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ABSTRACT: Resin Transfer Molding is widely used to produce fiber-reinforced materials. In the process, the resin enters
a close mold containing the dry fiber preform. For mold designer, numerical simulation is a useful tool to optimize the
mold filling, in particular to identify the best positions of the ports and the vents. An issue in mold filling simulation is
the front tracking, because the shape of the resin front changes during the flow. In particular, topological changes can
appear resulting from internal obstacles dividing the front or multi-injection. A previous approach [1] using the Boundary
Element Method (BEM) in a moving mesh framework shows the capability of the method to compute accuratlely the
front propagation at low CPU time. The present paper describes a method developed to handle complex shapes, using
BEM together with a Level Set approach. Numerical results in two dimensions are presented, assuming a Newtonian
non-reactive fluid, and an homogeneous and not-deformable reinforcement. The resin flow in the fibrous reinforcement
is modeled using Darcy’s law and mass conservation. The resulting equation reduces to Laplace’s equation considering
an isotropic equivalent mold. Laplaces equation is solved at each time step using a constant Boundary Element Method
to compute the normal velocity at the flow front. It is extended to the fixed grid and next used to feed a Level Set solver
computing the signed distance to the front. Our model includes a boundary element mesher and a Narrow Band method
to speed up CPU time. The numerical model is compared with an analytical solution, a FEM/VOF-based simulation and
experimental measurements for more realistic cases involving multiple injection ports and internal obstacles.
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1 INTRODUCTION
Liquid Composite Molding (LCM) processes are widely
used in industry. Among them, Resin Transfer Molding
(RTM) is one of the most popular. It consists in injecting
the liquid resin in the dry preform held in position in a
mold.
Recent aerospace programms focus on forming structural
parts using LCM. As mechanical performances strongly
depend on filling conditions, resin flow prediction is im-
portant in mold design. In particular gates’ locations are
adjusted so that the resin impregnates correctly the entire
preform. In that task, numerical simulation can be usefull.
As the resin flows, a tracking technique is employed to fol-
low the moving front. It can be performed using moving
mesh methods [1–3], Volume Of Fluid methods [4, 5] or
Level Set methods [6, 7]. The main advantage of the last
one is that the front is accurately captured in an Eulerian
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framework.
The present paper focus on a technique combining a
Boundary Element Method(BEM) [1, 2, 7, 8] and a Level
Set method.The first part of this paper considers the gov-
erning equations. The second part describes the imple-
mented model. The last part covers some applications.

2 GOVERNING EQUATIONS
2.1 PRELIMINARY TRANSFORMATIONS
Our model assumes that the liquid resin is a Newto-
nian non-reactive fluid, flowing in isothermal conditions
through an homogeneous and not deformable fibrous re-
inforcement. In the impregnated area ⌦, the macroscopic
resin motion is governed by the modified Darcy’s law [9]
and incompressibility equation

< �!v >= � [K]
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where < �!v > is the macroscopic velocity, [K] the perme-
ability tensor, µ the liquid resin viscosity and p0 the acting
pressure. That pressure given by p0 = p + ⇢gz includes
a gravity term, where ⇢ is the resin specific mass and g
gravity. Combining the previous equations and transform-
ing the coordinates in the isotropic equivalent domain ⌦e

of permeability Ke, we obtain

�!v = �Ke

µ✏

�!rp0 (3)

4p0 = 0 (4)
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where �!v is the resin velocity, computed from the macro-
scopic velocity using ✏ (medium porosity), and Ke is the
equivalent isotropic permeability. The isotropic equiva-
lent transformation [1, 10] is
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where K1 and K2 are the principal permeabilities of the
reinforcement. The isotropic equivalent permeability, is
given as Ke =

p
K1K2.

