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Abstract

Betweenness has been used in a number of marine studies to identify portions of sea
that sustain the connectivity of whole marine networks. Herein we highlight the need of
methodological exactness in the calculation of betweenness when graph theory is applied
to marine connectivity studies based on transfer probabilities. We show the
inconsistency in calculating betweeness directly from transfer probabilities and propose
a new metric for the node-to-node distance that solves it. Our argumentation is
illustrated by both simple theoretical examples and the analysis of a literature data set.

Introduction 1

In the last decade, graph theory has increasingly been used in ecology and conservation 2

studies [1] and particularly in marine connectivity studies (e.g., [2] [3] [4] [5] [6]). 3

Graphs are a mathematical representation of a network of entities (called nodes) linked 4

by pairwise relationships (called edges). Graph theory is a set of mathematical results 5

that permit to calculate different measures to identify nodes, or set of nodes, that play 6

specific roles in a graph (e.g., [7]). Graph theory application to the study of marine 7

connectivity typically consists in the representation of portions of sea as nodes. Then, 8

the edges between these nodes represent transfer probabilities between these portions of 9

sea. 10

Transfer probabilities estimate the physical dispersion of propagula [5] [9] [10] [11], 11

nutrients or pollutants [12], particulate matter [13], or other particles either passive or 12

interacting with the environment (see [14] [15] and references therein). As a result, 13

graph theory already proved valuable in the identification of hydrodynamical 14

provinces [6], genetic stepping stones [16], genetic communities [4], sub-populations [10], 15

and in assessing Marine Protected Areas connectivity [5]. 16

In many marine connectivity studies, it is of interest to identify specific portions of 17

sea where a relevant amount of the transfer across a graph passes through. A 18

well-known graph theory measure is frequently used for this purpose: betweenness 19

centrality. In the literature, high values of this measure are commonly assumed to 20

identify nodes sustaining the connectivity of the whole network. For this reason a high 21

value of betweenness has been used in the framework of marine connectivity to identify 22
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migration stepping stones [2], genetic gateways [16], and marine protected areas 23

ensuring a good connectivity between them [5]. 24

Our scope in the present letter is to highlight some errors that can occur in 25

implementing graph theory analysis. Especially we focus on the definition of edges when 26

one is interested in calculating the betweenness centrality and other related measures. 27

We also point out two papers in the literature in which this methodological 28

inconsistency can be found: [3] and [5]. 29

In Materials and Methods we introduce the essential graph theory concepts for our 30

scope. In Results we present our argument on the base of the analysis of a literature 31

data set. In the last Section we draw our conclusions. 32

Materials and Methods 33

A simple graph G is a couple of sets (V,E), where V is the set of nodes and E is the set 34

of edges. The set V represents the collection of objects under study that are pair-wise 35

linked by an edge aij , with (i,j) ∈ V , representing a relation of interest between two of 36

these objects. If aij = aji, ∀(i,j) ∈ V , the graph is said to be ‘undirected’, otherwise it 37

is ‘directed’. The second case is the one we deal with when studying marine 38

connectivity, where the edges’ weights represent the transfer probabilities between two 39

zones of sea (e.g., [3] [4] [5] [6]). 40

If more than one edge in each direction between two nodes is allowed, the graph is 41

called multigraph. The number of edges between each pair of nodes (i,j) is then called 42

multiplicity of the edge linking i and j. 43

The in-degree of a node k, deg+(k), is the sum of all the edges that arrive in k: 44

deg+(k) =
∑

i aik. The out-degree of a node k, deg−(k), is the sum of all the edges that 45

start from k: deg−(k) =
∑

j akj . The total degree of a node k, deg(k), is the sum of the 46

in-degree and out-degree of k: deg(k) = deg+(k) + deg−(k). 47

48

In a graph, there can be multiple ways (called paths) to go from a node i to a node j 49

passing by other nodes. The weight of a path is the sum of the weights of the edges 50

composing the path itself. In general, it is of interest to know the shortest or fastest 51

path σij between two nodes, i.e. the one with the lowest weight. But it is even more 52

instructive to know which nodes participate to the greater numbers of shortest paths. In 53

fact, this permits to measure the influence of a given node over the spread of 54

information through a network. This measure is called betweenness value of a node in 55

the graph. The betweenness value of a node k, BC(k), is defined as the fraction of 56

shortest paths existing in the graph, σij , with i 6= j, that effectively pass through k, 57

σij(k), with i 6= j 6= k: 58

BC(k) =
∑

i 6=k 6=j

σij(k)

