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Glottal/Supraglottal Source Separation in Fricatives
Based on Non-Stationnary Signal Subspace

Estimation
Benjamin Elie, and Gilles Chardon

Abstract—The X-GLOS (EXtraction of GLOttal Sources)
method for separating the glottal and the supraglottal sources
in speech signals is presented in this article. Unlike other
periodic/aperiodic decomposition methods that use stationary
models of the signal within frames, X-GLOS considers locally
varying instantaneous fundamental frequency. Applications on
numerically synthesized fricative signals prove the locally non-
stationary model to be more robust to moderate and high jitter
values than stationary models. A peak picking selection also
allows X-GLOS to be less sensitive to high colored noise levels.
The gain of performance, in comparison with the reference
existing method, is about a couple of dozens of dB in high noise-
to-harmonics ratios. X-GLOS can then be specifically used to
study the behavior of the voicing and frication noise sources
independently, even at vowel-consonants behavior where the
voiced source is less powerful that the frication noise in the
recorded mixture speech signal.

Index Terms: Periodic/aperiodic decomposition, Speech pro-
duction, Fricative production

I. INTRODUCTION

An acoustic speech signal is the sum of the contributions
of various acoustic sources, each with their specific properties.
Their characteristics and predominance in the resulting speech
signal are commonly used as sound classifiers. These sources
may be classified into two main categories, : glottal and
supraglottal sources. The glottal source mostly includes the
oscillation of the vocal folds, responsible for voicing, and
the supraglottal sources mostly include the frication noise in
fricatives and affricates and burst in stop consonants. In signal
processing, these different acoustic sources may be modeled as
harmonic and noise sources respectively. In our perspective,
we consider the glottal source as the harmonic component
of the speech signal, while the supraglottal sources are the
residual noise.

Since each individual source gives information that can be
used in speech studies and speech analysis, it is important
to be able to separate them from the mix speech signal. For
instance, the energy ratio between the harmonic and the noise
components, named the Harmonics-to-Noise Ratio (HNR), is
used as an indicator to detect voice pathology [1]–[4].

Numerous methods have been developed in order to sepa-
rate the noise component of human voice from the periodic
component. They can be classified as time domain based [5]
or frequency domain based [6]–[9] methods. These previous
studies neglected the non-stationarities of the speech signal
within the analyzed local frame so that the harmonic com-
ponent is considered as periodic, hence the periodic/aperiodic

denomination. Due to the non-stationary nature of the glottal
source, the aperiodic estimate will include contributions of the
glottal source, mainly the jitter and the shimmer. This may be
an important issue if one wishes to accurately separate the
contributions of the glottal and the supraglottal sources.

Another limit of the aforementioned methods is that they
are designed for weak noise levels in the analyzed speech
signal. Situations where the noise level is expected to be
similar or higher than the periodic level are not investigated.
Such settings are not uncommon in natural speech, as it is
the case during the production of fricatives, for instance. This
class of consonants is characterized by the appearance of
frication noise due to the generation of turbulence of the air
flow downstream of the supraglottal constriction. It comes that
at the vowel-fricatives boundaries, the vowel offset is char-
acterized by a gradual decrease of the voiced contributions,
whereas the frication noise level increases at the same time.
The noise coloration is another difficulty since the resulting
noise is colored according to the transfer function of the
vocal tract [10]. Being able to separate the voiced component
from the frication noise may be helpful for several reasons,
such as investigating the spectral characteristics of the noise
source alone, e.g. [10], investigating the degree of voicing,
for instance in the case of final devoicing [11], or in the case
of production strategies [12], [13], tackling problems related
to microprosody effects at the vicinity of obstruents [14],
improving the acoustic-to-articulatory inversion in the case
of fricatives [15], [16], or modifying each individual acoustic
source in speech synthesis [17].

Since the paper by Jackson and Shadle [8], which intro-
duced the PSHF (Pitch Scale Harmonic Filter) algorithm,
it has been considered as the reference method for peri-
odic/aperiodic decomposition. Although it provides an accu-
rate decomposition in many cases, its performance linearly
decreased with the noise level, and also with the local non-
stationary features, namely the jitter and the shimmer.

