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ABSTRACT: g-Irradiated films could provoke unexpected interaction with proteins for instance just after irradiation and not necessar-

ily after 12 months indicating there is no more reactive species. The optical properties of two multilayer films [polyethylene (PE)/eth-

ylene vinyl alcohol (EVOH)/PE and ethylene vinyl acetate (EVA)/EVOH/EVA] after different g-irradiation doses is then studied in

this work. The investigation on these films, either non-irradiated or g-irradiated (up to 270 kGy), is performed by colorimetry mea-

surement over time (up to 12 months) to assess the generation of new species inside the materials. The color change is directly corre-

lated with absorbed g-doses. Over time, the color decreases and goes back to its initial time level. This discoloration evolution could

be therefore used as an indication of the completion of the generated species reactions induced by g-irradiation. VC 2018 Wiley Periodi-

cals, Inc. J. Appl. Polym. Sci. 2018, 135, 46114.
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INTRODUCTION

The use of single-use device in biopharmaceutical and biotech-

nological industries has become common nowadays. These devi-

ces include flexible containers made of multilayer films, which

can consist of polyethylene (PE), ethylene vinyl acetate (EVA),

and ethylene vinyl alcohol (EVOH). These polymers are used

for their flexibility and barrier properties.1 Single-use devices

are often used to store, ship, freeze, either processing biophar-

maceutical media such as buffer, or solutions containing active

pharmaceutical ingredients (API). One important feature of

these single-use devices is the transparency to check visually the

key quality attributes of the biopharmaceutical media. For

future use, these devices must be sterilized. g-Irradiation is the

most widely used sterilization process because of its high pene-

trating capability.2,3 Ionizing radiation effects on polymers have

been widely investigated, showing that chemical and physical

properties of single-use plastic containers under g-rays exposure

can undergo changes. These types of changes depend on many

factors, such as the type of plastic materials (chemical structure

and morphology of polymer), specific additives used inside the

plastic, radiation dose, and the irradiation atmosphere.4–16 It is

well known that the main effect of the interaction of g-rays

with polymers is the formation of free radicals, whose further

evolution can cause scission and/or crosslinking events,17,18 and

among other things: release of gases, discoloration, changes in

mechanical properties and gas permeability, degradation and

leaching of polymer additives into solvents, etc. This study is

then a part of a global investigation about the impact of the g-

irradiation on multilayer plastic films. An increase of the oxygen

permeability for instance could provoke an oxidation of sensi-

tive proteins leading to a decrease of the product quality and

even to health issues. The mechanical properties change could

become problematic when it causes trouble to the single use

system handling conducting to break and linkage due to a

potential increase of the film brittleness. Previous studies have

likewise shown that plastic film which is the main part consti-

tuting the single use devices can undergo oxidation leading to

the creation of carboxylic acids, ketones, and other oxygenated

species without structural damage.19–21 This oxidation and the

color change are inherent to polymers under g-irradiation and

cannot be avoided, whatever the stabilization package incorpo-

rated into the polymers. It is thereof crucial to identify the phe-

nomena responsible of the discoloration and to apprehend the
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VC 2018 Wiley Periodicals, Inc.

J. APPL. POLYM. SCI. 2018, DOI: 10.1002/APP.4611446114 (1 of 8)

http://orcid.org/0000-0001-9689-9847


impact that the discoloration root cause(s) can have afterward

on the product quality.