2.2 BOUNDARY CONDITIONS
Let us consider �e the isotropic equivalent front bounding
⌦e. Boundary conditions are assigned according to the lo-
cation of the point M 2 �e under consideration. Dirichlet
conditions (imposed pressure) are prescribed on the gate
�ep0

and on the free edge �epf

p0 =

(
p0 + ⇢gz0 8M 2 �ep0

pf + ⇢gzf 8M 2 �epf

(6)

and Neuman conditions (imposed normal pressure gra-
dient) are prescribed on the mold wall �eq0

for a non-
penetration condition

�!rp0.�!n = 0 8M 2 �eq0
(7)

where �!n is the unit outwards vector at point M .

3 NUMERICAL METHOD
3.1 OUTLINE
Our programm is implemented using Matlab environe-
ment. At the beginning, pre-processing imports a stan-
dard mesh file, performs the isotropic equivalent transfor-
mation, assigns material and processing data, and locates
the injection ports. Next, the filling routine based on a
Level Set formulation advances the front. At the end, the
post-processing plots the results once the real domain is
recovered.
The filling stage is divided into a finite number of quasi
steady states. At each step time, governing equations are
solved using a constant Boundary Element Method. More
details can be found in section 3.2. The front is advanced

by feeding a Level Set solver with the BEM-computed ve-
locities. How it is done is covered in section 3.3. It is
repeated until the mold is completely filled.

3.2 BOUNDARY ELEMENT METHOD
For clarity, the subscript e referring to the isotropic equiv-
alent domain is omitted by the next. As mentioned ear-
lier, BEM confines the calculation on the front � which
is a close curve bounding the calculation domain ⌦. A
known value of pressure p or normal pressure gradient q
is prescribed on the edges �p or �q. Laplace’s equation
is multiplied by the Green function p?. Integrated twice
by parts over the calculation domain and using Green’s
theorem leads to Somigliana’s equation [1, 11, 12]

cipi +

ˆ
�

pq?d� =

ˆ
�
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✓

2⇡
(8)

where pi is the value of the pressure at a point Mi on the
boundary, q? the pressure gradient associated with p? and
✓ the internal angle of the corner in radians. For a two-
dimensional domain, p? and q? are given as
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where r is the distance from the point Mi of application of
the Dirac delta function to any point under consideration.
Meshing the boundary into N constant boundary elements
and applying Equation 8 leads to

cipi +

NX
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qj
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p?d� (10)

Rewritten in a matrix form using H and G, Equation 10 is
then transformed into

NX

j=1

pjHij =

NX

j=1

qjGij (11)

where Hij =

1

2

�ij +

´
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q?d� and Gij =

´
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p?d� are

N2 matrix. Finally, the previous equation is reordered to
take the form of a linear system AX = F , where X is a
vector of N unknowns.

3.3 LEVEL SET METHOD
The moving front is captured using the signed-distance
function �, defined so that the zero level set corresponds
to the interface [6, 13]

�(t) =

�
(x, y) 2 R2/�(x, y, t) = 0

 
(12)

For each point under consideration, distance is signed neg-
ative if located in the impregnated area and positive oth-
erwise. We consider two meshes : a fixed grid made of
unstructured triangle elements and a moving mesh made
of beam elements.
Level Set equations [6, 13] govern the evolution of the
signed-distance function. To combine with BEM, we use



a formulation involving a propagating interface with a ve-
locity in its normal direction, given as follows

@�

@t
+ F |�!r�| = 0 (13)

�(x, y, t = 0) = �0 (14)
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where F is the extended normal velocity, built to coincide
with the velocity of the front (it is extrapolated outside
whithout physical meaning). The filling stage is initialized
by choosing �0 as the signed-distance to the inlet gates.
Next, values for each points are updated using an Euler
scheme

�(x, y, t + �t) = �(x, y, t)� F |�!r�|�t (15)

where �t is the time step, adjusted to match its upper limit
(CFL conditions).
For the sake of efficiency, � is not updated on the entire
grid, but only on few nodes around the front in a “narrow
band” [6]. Next, front is rebuilt using a boundary element
mesher, based on interpolating the zero level set on the
grid.
The method directly handles topological changes, involv-
ing merging or dividing fronts, but does not ensure that
the resin remains inside the mold. Contact with mold is
implemented using a fixed level set describing the mold
walls. It acts by correcting � as follows

� = max(�, �mold) (16)

where �mold is the signed-distance to the mold.

