different point-features are selected for each video
frame. However, it is intuitively clear that such a procedure
will still work as long as the selected features provides
a consistent set. Indeed, our experimental results strongly
support this claim.

Fig. 2. Good quality of feature matching between the warped image frame
]420 (Top-Right) and the reference frame (Top-Left) of the video sequence
]1 and between the warped image frame ]2200 (Bottom-Right) and the
reference frame (Bottom-Left) of the video sequence ]2 when applying our
outlier removal procedure despite severe occlusions by fishes or a manipulator
arm.

Outlier removal: To remove matched point-feature outliers,
we first compute the standard deviation (sdu, sdv) and mean
values (mu,mv) of the differences of coordinates in pixel
(duk, dvk) of the point correspondences and then keep only
those satisfying mu −max(sdu, S) ≤ duk ≤ mu + max(sdu, S)

mv −max(sdv, S) ≤ dvk ≤ mv + max(sdv, S)
|duk| ≤ D, |dvk| ≤ D

with S,D pre-defined positive thresholds (S = 30, D = 80
in our experiments). Again, we have purposefully avoided the
use of more sophisticated (and much more computationally
expensive) alternative algorithms for outlier removal, such as
RANSAC [7]. Our simple and fast outlier removal method
has yielded quite good matching results (see, e.g., Fig. 2).
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Fig. 3. Video sequence ]1 (offline validation). Fast convergence of the image homography estimates to the real ones (less than 0.3s), which can be appreciated
by the positions of the yellow quadrangle (i.e. warped reference rectangle using the image homography estimate) in the reported image frames ]0, 2, 4, 6, 8, 10.

Fig. 4. Warped and current image frames ]20, 127, 275, 422, 465, 678 of the video sequence ]1 (offline validation). Excellent and robust performance of
the proposed approach can be appreciated from either the warped images (Right) or the yellow quadrangle in the current images (Left) despite image low
resolution, large camera motions (e.g. frames ]20, 275, 678) and important occlusions due to fishes (e.g. frames ]127, 422, 465). A complete video showing
this experiment is available at https://youtu.be/-eMjWSWVm2A.

However, outliers cannot be completely removed especially in
case of occlusions. This in turn justifies the usefulness of our
M-estimator-like observer for outlier rejection.

Correction step of the observer: After the steps of feature
detection and matching, we use the observer gains of ki = 80
(i = 1, · · · , n), kI = ki/10 and the Tukey ρ function (see
[26]) with parameter c = 0.0025 to rapidly iterate the observer
equations 200 times per video frame2. The computational
effort for this last step is negligible compared to the previous
image processing steps.

2Note that the observer gains used for each iteration are divided by the
number of iteration, i.e. k̄i = ki/Niter and k̄I = kI/Niter with Niter =
200.

B. Offline validations using Youtube videos

Two video sequences (downloaded from Youtube) filmed
from a camera mounted on an underwater robotic vehicle are
used to test our algorithm for the classical image stabilization
problem. Since the camera parameters are not known, we
just make use of very rough (and certainly very erroneous)
estimates of these parameters. The reported results presented
hereafter indicate that, as long as the image homography
estimate (used to warp the current image) is concerned, the
stabilization performance of the proposed observer is very
robust with respect to these parameter uncertainties.

These two video sequences show some realistic scenarios
of inspection of underwater infrastructures using underwater

https://youtu.be/-eMjWSWVm2A
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Fig. 5. Warped and current image frames ]70, 1158, 1732, 2195, 2220, 2300, 2640, 3025 of the video sequence ]2 (offline validation). Excellent and robust
performance of the proposed approach is illustrated by stable warped images (Right) and the correct location of the red quadrangle (that warps the interested
red rectangle in the reference image using the estimated homography) in the current images (Left) despite extreme occlusions due to the manipulator arm (e.g.
frames ]1158, 1732, 2195, 2300, 2640, 3025) and changes in the target due to turned valves (e.g. frames ]1158, 1731, 3025). A complete video showing
this experiment is available at https://youtu.be/XqZkOC01eys

vehicles. Some challenging issues such as occlusions (due to
moving fishes or a robotic manipulator), low-light and low-
textured scene, large translation motions, poor image quality,
etc. allow us to test the robustness and performance of the
proposed approach. Moreover, the absence of the angular
velocity measurements in association with each image frame
also renders the feature matching procedure more challenging.

The full validation videos of these two video sequences are
available at:
• Video sequence ]1: https://youtu.be/-eMjWSWVm2A
• Video sequence ]2: https://youtu.be/XqZkOC01eys

1) Video sequence ]1: In this video sequence (30fps and
632×480px of resolution), the underwater vehicle that carries
the camera approaches a 3D complex structure composed of
several roughly planar surfaces. The proposed homography
observer is tested using the image frame ]180 as the reference
image. Feature detection is carried out within a small region of
interest (yellow rectangle depicted in Fig. 2) that corresponds
to one of the planar surfaces of the “box” structure. The
initial homography estimate is set equal to the identity matrix,
but the initial homography error is quite large since the
camera’s initial position is relatively far from the reference one
(corresponding to the reference image). However, as shown in
Fig. 3 and in view of the location of the yellow quadrangle
(i.e. warped reference rectangle using the image homography
estimate) in the reported images (i.e. frames ]0, 2, 4, 6, 8, 10),
one observes a very fast convergence of the image homography
estimate to the real one. From the warped images in Fig.