The g-irradiation of plastic bags can acquire thus undesirable

optical properties as a consequence of color formation. This

change of the optical property of the plastics could primarily

hinder handling properly the single-use devices to check the key

quality attributes of the stored media and is secondly a sign

that the discoloration of films after g-irradiation involves

changes inside the polymers. There are developments of chro-

mophore centers either in polymers or in additives. Several

authors propose that the discoloration can be attributed to the

formation of double bonds conjugated22 or the formation of

the by-products from hindered phenolic antioxidants (AOs).23,24

The phenolic AOs can undergo oxidative transformations to

quinoidal products with conjugated p-electrons. Klemchuck and

Horng25,26 have shown that the presence of phenolic AOs in

polymer contributes to the yellowness in comparison with poly-

mer containing no stabilizer. They have listed the ultraviolet

(UV) and visible absorption characteristics of by-products of

phenolic AOs. Previous study27 has shown that phenolic AO

undergoes a cascade of reaction through radical degradation

pathway. This study also showed that the some radicals’ lifetime

could be up to 3 months. The end of the radical lifetime could

indicate the end of any additive by-product transformations in

the system. It could indicate a state where any interactions

between single-use device and media or API are negligible. On

the other hand, another series of studies has shown that the cre-

ation of double bonds of the film surface constituting mainly

the single-use devices is weak. The film is wholly stable under

g-irradiation. The evolution of the material yellowness could be

used as a mean of monitoring primary and secondary AOs

transformation into by-products which could evolve overtime

into other species. The discoloration evolution could be used to

evaluate the by-products reactional scheme and involving radi-

cals and/or chemical rearrangements between species. The

migration of the new generated species will be then investigated

in another study. Two multilayer films are investigated after g-

irradiation at several doses, up to 270 kGy to exaggerate and to

better emphasize color modifications, and compared with a

non-irradiated sample used as reference. In parallel, the natural

ageing is evaluated up to 12 months to cover a large range of

storage periods in biotechnology applications.

EXPERIMENTAL

PE Film, EVA Film, and Additives

The structures of the multilayer film samples are depicted in

Figure 1. PE film is composed of PE and EVOH, with a thick-

ness of about 400 mm. EVA film is composed of EVA and

EVOH, with a thickness of �360 mm. The different layers of

these films contain additives including such as antiblocking

agents and AO (especially phenol, primary AOs, and phosphite,

secondary AOs28–30) for their stabilization during manufactur-

ing process and during their shelf life. The primary and second-

ary AOs commonly used in polyolefins stabilization and studied

in this article are depicted in Figure 2. The AOs are purchased

from Sigma Aldrich (Saint-Quentin-Fallavier, France) and are

stored at room temperature. They are used as received.

c-Irradiation

Sheets of PE film and EVA film are packed and wrapped in spe-

cific packaging (PE) and irradiated at room temperature in a
60Co g-source. The 60Co g-source provided a dose rate of 8–13

kGy/h as given by Synergy Health society (Marseille, France)

affording doses at 30 (61), 50 (61), 115 (62), and 270 (65)

kGy. A sterilization cycle corresponds �25 kGy. Desired dose is

obtained by several sterilization cycles, including a non-

controlled waiting time in non-controlled storage conditions

between each cycle. The first analyze is performed on the film

samples �5 days after g-irradiation. AOs are packed in vials

and irradiated in the same conditions than film samples but

only at 115 (62) and 270 (65) kGy.

Discoloration Measurement

The color is measured using a colorimeter BYK spectro guide

45/0. The principle is based on tristimulus measurement in

terms of lightness “L” from black to white, “a” from green (–)

to red (1), and “b” from blue (–) to yellow (1). The color

measurements are taken using a D65 illumination source with

an observation interval of 108. Illuminant D65 is intended to

represent average daylight. The spectral range corresponds to

400–700 nm with a resolution of 10 nm. The coding L, a, b of

color space has been established in 1976 by the CIE (Commis-

sion Internationale de l’Eclairage) to define a color. The quanti-

fication of color is discussed by several authors.31,32

Colorimetric parameters L, a, b, and visible spectra are deter-

mined for irradiated and non-irradiated samples. The visible

spectra of AOs are also recorded to complete the observations

done on visible spectra of film samples. The visible spectra are

presented in absorbance. Moreover, this study is led over time;

recordings of film discoloration are performed up to 12 months

after g-irradiation. The measurements are directly performed on

three batches of PE film and on three batches of EVA film. For

each condition of ageing and g-irradiation dose, the non-sterile

sample is taken as the reference.

Figure 1. Structure of PE film (top) and EVA film (bottom). [Color figure

can be viewed at wileyonlinelibrary.com]
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The visible spectra of AOs in solid form are recorded at t0,

which corresponds at the moment after g-irradiation and at

two years (t2y) after g-irradiation. The AOs are introduced in

2 mm thickness cell before recording spectra. Thus, the spectra

obtained correspond to high concentration of AOs compared to

their proportion in films. To ensure good reproducible measure-

ments, the values reported are the average of five experiments

given directly by the device.