σij
(1)

with (i,j,k) ∈ V . Note that the subscript i 6= k 6= j means that betweenness is not 59

influenced by direct connections between the nodes. Betweenness is then normalized by 60

the total number of possible connections in the graph once excluded node k: 61

(N − 1)(N − 2), where N is the number of nodes in the graph, so that 0 ≤ BC ≤ 1. 62

63

Although betweenness interpretation is seemingly straightforward, one must be 64

careful in its calculation. In fact betweenness interpretation is sensitive to the 65

node-to-node metric one chooses to use as edge weight. If, as frequently the case of the 66

marine connectivity studies, one uses transfer probabilities as edge weight, betweenness 67

loses its original meaning. Based on additional details –personally given by the authors 68
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of [3] and [5]– on their methods, this was the case in those studies. In those cases, edge 69

weight would decrease when probability decreases and the shortest paths would be the 70

sum of edges with lowest value of transfer probability. As a consequence, high 71

betweenness would be associated to the nodes through which a high number of 72

improbable paths pass through. Exactly the opposite of betweenness original purpose. 73

Hence, defining betweenness using Equation 1 (the case of [3] and [5]) leads to an 74

inconsistency that affects the interpretation of betweenness values. 75

Alternative definitions of betweenness accounting for all the paths between two 76

nodes and not just the most probable one have been proposed to analyze graphs in 77

which the edge weight is a probability [8] and avoid the above inconsistency. 78

79

Herein, we propose to solve the inconsistency when using the original betweenness 80

definition of transfer probabilities by using a new metric for the edge weights instead of 81

modifying the betweenness definition. The new metric transforms transfer probabilities 82

aij into a distance in order to conserve the original meaning of betweenness, by ensuring 83

that a larger transfer probability between two nodes corresponds to a smaller 84

node-to-node distance. Hence, the shortest path between two nodes effectively is the 85

most probable one. Therefore, high betweenness is associated to the nodes through 86

which a high number of probable paths pass through. 87

In the first place, in defining the new metric, we need to reverse the order of the 88

probabilities in order to have higher values of the old metric aij correspond to lower 89

values of the new one. In the second place we also consider three other facts: (i) transfer 90

probabilities aij are commonly calculated with regards to the position of the particles 91

only at the beginning and at the end of the advection period; (ii) the probability to go 92

from i to j does not depend on the node the particle is coming from before arriving in i; 93

and (iii) the calculation of the shortest paths implies the summation of a variable 94

number of transfer probability values. Note that, as the aij values are typically 95

calculated on the base of the particles’ positions at the beginning and at the end of a 96

spawning period, we are dealing with paths whose values are calculated taking into 97

account different numbers of generations. Therefore, the transfer probabilities between 98

sites are independent from each other and should be multiplied by each other when 99

calculating the value of a path. Nevertheless, the classical algorithms commonly used in 100

graph theory analysis calculate the shortest paths as the summation of the edges 101

composing them (e.g., the Dijkstra algorithm, [17] or the Brandes algorithm [18]). 102

Therefore, these algorithms, if directly applied to the probabilities at play here, are 103

incompatible with their independence. 104

A possible workaround could be to not use the algorithms in [17] and [18] and use 105

instead the 10th algorithm proposed in [19]. Therein, the author suggests to define the 106

betweenness of a simple graph via its interpretation as a multigraph. He then shows 107

that the value of a path can be calculated as the product of the multiplicities of its 108

edges. When the multiplicity of an edge is set equal to the weight of the corresponding 109

edge in the simple graph, one can calculate the value of a path as the product of its 110

edges’ weights aij . However, this algorithm selects the shortest path on the basis of the 111

number of steps (or hop count) between a pair of nodes (Breadth-First Search 112

algorithm [20]). This causes the algorithm to fail in identifying the shortest path in 113

some cases. For example, in Fig 1 it would identify the path ACB (2 steps with total 114

probability 1× 10−8) when, instead, the most probable path is ADEB (3 steps with 115

total probability 1× 10−6). See Table 1 for more details. 116

117

However, by changing the metric used in the algorithms, it is possible to calculate 118

the shortest path in a meaningful way with the algorithms in [17] and [18]. In 119

particular, we propose to define the weight of an edge between two nodes i and j as: 120
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Fig 1. Example of graph in which the 10th algorithm in [19] would fail to identify the
shortest path between A and B (ADEB) when using aij as metric.

dij = log

(
1

aij

)
(2)

This definition is the composition of two functions: h(x) = 1/x and f(x) = log(x). 121