4, very good and robust quality of image stabilization can
be appreciated despite poor image quality, large motions of
the camera (frames ]20, 275, 678) and large occlusions due
to fishes (frames ]127, 422, 465) which in turn highlights the
excellent performance of our approach. A complete video
showing this offline experiment can be viewed at https://
youtu.be/-eMjWSWVm2A where the second part of the video
(starting from second 23) shows a comparison between our
approach with the classical algebraic least-square homography
algorithm using the OpenCV’s findHomography function
with RANSAC option activated for outlier removal. One easily
observes that, by contrast with our algorithm, the performance
and robustness of the classical least-square algorithm are very
poor even when combined with the sophisticated RANSAC
outlier removal procedure.

2) Video sequence ]2: This video sequence (25fps and
640× 360px of resolution) shows a scenario where an under-
water vehicle is stabilized in front of an artificial panel and
a mounted manipulator arm is teleoperated to turn valves on
this panel. We apply our homography observer to this sequence
using the image frame ]530 as the reference image. The region
of interest for feature detection is the whole image. Similarly
to the first video sequence, we initially set (Ĥ0, Γ̂0) = (I, 0).
As the initial homography error is not very large like in the
first test and the feature quality is good, the challenge is here
essentially related to: 1) extreme and permanent occlusions
due to the manipulator arm and/or camera rotation, and 2)
the fact that some parts of the observed scene are modified

https://youtu.be/XqZkOC01eys
https://youtu.be/-eMjWSWVm2A
https://youtu.be/XqZkOC01eys
https://youtu.be/-eMjWSWVm2A
https://youtu.be/-eMjWSWVm2A
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throughout the video sequence (i.e. valves are turned by the
manipulator arm). Analogously to the first test, Fig. 5 shows an
excellent and extremely robust performance of our approach
despite the above-mentioned challenges related to occlusions
and changes inside the target. A complete video showing this
experiment is available at https://youtu.be/XqZkOC01eys

Fig. 6. Real-time experimental setup and validation.

C. Real-time experimental validations using an IMU-Camera
system

In this section, we show that real-time implementation of
our algorithm is possible. We make use of a Visual-Inertial
(VI) sensor developed by the Autonomous Systems Lab (ETH
Zurich) and the company Skybotix [21]. This VI-sensor is
composed of two cameras (Aptina MT9V034 CMOS) and an
IMU (Analog Devices ADIS16375 MEMS). However, only
the left camera is used to validate the proposed algorithm. The
main reason for using the VI-sensor in this experimental setup
is the possibility of obtaining perfectly time-synchronized
images and IMU readings (20Hz for the camera and 200Hz
for the IMU). The implementation has been carried out on an
Intel Core i7-6400 CPU running at 3.40Ghz. The transmission
of data from the camera to the PC is carried out through a high
speed ethernet cable. The PC has a Linux based operating
system and is responsible for two major tasks: 1) interfacing
with the camera hardware and acquisition of images and IMU
data from the VI-sensor; and 2) real-time estimation of the
homography at 20Hz using the proposed algorithm.

Real-time implementation of the proposed observer has
been performed successfully, as illustrated by the two fol-
lowing videos (as depicted in Fig. 6) that show the excellent
performance and robustness of our algorithm:
• Fast motion: https://youtu.be/PeoaUzDkyUo
• Very fast motion: https://youtu.be/cctG jKelXo

As shown in Fig. 7, our algorithm is robust with respect
to very fast translational and rotational motions, poor image
quality, severe image blurs due to fast motions and extreme
occlusions. Even when our algorithm selects wrong feature
matches (e.g. from frame ]1140 to frame ]1190 of the first
video), the observer continues to track the region of interest
well and quickly recovers from any tracking errors.

VII. CONCLUSIONS

In this paper we developed a nonlinear observer for a se-
quence of homographies represented as elements of the Special
Linear group SL(3). The observer directly uses point-feature
correspondences from an image sequence without requiring
explicit computation of the individual homographies between
any two given images and fuses these measurements with
measurements of angular velocity from onboard gyroscopes
using the correct Lie group geometry. The stability of the
observer has been proved for both cases of known full group
velocity and known rigid-body velocities only. Even if the
characterization of the stability domain still remains an open
issue, simulation and experimental results have been provided
as a complement to the theoretical approach to demonstrate
a large domain of stability. A potential application to image
stabilization in the presence of very fast camera motions and
severe occlusions has been demonstrated with very encourag-
ing results even for a relatively low video frame rate.
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