Principal Component Analysis and Software

Principal component analysis (PCA) is used here as an explor-

atory data analysis. PCA19,20,33 is a variable reduction technique

used to reduce a larger set of variables into a smaller set of vari-

ables called “principal component.” The principal components

represent the most variance in the original variables. All compu-

tations were performed using SIMCA 14.1

Infra-red

Samples were directly deposited onto the Bruker “Golden Gate”

attenuated total reflectance (ATR) accessory provided with a

diamond crystal. The spectra for each film sample were

recorded from 4000 to 650 cm21, with 4 cm21 resolution and

64 scans, on a Thermo Nicolet Avatar spectrometer equipped

with a MCT/A detector, an Ever-Glo source, and a KBr/germa-

nium beam splitter. The spectrometer was placed in an air-

conditioned room at 21 8C. A background scan in air (under

the same resolution and scanning conditions as those used for

the samples) was carried out before three or five sets of acquisi-

tion. The ATR plate was cleaned in situ by scrubbing with an

ethanol solution to remove any residual traces of the previous

sample. Cleanliness was checked by recording a background

spectrum.

RESULTS AND DISCUSSION

Antioxidants

As the discoloration of films after g-irradiation involves the

development of chromophore centers either in polymers or in

additives, we have presently studied four phenolic primary and

secondary AO involved either in PE or EVA films. The evolution

of visible spectra of AOs g-irradiated at several doses has been

recorded up to 2 years (Figure 4). It could thus afford valuable

insights of the event occurring in the multilayer films. The non-

irradiated pure AOs exhibit weak absorption in the visible

range. AO-1 non-irradiated absorbs more than other AOs (0.2

absorbance for AO-1 vs. �0.15 absorbance for AO-2, AO-3, and

AO-4). The g-irradiation induces a modification of the color

for the four AOs (Figure 3). All of them present an increase of

the absorption. The AO-1, AO-2, and AO-3 present a main

absorption between 500 and 680 nm and all of them present an

absorption in the 400–450 nm range. This explains the color

difference among the four AOs: AO-1, AO-2, and AO-3 are blue

and AO-4 is yellow. The maximal absorption for the four AOs

is at 400 nm letting us to presume that the four AOs absorb in

UV. The AO-1 absorptions generated by the g-irradiation are

constant up to 2 years as shown in Figure 4. The molecules gen-

erated from AO-1 after g-irradiation are more stable than from

the other AOs. The absorptions of the AO-2, AO-3, and AO-4

decrease over time. The AO-3 and AO-4 absorptions decrease

rapidly over time compared to the one of the AO-2. The discol-

oration of AOs is due to their conjugated byproducts

Figure 2. Structure of primary and secondary AOs: AO-1: 2,6-di-tert-butyl-p-cresol, AO-2: pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl)-

propionate), AO-3: octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, AO-4: tris (2,4-di-tert-butylphenyl)phosphite.

Figure 3. Photographies of non-irradiated and irradiated AOs at t0. For each AO, the five tubes correspond respectively to samples irradiated at 0, 30,

50, 115, and 270 kGy (from left to right). [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 4. Visible spectra of AOs over time. (a) AO-1, (b) AO-2, (c) AO-3, (d) AO-4. t0 5 initial time after g-irradiation, t2y 5 2 years after

g-irradiation. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. FTIR spectra of AOs gamma irradiated at several doses: (a) AO-1, (b) AO-2, (c) AO-3, (d) AO-4. [Color figure can be viewed at wileyonlinelibrary.com]
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(Supporting Information Figures 1 and 2).26,34 The degradation

of the AO-4 is not prone to lead colored conjugated by-

product.

These results are in concordance with the monitoring of radi-

cals27 where the ESR signal was stable for the four AOs up to 1

year. The AO-1 presented the highest ESR (5 3 1019 molecules/

mg at 270 kGy) signal in link with the highest absorbance while

the AO-4 presented the lowest ESR signal (1018 radicals/mg at

270 kGy). The spectroscopic study (Figure 5) shows there is no

difference between non-irradiated and irradiated AOs indicating

that the quantity of transformed molecules is weak and below

the sensitivity of this spectroscopic method (<2%). In the Fou-

rier transform infrared (FTIR) spectra, there is no apparition or

no evolution of the carbonyl band at 1730–1760 cm21, which is

a key moiety in the colored molecules (Supporting Information

Figures 1 and 2). The number of colored molecules formed and

thereof the corresponding number of radicals at the origin of

their formation is weak in accordance with the ESR signal.

PE Film

The visible spectra of PE film at various g-irradiation doses up

to 12 months are displayed in Figure 6. The intensity of the

bands 525–625 nm in Figure 4(b) decreases over time compared

to the same bands recording at t0 shown in Figure 4(a). At t0

the non-sterile film (i.e., 0 kGy) is the sample presenting the

lowest absorption, especially in area 400–475 nm, so the less

colored film. In order to emphasize the evolution of color, a

PCA is performed on the visible spectra (400–700 nm range)

recorded at 0, 30, 50, 115, and 270 kGy and over time.