A. Our contributions

The main challenge of this paper is then to propose a method
that is less sensitive to the noise level and noise coloration,
and also less sensitive to the local non-stationary effects of the
analyzed speech signal. To tackle these problems, the paper
introduces our method, called X-GLOS (EXtraction of GLOt-
tal Sources), which proposes a locally non-stationary model
of the signal subspace which accounts for the variation of
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the instantaneous fundamental frequency inside the analyzed
temporal frame. The sensitivity to the frication noise level is
reduced by selecting the partials that are actually activated.

After a brief description of the signal models used in this
paper in Sec. II, and our pitch detection method in Sec. III,
our X-GLOS algorithm is described in Sec IV. Numerical
validations are presented in Sec. V in order to quantitatively
assess its performance in various cases by using numerically
synthesized fricative signals. X-GLOS is compared to the ref-
erence method, namely PSHF [8]. Experimental applications
on real speech signals are finally presented in Sec. VI.

II. SIGNAL MODEL

In this paper, the speech signal s(t) is decomposed in an
harmonic component sp(t) and a noise component sn(t) :

s(t) = sp(t) + sn(t) (1)

The harmonic component is further decomposed as a sum
of M sinusoids

sp(t) =

M∑
m=1

am(t)eiφm(t) (2)

where the phases φm(t) are given by

φm(t) = 2π

∫ t

0

mf0(τ)dτ + φ0m (3)

and the negative frequencies are implicitly considered in the
sum (2) and the following equations.

The fundamental frequency f0(t) and the amplitudes am(t)
are slowly varying compared to the period 1/f0(t), and are
considered independent to the noise component sn(t). In
practice, it is a strong assumption as the noise component
of speech signals may be correlated to the voiced source,
resulting in periodic modulations of the frication noise and
the glottal noise [18]. For the rest of the paper, we consider
a discrete speech signal s[n] sampled at a uniform sampling
frequency fs

In many previous papers (e.g. [7], [8]), although speech
signals are by nature not stationary (i.e. the frequency and
amplitudes of partials constantly change, as well as the noise
characteristics), the analysis is made through short time pe-
riods where the signal may be considered as stationary. The
discrete speech signal s[n] is then segmented into short frames
of length L. To avoid spectral leakage and discontinuities, the
signal is windowed by a e.g. a Hann window

h[n] =

{
1
2 + 1

2 cos
(
2π nL

)
if |n| ≤ L/2

0 if |n| > L/2

The source separation is applied on frames

sk[n] = s[n]hk[n],

where hk[n] = h[n− ka] and a = L/4. The estimates of the
periodic and aperiodic components are then denoted s̃k,p and
s̃k,n respectively, and are defined as

sk[n] = s̃k,p[n] + s̃k,n[n], (4)

and the periodic and aperiodic components are estimated by

ŝp[n] =
1

A

∑
k∈Z

ŝk,p[n]hk[n] (5)

and likewise for ŝn[n]. The constant A depends on the window.
Here, A = 2/3. From now on, only the signal in the analyzed
frame is considered in the description of the signal model, so
that the index l, with l = 0, . . . , L, replaces n.

A. Locally stationary sinusoidal model

Let M be the number of activated partials of the voiced
source, assuming the signal subspace to be stationary within
the local frame k, the periodic component sk,p is then the sum
of the contributions of the M sinusoids, hence

sk,p[l] = hk[l]

M∑
m=1

bme
2πjf ′

ml, (6)

where f ′m = fm
fs

and bm are respectively the normalized
frequency and the complex amplitude of the mth sinusoid.
Introducing Eq. (6) into Eq. (4), it finally comes

sk[l] = wk[l]