The use of h(x) allows one to reverse the ordering of the metric in order to make the 122

most probable path the shortest. The use of f(x), thanks to the basic properties of 123

logarithms, allows the use of classical shortest-path finding algorithms while dealing 124

correctly with the independence of the connectivity values. In fact, we are de facto 125

calculating the value of a path as the product of the values of its edges. 126

It is worth mentioning that the values dij =∞, coming from the values aij = 0, do 127

not influence the calculation of betweenness values via the Dijkstra and Brandes 128

algorithms. Note that dij is additive: dil + dlj = log
(

1
ail·alj

)
= log

(
1
aij

)
= dij , for any 129

(i,l,j) ∈ V thus being suitable to be used in conjunction with the algorithms proposed 130

by [17] and [18]. Also, note that both aij and dij are dimensionless. 131

Equation 2 is the only metric that allows to consistently apply the algorithms in [17] 132

and [18] to transfer probabilities. Other metrics would permit to make the weight 133

decrease when probability increases: for example, 1− aij , 1/aij , −aij , log(1− aij). 134

However, the first three ones do not permit to account for the independence of the 135

transfer probabilities along a path. Furthermore, log(1− aij) takes negative values as 136

0 ≤ aij ≤ 1. Therefore, it cannot be used to calculate shortest paths because the 137

algorithms in [17] and [18] would either endlessly go through a cycle (see Fig 2a and 138

Table 2) or choose the path with more edges (see Fig 2b and Table 2), hence arbitrarily 139

lowering the value of the paths between two nodes. 140

Results 141

The consequences of the use of the raw transfer probability (aij) rather than the 142

distance we propose (dij) are potentially radical. To show this, we used 20 connectivity 143

matrices calculated for [21]. They were calculated from Lagrangian simulations using a 144
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Table 1. Paths and respective probabilities, weights and hop count for the graph in
Fig 1.

Path Probability Weight using log(1/aij) Hop count

Figure 1
ADEB (1× 10−2)3 = 1× 10−6 13.8 3

ACB (1× 10−4)2 = 1× 10−8 18.4 2

(a) (b)

Fig 2. a) Example of network in which the metric log(1− aij) would fail because of a
cycle (ED). b) Example of network in which the metric log(1− aij) would fail by taking
the longest path possible (ADEFB instead of ACB).

3D circulation model with a high horizontal resolution of 750 m [22]. Spawning was 145

simulated by releasing 30 particles in the center of each of 32 reproductive sites 146

(hereafter identified as nodes) for benthic polychaetes alongshore the Gulf of Lion (NW 147

Mediterranean Sea), on the 30 m isobath, every hour from January 5 until April 13 in 148

2004 and 2006. Note that the connectivity matrices’ values strongly depend on the 149

circulation present in the Gulf during the period of the dispersal simulations. The 150

typical circulation of the Gulf of Lion is a westward current regime [25]. This was the 151

case of matrices #7,#11,#12,#15,#17. However, other types of circulation are often 152

observed. In particular matrix #1 was obtained after a period of reversed (eastward) 153

circulation. Indeed, this case of circulation is less frequent than the westward 154

circulation [26]. Matrices #14, #10 and #13 correspond to a circulation pattern with 155

an enhanced recirculation in the center of the gulf. Finally, matrices #2, #3, #5, #6, 156

#8, #9, #14, #16, #18, #19, #20 correspond to a rather mixed circulation with no 157

clear pattern. The proportions of particles coming from an origin node and arriving at a 158

settlement node after 3, 4 and 5 weeks were weight-averaged to compute a connectivity 159
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Table 2. Paths and respective probabilities and weights for the networks in Fig 2.

Path Probability Weight using log(1− aij)

Figure 2a
ADEDE. . . DEB → 0 → −∞

ACFB (1× 10−3)3 = 1× 10−9 −3× 10−3

Figure 2b
ADEFB (1× 10−3)4 = 1× 10−12 −4× 10−3

ACB (1× 10−3)2 = 1× 10−6 −2× 10−3

matrix for larvae with a competency period extending from 3 to 5 weeks. 160

As an example, in Fig 3 we show the representation of the graph corresponding to 161

matrix #7. The arrows starting from a node i and ending in a node j represent the 162

direction of the element aij (in Fig 3a) or dij (in Fig 3b). The arrows’ color code 163

represents the magnitude of the edges’ weights. The nodes’ color code indicates the 164

betweenness values calculated using the metric aij (in Fig 3a) or dij (in Fig 3b). 165