The PCA performed on visible spectra (Figure 7) shows that the

two first components explain 89% of the data variation. The

first component (66%) (Figure 7) could be associated to g-

irradiation. The spectra obtained for high g-doses are negatively

projected since the ones corresponding to the low g-doses are

positively projected. One can see on the second component

(23%) [Supporting Information Figure 3(a)] an effect of the

natural ageing, essentially for short times, with a major observa-

tion that the effect does not seem to be continuous in time.

This evolution is respected whatever is the g-irradiation dose

but not equivalent among the different g-irradiation doses. The

loading of PC1 [Supporting Information Figure 3(c)] shows

that bands between 400 and 500 nm are more intense for the

old ageing times. The scores plot representing the batches [Sup-

porting Information Figure 3(b)] displays that there is no influ-

ence of batch. All batches behave in the same way. This area

corresponds to violet-blue zone, which corresponds to the first

absorption of AOs. For the AOs, the decrease of the absorption

in 400–500 nm area is the lowest. As AO-1 absorption does not

decrease over time and as the whole film absorption decreases

over time, thus the AO-1 concentration is too weak to be

detected. Conjugated bonds on the polymer backbone are not

observed in agreement with previous study.20 The changes

observed under g-irradiation by infrared spectroscopy concern

the carboxylic acids and non-conjugated unsaturated com-

pounds on the film surface. If there is a migration of by-

products from the core to the surface, then it is in trace

amounts and therefore not visible by ATR-FTIR. According to

Electron Spin Resonance (ESR) study,27 radicals were observed

during 3 months in PE-film which corresponds to the disap-

pearance of the color component (500–600 nm). We can see

here that there is a link between the end of the shelf-life of the

radical, the end of the phenolic by-product transformation, and

the end of the discoloration evolution. It could give thus an

indication that interaction between single-use devices and

Figure 6. Visible spectra of PE film: (a) at t0 and irradiated at all g-doses,

(b) at t12months at all g-doses. [Color figure can be viewed at wileyonli-

nelibrary.com]

Figure 7. PCA of visible spectra of PE film: Scores plot with g-dose labels

(in kGy). [Color figure can be viewed at wileyonlinelibrary.com]
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sensitive API could be minimized when there is a stabilization

of the discoloration that is to say between 100 and 150 days.

EVA Film

The visible spectra of EVA film at various g-irradiation doses

are represented in Figure 6. There is no change in the band

intensity over time [Figure 6(a,b)].The spectra obtained at the

same time at different doses are similar to naked eye [Figure

4(a,b)]. In order to emphasize the evolution of color, a PCA is

performed on the visible spectra (400–700 nm range) recorded

at 0, 30, 50, 115, and 270 kGy and over time.

The PCA performed on visible spectra shows different groups

organized according to the g-doses (Figure 9) under the first

component. The two first components explain 75% of the vari-

ance. Concerning the g-doses, there is an organization from

right to the left ranking the samples according to the absorbed

dose (Figure 9): the samples irradiated at high doses are placed

at left and the samples irradiated at low doses and non-

irradiated are placed at right. Regarding the corresponding load-

ing [Supporting Information Figure 4(c), component 1], the

samples irradiated at high g-doses present an increase of the

absorption in blue zone (400–440 nm and 490 nm). This evolu-

tion is in good agreement with the evolution of the AO-1, AO-

2, AO-3, and AO-4. There is no ageing effect [Supporting Infor-

mation Figure 4(a)] or batch effect [Supporting Information

Figure 4(b)]. Conjugated bonds on the polymer backbone are

not observed in accordance with a previous study.19 Through

infrared spectroscopy, no structural change is observed on EVA-

film19 and there is not ESR signal whatever the g-doses and the

ageing time.

Monitoring of the AO Behavior After c-Irradiation in Films

A typical stabilization package for polyolefin will usually consist

of a phenol, a phosphite, and an antacid/slip agent (zinc stea-

rate, calcium stearate, oleamide, or erucamide, etc.).35 Many

additives will thus degrade into by-products contributing to dis-

coloration.26,34,36 We will monitor the AO behavior after g-

irradiation through the discoloration in films. The yellowing

index (YI) over time for the PE film is represented in Figure 10.