4 APPLICATIONS
4.1 ISOTROPIC RADIAL INJECTION
We consider here the standard case of an isotropic radial
injection, for a 0.25 m2 square plate. The resin enters the
part from the center and flows through the preform de-
scribing circular patterns. Four vents located on the cor-
ners ensure the complete filling. Material and processing
parameters are summerized in Tables 1 and 2.

Table 1: Material data

K[m2
] µ[Pa.s�1

] ⇢[kg.m�3
] ✏[�]

1.10

�9
0.1 1150 0.5

Table 2: Processing data

p0[Pa] pf [Pa] r0[m] g[m.s�2
]

2.10

5
1.10

5
2.5.10

�3
9.81

In the first case, gravity is neglected for a comparison with
an analytical solution [1, 10]. It is given as
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0
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where rf and r0 are the radii of the moving front and the
inlet gate, p0 and pf the inlet and outlet pressures. The
mold is meshed using 2500 triangle elements. CPU time is
around 20 s on a 2.26 GHz / 1.93 Go of RAM laptop. The
predicted filling time is 98 s. Our model is assessed by fit-
ting the numerical fronts using the analytically predicted
circles. Figure 1 shows the comparison between our nu-
merical results (left) and the analytical results (right). An-
alytical results (in bold lines) are overlaid on our results,
for 10.7 s and 63.3 s elapsed time. Using L1 norm leads
to the relative error of 2.1%, which shows the accuracy of
our numerical model.

Figure 1: Comparison with analytical solution

The second case takes into account gravity effects. On
Figure 2 we compare our results (left) with a FEM/VOF-
based code (PAM-RTMTM) (right) using the same mesh.
As expected, the flow is slightly deported in the lower
part of the plate. The predicted filling time is 101 s for
our simulation and 89 s for PAM-RTMTM, which shows
a good qualitative accordance. The difference is due to
the contact implementation which is different in Level Set
(see Equation 16) and VOF. Further developements will
improve the contact accuracy by refining the mesh on the
mold wall.

Figure 2: Comparison with FEM/VOF (PAM-RTMTM)

4.2 ANISOTROPIC INJECTION INVOLVING
COMPLEX SHAPES

We compared our numerical results with experimental
data, performing an infusion experiment involving a more
realistic case. It consisted in impregnating an anisotropic
knitted glass preform (1x1 rib knit fabric manufactured
by Textile Aero Tarn) using a canola oil. The reinforce-
ment (one layer) was placed under a transparent flexi-



ble bag and filled using two inlet gates and two vaccum
lines (on the upper and lower sides). The dimensions of
the mold are 0.3 m per 0.35 m. Some internal obstacles
were placed to simulate contacts with mold walls. Mate-
rial data (see reference [14] for measurement procedure)
and processing parameters are given in Tables 3 and 4.
CPU time is around 200 s for a model involving 3693 ele-
ments. Figure 3 shows the comparison between our results
(at the top) and experimental data (at the bottom) at differ-
ent times.The agreement is fair at any time. In particular,
fronts merging (at 3 s) and dividing on the obstacles (at 7

s) are accurately predicted.

Table 3: Material data

K1[m
2
] K2[m

2
] µ[Pa.s�1

] ✏

1.50.10

�9
7.75.10

�10
0.067 0.705

Table 4: Processing data

p0[Pa] pf [Pa] r0[m]

1.03.10

5
120 5.10

�3

Figure 3: Comparison with infusion experiment

5 CONCLUSION
We developed a software to predict a two-dimensional
resin impregnation for both isotropic and anisotropic
cases. Results were compared with an analytical so-
lution, a FEM/VOF-based simulation and experimental
data, with a fair agreement. The implemented model in-
cludes a gravity term, but it can easily be modified to
take into account other body forces. Further develope-
ments will include a 3D approach (technique remains un-
changed), and a high permeability layer to simulate infu-
sion process.
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