In Fig 3a the edges corresponding to the lower 5% of the weights aij are represented. 166

These are the larval transfers that, though improbable, are the most influential in 167

determining high betweenness values when using aij as metric. In Fig 3b the edges 168

corresponding to the lower 5% of the weights dij are represented. These are the most 169

probable larval transfers that —correctly— are the most influential in determining high 170

betweenness values when using dij as metric. While in Fig 3a the nodes with highest 171

betweenness are the nodes 31 (0.26), 27 (0.25) and 2 (0.21); in Fig 3b the nodes with 172

highest betweenness are nodes 21 (0.33), 20 (0.03) and 29 (0.03). 173

Furthermore, it is expected to have a positive correlation between the degree of a 174

node and its betweenness (e.g., [23] and [24]). However, we find that the betweenness 175

values, calculated on the 20 connectivity matrices containing aij , have an average 176

correlation coefficient of −0.42 with the total degree, −0.42 with the in-degree, and 177

−0.39 with the out-degree. Instead, betweenness calculated with the metric of Equation 178

2 has an average correlation coefficient of 0.48 with the total degree, 0.45 with the 179

in-degree, and a not significant correlation with the out-degree (p-value > 0.05). 180

As we show in Fig 4, betweenness values of the 32 nodes calculated using the two 181

node-to-node distances aij and log(1/aij) are drastically different between each other. 182

Moreover, in 10 out of 20 connectivity matrices, the correlation between node ranking 183

based on betweenness values with the two metrics were not significant. In the 10 cases 184

it was (p-value < 0.05), the correlation coefficient was lower than 0.6 (data not shown). 185

Such partial correlation is not unexpected as the betweenness of a node with a lot of 186

connections could be similar when calculated with aij or dij if among these connections 187

there are both very improbable and highly probable ones, like in node 21 in the present 188

test case. Furthermore, it is noticeable that if one uses the aij values (Fig 4a), the 189

betweenness values are much more variable than the ones obtained using dij (Fig 4b). 190

This is because, in the first case, the results depend on the most improbable connections 191

that, in the ocean, are likely to be numerous and unsteady. 192

Conclusion 193

We highlighted the need of methodological exactness inconsistency in the betweenness 194

calculation when graph theory to marine transfer probabilities. Indeed, the 195

inconsistency comes from the need to reverse the probability when calculating shortest 196
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(a) (b)

Fig 3. Representation of matrix #7 from [21], the right side colorbars indicate the
metric values. a) Results obtained by using aij as edge weight, b) results obtained by
using dij as edge weight. In a) the lowest 5% of edges weights are represented. In b) the
lowest 5% of edges weights are represented. Note the change in the colorbars’ ranges.

(a) (b)

Fig 4. Betweenness values for the 32 sites in the Gulf of Lion using 20 different
connectivity matrices obtained with Lagrangian simulations by [21]. a) Results obtained
by using aij as edge weight; b) results obtained by using dij . Note the change in the
colorbars’ ranges.
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paths. If this is not done, one considers the most improbable paths as the most 197

probable ones. We showed the drastic consequences of this methodological error on the 198

analysis of a published data set of connectivity matrices for the Gulf of Lion [21]. 199

On the basis of our study, it may be possible that results in [3] and [5] might also be 200

affected. A re-analysis of [3] would not affect the conclusions drawn by the authors 201

about the small-world characteristics of the Great Barrier Reef as that is purely 202

topological characteristics of a network. About [5], according to Marco Andrello 203

(personal communication), due to the particular topology of the network at study, which 204

forces most of the paths -both probable or improbable- to follow the Mediterranean 205

large-scale steady circulation (e.g., [27]). As a consequence, sites along the prevalent 206

circulation pathways have high betweenness when using either aij or dij . However, 207

betweenness values of sites influenced by smaller-scale circulation will significantly vary 208

according to the way of calculating betweenness. 209

To solve the highlighted inconsistency, we proposed the use of a node-to-node metric 210

that provides a meaningful way to calculate shortest paths and —as a consequence— 211

betweenness, when relying on transfer probabilities issued from Lagrangian simulations 212

and the algorithm proposed in [17] and [18]. The new metric permits to reverse the 213

probability and to calculate the value of a path as the product of its edges and to 214

account for the independence of the transfer probabilities. Moreover, this metric is not 215

limited to the calculation of betweenness alone but is also valid for the calculation of 216

every graph theory measure related to the concept of shortest paths: for example, 217

shortest cycles, closeness centrality, global and local efficiency, and average path 218

length [28]. 219
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