M∑
m=1

bme
2πjf ′

ml + hk[l]sk,n[l], (7)

or, in a matrix form

sk = Vkbk + sk,n = sk,p + sk,n, (8)

with sk ∈ RL×1, sk,p ∈ RL×1, and sk,n ∈ RL×1 are the
vectors containing the L samples of the windowed mixture,
periodic, and aperiodic signals, respectively, bk ∈ CM×1 =
[b1, b2, . . . , bM ]T is the vector containing the complex ampli-
tude of the M sinusoids, and where Vk ∈ CL×M is the base
of the signal subspace spanned by the windowed M sinusoids,
hence

Vk = H


1 1 . . . 1

e2πjf
′
1 e2πjf

′
2 . . . e2πjf

′
M

e4πjf
′
1 e4πjf

′
2 . . . e4πjf

′
M

...
...

. . .
...

e2(L−1)πjf
′
1 e2(L−1)πjf

′
2 . . . e2(L−1)πjf

′
M

 .
(9)

where H is the diagonal matrix containing the samples of the
window h.

The principle of the method is then to estimate the periodic
component vector s̃k,p = Ṽkb̃k by first estimating the
frequency of the activated partials in order to build Ṽk, an
estimate of the basis of the periodic signal subspace Vk, and
then by finding b̃k, an estimate of the complex amplitude
vector bk. From the estimate s̃k,p, it comes the estimate of
the aperiodic component s̃k,n as

s̃k,n = sk − s̃k,p. (10)

Note that the stationary model may be useful if one wants
the non-stationary components (jitter, shimmer. . . ) to be in-
cluded into the aperiodic signal. It can be the case for studies
about vocal roughness, and voice pathology [1]–[4]. In that
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case, the analyzed voice fragments are vowels, namely in high
harmonics-to-noise ratio conditions. The method described in
our paper is intended to be used to investigate the amount of
frication noise embedded in the fricative signal comparatively
to the amount of voiced source contributions, namely in low
harmonics-to-noise ratio conditions. Consequently, the non-
stationary components due to voiced aperiodicity will be
considered as voiced source contributions, hence the need to
model the voiced signal as non-stationary in the analyzed
frame window. The locally non-stationary model is detailed
in the next section.

B. Non-stationary sinusoidal model

Now, we assume that the signal subspace is modulated
in frequency. In speech, the frequency modulation may be
important due to pitch variation and jitter (i.e. the period
variation from a glottal cycle to the next) [19]. In that case,
the basis matrix Vk writes

Vk = H


ejφ1(0) ejφ2(0) . . . ejφM (0)

ejφ1(1) ejφ2(1) . . . ejφM (1)

ejφ1(2) ejφ2(2) . . . ejφM (2)

...
...

. . .
...

ejφ1(L−1) ejφ2(L−1) . . . ejφM (L−1)

 ,
(11)

where φm(l) = 1
fs

∑l
i=0 fm(i), and fm(i) is the fundamental

frequency at the ith sample of the considered frame.
For the rest of the paper, unless explicitly specified, the

subscript k will be removed for the sake of clarity.

III. FUNDAMENTAL FREQUENCY ESTIMATION

The first step towards the extraction of the signal sub-
space is the estimation of the fundamental frequency of the
voiced components. Many fundamental frequency estimator
for speech signals have been proposed in the past (e.g. [8],
[20]–[22]). One major difficulty in speech is the high power
colored noise that may disturb the pitch detection based on
simple Fourier peak picking, or based on autocorrelation, since
the noise level is very likely to be higher than harmonic
component in certain frequency bands. This is especially true
for voiced fricatives.

In order to fix this issue, X-GLOS first selects the potential
harmonic candidates: they are selected as peaks of the power
spectrum S(f) = |ŝ(f)|2 of s[n] that are above a threshold.
The estimation of this threshold is crucial and several methods
have been tested. A simple choice is to define it as twice the
power spectral density of the noise, the latter being estimated
from a local median filtering [23]. The first problem with this
technique is the fact that the filter order, i.e. the frequency
span of the sliding window, had to be set to high value to
completely remove the harmonic contribution of the power
spectrum. Consequently, many harmonic peaks were likely to
be included in the window, so that a relatively weak harmonic
could be not detected. Secondly, the threshold had to be set
arbitrarily, without any prior knowledge on either the pitch
frequency or the noise level. Better results have been obtained
by keeping the adaptive filter order and by modifying the

threshold by setting it to the value of the power spectrum
filtered by a rank filter (or percentile filter) [24] of high rank.
We chose to set this rank to 90%, meaning that we keep only
the last decile of the power spectrum in the window having a
frequency span of 1.25f0.