For a fixed due date, the YI increases with the g-doses. The YI

decreases over time until reaching a plateau (steady state) after

the 5th month. Just after g-irradiation the film samples have a

color change, with a yellowing trend. It decreases during four

months and then forms a plateau. These observations mean

that there are groups produced during g-irradiation, which are

responsible for the color change. These groups are probably

conjugated systems. Once the discoloration reaches the plateau,

Figure 8. Visible spectra of EVA film: (a) at t0 and irradiated at all g-

doses, (b) at t12months at all g-doses. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 9. PCA of visible spectra of EVA film: Scores plot of PCA with g-

dose labels. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 10. Evolution of YI of the PE film over time and g-irradiated at

several doses. [Color figure can be viewed at wileyonlinelibrary.com]
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it would mean that all reactive species such as radicals and per-

oxides have disappeared.

Another way of monitoring the yellowing evolution shown in

Figure 10 in films is possible by performing a PCA directly on

L, a, b values (Figure 11) as the YI is calculated from these L, a,

b values.

Figure 11 represents the correlation loading according with g-

doses labels or ageing labels. The two first components explain

96% of the variance in the dataset. The a and b variables are

anti-correlated, the b and L, and the a and L are almost non-

correlated. The variable b is essentially correlated with old age-

ing (t7m and t12m). We can remark that the t12m group gets

closer to t0: there is a reversion over time. This means that after

some time, the groups responsible for color change are

degraded into groups not colored.

The visible spectra of AOs (Figure 4) can help explain some

observations done with the PCA in Figure 11. From the visible

spectra of AOs, they absorb in the 400 and 500 nm zone, as

film samples do. It means that the results of PCA depicted in

Figure 11 are correlated with the irradiated AO molecules

responsible for color change. The absorbance intensity decreases

over time for AO-2, AO-3, and AO-4. Only the absorbance

intensity of AO-1 stays stable over time. The molecules gener-

ated from AO-1 after g-irradiation are more stable than from

the other AOs. The transformation of radical scavenging

compounds is then finished. The steadiness of the discoloration

is as well in line with the annihilation of the radical27 present in

the material followed by ESR (Figure 12).

The YI for the EVA film over time is represented in Figure 13.

As for the PE film, the YI increases with the g-doses for a fixed

due date. There is an important standard deviation due to the

non-smooth surface of this film.

Figure 14 represents the correlation loading according to ageing

labels. The a and b variables are anti-correlated, the b and L, and

the a and L are almost non-correlated. As for the PE film, the var-

iable b is correlated with old ageing (t5m, t6m and t7m), except

the t12m group. There is a reversion over time indicating that the

yellowing discoloration is not a permanent state after the g-

irradiation. The g-irradiation induced modifications in the EVA-

film progress non-linearly with time which could be due to the

formation and transformation of colored species, in accordance

with previous study21 where modification were monitored with

spectroscopic tools. Monitoring the discoloration of films

through the YI is therefore a hint to apprehend the end of the AO

transformation pathway.

Figure 11. PCA and correlation loading of L, a, b values on PE film. Vari-

able weight is 1/standard deviation. (a) With g-doses labels, (b) with age-

ing labels FILM. Ellipses represent respectively 50%, 75%, 100% of the

correlation. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 12. Overtime evolution of the discoloration evaluated through the

YI calculated from L, a, b measurements in parallel to the radical species

content in the PE film g-irradiated at 270 kGy. [Color figure can be

viewed at wileyonlinelibrary.com]

Figure 13. Evolution of YI of the EVA film over time and g-irradiated at

several doses. [Color figure can be viewed at wileyonlinelibrary.com]
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CONCLUSIONS

This study highlighted the color change occurring on two g-

irradiated multilayer films followed over time. Globally, the films

and additives are impacted by the g-irradiation. This change is

mainly correlated with the g-dose and the ageing slightly influences

the film color change. However, this change is not proportional

over time and shows a trend to come back to the initial state. These

observations mean that during g-irradiation compounds having

chromophore groups are mainly due to the generation of AO

byproducts. We did not observe conjugated bonds on the polymer

backbone. These observations can be made whatever the film batch

studied. The chromophore compounds are not stable over time

and are degraded into new compounds without powerful chromo-

phore groups. This could indicate the end of radical scavenging

species transformation inside the films. The discoloration change

and evolution could be thus a method to monitor the evolution of

the AOs and their by-products revealing then the presence of reac-

tive species such as radicals and peroxides.
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