Once the possible partials are identified, the values of the
filtered periodogram outside of an interval around the partials
are set to zero:

S′(f) = S(f)F (f)

where F (f) = 1 if f is close to an identified partial, and
F (f) = 0 otherwise. Keeping an interval around each partial
is necessary because of the sampling of the frequency axis, as
well as possible slight inharmonicity in the signal.

Finally, the estimation of the fundamental frequency uses
a cumulative periodogram, similarly to Drugman and Al-
wan [21]. However, the cumulative periodogram is here com-
puted on the filtered version of the periodogram S′(mf) at
multiples of a given frequency:

Sc(f) =

M∑
m=1

S′(mf).

As the energy in the spectrum that do not correspond to a
partial is eliminated in S′(f), the cumulative periodogram is
robust to high levels of noise energy.

The estimation of f0 from the cumulative periodogram is
subject to octave errors. Higher octave errors are possible
only if all even partials are not selected as partials, which
is unlikely. More probable are lower octave errors, as the
energy for a given actual fundamental frequency f is equal
to the energy at f0/2, or even slightly lower, if noise has been
identified as partials near frequencies nf0/2 for odd n. To
deal with such errors, we first select possible f0 peaks as the
peaks higher than a user-defined γ times the higher peak of
Sc. The estimated f0 is chosen as the frequency for which the
mean value of the orders of activated partials is the smallest.
In the case of an octave error, this mean value is double for
the lower octave.

IV. SOURCE SEPARATION

Once the fundamental frequency has been estimated, the
next steps consist in, firstly, precisely estimating the frequen-
cies of the activated partials in order to build the basis of
the voiced signal subspace Vk in Eq. (9), and secondly, in
estimating the complex amplitudes bk.

A. Estimation of the periodic signal subspace

For every frames where voicing activity has been detected,
i.e. f0 > 0, the frequency of the activated partials are
estimated using the Quadratically Interpolated FFT (QIFFT)
method [25]. This technique consists in estimating the sinu-
soidal parameters analytically from a second-order polynomial
model derived from the log amplitude of the FFT bins corre-
sponding to the spectral peak and its two neighbors. Here,
this method is used only to estimate the sinusoid frequency:
it is then the frequency of the maximum of the polynomial,
i.e. fm = − p2,m

2p1,m
where p1,m and p2,m are the first and
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second order coefficients of the polynomial associated to the
mth partial. To ensure an unbiased frequency estimation, the
QIFFT should be used with Gaussian windows, since the
log-magnitude of such windows is actually a second order
polynomial.

Considering the voiced source as periodic in first approx-
imation, the spectral peaks should be located at frequencies
that are multiples of the fundamental frequency. If this is
not the case, namely if the mth spectral peak is located
outside a arbitrarily defined interval around mf0, the partial
is considered as not activated. In this paper, the interval is
defined as ±5 Hz, that is, the mth spectral peak is searched in
the frequency range fm−1+f0±5 Hz. The reference harmonic
fm−1 is updated in order to avoid error spreading in high
order spectral peaks. In high noise level conditions, and more
specifically in the case of the appearance of frication noise at
a high level, the voiced contributions are very small ahead of
the noise in the high-frequency range. This is due to the fact
that the voiced source has a low-pass profile, characterized
by a relatively strong spectral slope [26], while the frication
noise contains high level components in the mid- and the high-
frequency domains [10]. The critical frequency above which
voiced contributions are considered as negligible is sometimes
referred as the Maximum Voiced Frequency (MVF) [21]. In
order to avoid including noise components into the voiced
signal subspace, we propose to make a rough estimation of the
MVF and to consider all components above the MVF estimate
as noise components. The MVF is taken as the last activated
partial before a at least a certain number of partials, denoted
by Nz , are not detected in a row.

Once the frequencies of every harmonic candidates have
been estimated, the basis of the voiced subspace is computed
following Eq. (9) for the stationary model, and following
Eq. (11) for the locally non-stationary model. In the second
case, the instantaneous frequency is computed by using a zero-
crossing estimation of the band-pass filtered version of the
analyzed frame, where the bandwidth of the filter is 10 Hz,
centered around the rough pitch estimate. A first-order linear
interpolation is then performed to compute the instantaneous
frequency between two successive zero-crossing instants.

B. Estimation of the complex amplitudes

The problem of the amplitude estimation of sinusoids in the
presence of noise has been tackled in the past, e.g. in [27].
The classic method is the Least Square (LS) estimation. Con-
sidering our case, the LS estimate of the complex amplitudes
bk is

bk = V†sk, (12)

where (.)† denotes the Moore-Penrose pseudo-inverse. In this
approach, the noise is considered white and homoscedastic.

Several methods have been proposed, such as the Weighted
Least Square (WLS) [28], the Capon [29], and the Amplitude
and Phase Estimation (APES) [30], in order to outperform
the LS method by accounting for noise correlations. This
is an important issue in periodic/aperiodic decomposition,
especially in the presence of high noise level. Yet, in our
case, none of the aforementioned methods have been shown to

significantly modify or improve the results of the separation.
Consequently, we chose to keep the LS method because of its
comparatively low computational cost.

V. NUMERICAL VALIDATION

A. Synthetic signals

Numeric voiced signals and frication noise signals were
generated separately by using a Transmission Line Circuit
Analog-based speech synthesizer [31]. Synthetic signals cor-
respond to simulations of French fricatives at two places of
articulations, namely the alveolar voiced/unvoiced pair /z,s/
and the post-alveolar pair /Z,S/. To simulate these fricatives,
the voice synthesizer needs to be fed with area functions and
glottal opening area waveforms. Our simulations used two area
functions extracted from 3D static MRI of a French male
native speaker of 35 years old at the time of acquisition,
corresponding to the alveolar and the post-alveolar French
fricatives in the vocalic context /a/. For voiced signals, the
glottal opening area function were first generated with a
parametric model for each fundamental frequency and jitter
value. The resulting glottal opening area waveform is then
used to feed the synthesizer for both area functions, with the
frication noise generator disabled in order to get a purely
voiced signal in output. Then, the frication noise signal is
obtained by setting a constant glottal area opening in input
of the synthesizer with the frication noise generator enabled.
Doing so ensures the synthetic voiced and frication noise
signals to be as similar to those of real fricatives as possible.

The jitter effect was simulated similarly to Jackson and
Shadle [8], by modifying the nominal period value T0 by a
normal random distribution of zero mean and variance equal
to the jitter:

τi = T0

(
1 + J

ri
√
π

2

)
, (13)

where τi is the value of the considered period, ri is a random
variable from the normal distribution of zero mean and unit
standard deviation, and J is the jitter value.

Then, once the voiced and the noise signals, respectively
denoted ŝp and ŝn, are simulated, they were normalized by
their respective norm, and their energy were scaled by a
coefficient α in order to simulate various theoretical voicing
quotients:

smix = (1− α)
ŝp
||ŝp||2

+ α
ŝn
||ŝn||2

= s̄p + s̄n, (14)

where smix is the input mix signal, and s̄p and s̄n are the
target voiced and noise signals to be estimated, and where ||.||2
denotes the `2-norm. The scaling factor α is defined according
to the desired voicing quotient V Q:

α = 1−
√
V Q.

For the simulations, the nominal fundamental frequency is
varied from 120 to 200 Hz by a 20 Hz incremental step, the
jitter value from 0 to 3% with an incremental step of 0.5%,
and the voicing quotient from 0 to 100% with an incremental
step of 5%.
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Note that the synthetic signals follows the model in Eq. (1),
namely glottal and supraglottal sources are additive, which is
not necessary the case in natural speech, as noise amplitude
modulation by the glottal pulses may occur. However, it is not
predominant, especially in high noise level conditions. De-
composition methods are commonly tested with this additive
model, and, consequently, the reader should be aware that the
presented performances are biased. In practice, they are likely
to be slightly less accurate.

B. Performance indicators

In order to be able to compare X-GLOS with another
method, namely the PSHF [8], the Signal-to-Error Ratio (SER)
defined in [8] is used. It is defined both for the voiced and the
unvoiced components as

ηp = 10 log10

(
||s̄n||22
||e||22

)
(dB) (15)

ηn = 10 log10

(
||s̄p||22
||e||22

)
(dB), (16)

where e = s̃p − s̄p is the estimation error.

C. Results

1) Effect of the fundamental frequency: The performance
of the PSHF algorithm [8] has been shown to vary little with
the fundamental frequency thanks to the pitch-synchronous
technique. This section verifies if this property also applies to
X-GLOS. Fig. 1 shows the performance for signals of various
fundamental frequencies and without jitter. In the studied range
of f0, i.e. from 120 to 200 Hz, the performance of X-GLOS
shows small variations with the pitch value, both for the
aperiodic and the periodic estimates. Differences from 120
Hz to 200 Hz are no more than 3 dB, both for high and low
voicing quotient conditions, and for alveolar and post-alveolar
places of articulation. These variations are in the same order
of magnitudes than those observed in the performance of the
PSHF [8]. Note that the performance is better with higher pitch
values.

For the sake of clarity, since there is no significant modifi-
cation of the performance with the pitch value, and especially
no more than the baseline to which X-GLOS is compared in
the next section, next results are presented for a nominal pitch
value of f0 = 120 Hz throughout the rest of the paper.

2) Comparison with PSHF: This section compares the
performance of X-GLOS to the performance of PSHF [8].
Fig. 2 shows the performance of the tested methods for a 120
Hz-pitch signal with no jitter, for a post-alveolar (top) and an
alveolar (bottom) fricative, and as a function of the voicing
quotient V Q. The values of the performance indicators ηn
and ηp obtained with PSHF are similar to those shown in
the original paper (see Fig. 3 in [8]), namely ηn is slightly
less than 0 in low voicing conditions and around 25 dB for
high voicing quotient conditions, and ηp is constantly around
5 dB. The figure shows that X-GLOS constantly outperforms
PSHF, both in high and low voicing conditions. Without MVF
filtering (solid line, box marker), the gain of performance with
X-GLOS in comparison with PSHF is between 2.5 and 5 dB

Figure 1: Aperiodic (left) and periodic (right) performance of
the proposed method with no MVF selection for different pitch
values, f0 = 120 Hz (solid line, circle marker), f0 = 160 Hz
(dashed, square marker), and f0 = 200 Hz (dotted line, ∆
marker). Top is the post-alveolar fricative simulation, bottom
is the alveolar fricative simulation.

for both the periodic and the aperiodic estimates. Changing
the place of articulation has no significant influence on the
performances.

Figure 2: Aperiodic (left) and periodic (right) performance
of X-GLOS with no MVF selection (solid line, box marker),
with first zero MVF selection (dotted, ∆ marker), and with
two first zeros MVF selection (dot-dashed line, ∇ marker).
The performance of PSHF is plotted as the dashed line, circle
marker. Top is the post-alveolar fricative simulation, bottom
is the alveolar fricative simulation.

When a MVF filtering is applied, the performance of X-
GLOS is significantly enhanced. Basically, the method be-
comes less sensitive to the noise level: between the almost no
noise condition (V Q = 95%) and the quasi-unvoiced condition
(V Q = 5%), the SER of the aperiodic estimate ηn is lowered
by 24 dB with a first-zero MVF filtering, and by only 12 dB
for a second-zero MVF filtering, whereas it falls by 41 dB
without MVF filtering. For the periodic estimate ηp, applying
the MVF filtering improves by 20 dB for a first-zero MVF
filtering and by 30 to 40 dB with a second-zero filtering in
low voicing conditions, in comparison to the no-MVF filtering
situation.

3) Effect of the jitter: This section discusses the perfor-
mance of X-GLOS for various jitter values. It also introduces
the non-stationary model described in Sec. II-B and compares
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its performance with the stationary model. In Fig. 3, the
performances are displayed for several values of the jitter
(0.5%, 1%, 1.5%, and 3%). The aperiodic estimate perfor-
mance ηn is systematically better with the non-stationary
model than with the stationary model. It is also the case for the
periodic estimate performance ηp. Interestingly, whereas the
performance of the stationary model significantly decreases
as the jitter value increases, it is much less significant for
the non-stationary model. The aperiodic performance indicator
ηn loses around 4 dB when the jitter goes from 0.5% to 3%
with the non-stationary model, while it decreases of 7 dB with
the stationary model. Consequently, using the non-stationary
model enables the method to be less sensitive to the local pitch
fluctuation in natural speech.

Figure 3: Aperiodic (solid line) and periodic (dashed line)
performance of X-GLOS with 2-zeros MVF selection, with
a stationary model (∆ marker), and non-stationary model
(∇ marker), for various jitter values (0.5%, 1%, 1.5%, and
3%). For the sake of clarity, only the post-alveolar fricative
simulation is displayed.

VI. APPLICATIONS ON REAL SPEECH

For all of the examples shown in this section, data were
acquired in an acoustically designed room to reduce back-
ground noise, at a sampling rate of 16 kHz. The paper
shows examples of utterances of three different speakers,
labeled 01F35, 02F24, and 03M33. They were two female
speakers, 01F35 and 02F24, and one male speaker, 03M33,
and are respectively 35, 24, and 33 years old. 01F35 and
03M33 are French native speaker, while 02F24 is a Basque
native speaker with an advanced fluency level of French.
All of these speakers reported no speech or hearing impair-
ments. The code and the experimental results are available at
http://gilleschardon.fr/xglos/.

A. Vowel-consonant-vowel pseudowords

The first experiment consists in pseudowords uttered by the
two female speakers, 01F35 and 02F24. Pseudowords are in
the form vowel-fricative-vowel (VFV), where the vowel is /A/,
and the fricatives are chosen among /S,s,Z,z/. In this paper,
pseudowords are presented by place of articulation, namely
post-alveolar (pseudowords /ASA/-/AZA/, in Fig. 4), and alveolar
(pseudowords /AsA/-/AzA/, in Figs. 5 and 6 ). The post-alveolar

example (displayed in Fig. 4) is uttered by 01F35, while the
alveolar example (displayed in Fig. 5) is uttered by 02F24.

Figure 4: Narrow-band spectrogram (left) and time waveform
(right) of the original speech signal (top), the voiced con-
tributions (middle), and the noise estimation (bottom). The
original utterance is the two pseudowords "asha-azha" (/ASA/-
/AZA/) uttered by 01F35.

In both examples, i.e. for post-alveolar and alveolar frica-
tives, displayed in Figs. 4 and 5, X-GLOS proves to effi-
ciently separate the voiced component from the turbulent noise
components. Here, we are interested in the vowel-fricative
boundaries and in the fricative segments. In any case, the
voiceless fricatives segments have been correctly identified, so
that only the turbulence noise appears in the separation. In the
transitory segments between vowels and fricatives, the sepa-
ration clearly enables the appearance/disappearance moments
of the turbulent noise and of the vocal folds oscillation to
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be observed and identified. For voiced fricatives, as expected,
the separation shows two distinct frequency zones: the low
frequency range where voiced components are predominant,
and the high frequency where only turbulent noise is present.

The zoomed-in version of the separated signals in Fig. 6
shows the modifications of the voiced and noise compo-
nents during the alveolar voiced fricative /z/ in the utterance
/AzA/. The voiced component "loses" its high order harmonic
components leading to an almost sinusoidal waveform. The
perturbations visible in the speech signal waveform (top figure)
have been removed, and constitute the noise signal, shown in
the bottom plot. The noise components contain modulations
by the voiced components: the noise amplitude is larger in
the decreasing phase of the voiced component signal. The
presence of noise source modulations is in agreement with
previous observations and studies (e.g. in [18]).

B. Phrase-level utterances

The chosen sentence for the example of a phrase-level
utterance is the French "L’ours nagea de banquise en ban-
quise" (/luKs.na.Za.d@.bã.ki.zã.bã.kiz/), meaning "The bear
swam from ice floe to ice floe", uttered by 03M33, a 33 years
old French native male speaker. It has been chosen because
it contains several natural classes that are of interest, namely
fricatives (voiced /Z,z/ and voiceless /s/) and stops (voiced /d,b/
and voiceless /k/). The result of the decomposition is shown
in Fig. 7.

Similarly to the pseudowords shown in Sec. VI-A, X-GLOS
proves to be efficient to separate the contribution of the voiced
source from the mixture signal. The voiceless fricative /s/,
at t = 0.50s, is detected as voiceless, hence zero values
in the voiced signal. The decomposition has also detected
a low-frequency periodicity at the /K-s/ boundary between
t = 0.35s and t = 0.40s. For voiced fricatives, namely the
post-alveolar /Z/ at t ∈ [0.85, 0.90] s, the two alveolar /z/ at
t ∈ [1.65, 1.75] s, and t ∈ [2.30, 2.45] s, only the low fre-
quency components corresponding to the voiced components
appear in the voiced estimate, while the frication noise, at
higher frequencies, appears only in the noise estimate. For the
bursts of the two velar voiceless stops /k/ at t ∈ [1.40, 1.48] s
and t ∈ [2.05, 2.14] s, even though a very weak low frequency
periodicity has been found, the MVF filtering removed most
of the higher frequency components, resulting in a quasi-null
estimated periodic signals during these instants.

VII. CONCLUSION

This paper has presented a method, called X-GLOS, for
separating the contributions of the supraglottal sources from
the contributions of the glottal source in the audio speech
signal. A non-stationary model of the glottal source has been
used in order to improve the robustness of the method to
pitch variations within the analysis window. Additionally, a
Maximum Voiced Frequency (MVF) filtering is applied to
avoid high frequency noise components to be included into
the glottal source estimate.

Tests on synthetic additive signals have shown that these
considerations significantly improve the robustness of the

Figure 5: Narrow-band spectrogram (left) and time waveform
(right) of the original speech signal (top), the voiced contri-
butions (middle), and the noise estimation (bottom). The orig-
inal utterance is the two pseudowords "asa-aza" (/AsA/-/AzA/)
uttered by 02F24. The box in the right column corresponds to
the zoom-in region displayed in Fig. 6.

decomposition to the frication noise level and coloring, and
also the robustness to the jitter. The method has been proved to
be less sensitive to the noise level that existing methods, such
as PSHF [8]. Applying MVF filtering theoretically improves
the performance by up to 20 dB with a first-order MVF
filtering and up to 40 db with a second-order MVF filtering. In
normal jitter value condition, namely when the jitter is between
0.5 and 1.0 %, the gain on the voiced estimate is around 4 dB
in comparison with the stationary model.

The significant decrease of the decomposition performance
with high frication noise level and high jitter were the main
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Figure 6: Zoom-in version of the time waveform in Fig. 5.
from top to bottom: original speech signal, the voiced contri-
butions, and the noise estimation.

limitations of the previous methods, such as PSHF [8], or
PAP [7]. Experiments on real speech signals have shown that
X-GLOS can be used to precisely investigate the behavior of
the glottal source contributions at the vowel offsets preceding a
consonant, either voiced or voiceless, namely when it is drawn
into the noise contributions in the mixture signal.
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