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Abstract

The minimal standardizer of a curve system on a punctured disk is the minimal positive
braid that transforms it into a system formed only by round curves. In this article, we
give an algorithm to compute it in a geometrical way. Then, we generalize this problem
algebraically to parabolic subgroups of Artin–Tits groups of spherical type and we show
that, to compute the minimal standardizer of a parabolic subgroup, it suffices to compute
the pn-normal form of a particular central element.

1 Introduction

Let D be the disk in C with diameter the real segment [0, n+ 1] and let Dn = D \ {1, . . . , n} be
the n-punctured disk. The n-strand braid group, Bn, can be identified with the mapping class
group of Dn relative to its boundary ∂Dn. Bn acts on the right on the set of isotopy classes of
simple closed curves in the interior of Dn. The result of the action of a braid α on the isotopy
class C of a curve C will be denoted by Cα and it is represented by the image of the curve C
under any automorphism of Dn representing α. We say that a curve is non-degenerate if it is
not homotopic to a puncture, to a point or to the boundary of Dn, in other words, if it encloses
more than one and less than n punctures. A curve system is a collection of isotopy classes of
disjoint non-degenerate simple closed curves, that are pairwise non-isotopic.

Curve systems are very important as they allow to use geometric tools to study braids.
From Nielsen-Thurston theory [21], every braid can be decomposed along a curve system, so
that each component becomes either periodic or pseudo-Anosov. The simplest possible scenario
appears when the curve is standard :

Definition 1. A simple closed curve in Dn is called standard if it is isotopic to a circle centered
at the real axis. A curve system containing only isotopy classes of standard curves is called
standard.

Every curve system can be transformed into a standard one by the action of a braid, as we
shall see. Let B+

n be the submonoid of Bn of positive braids, generated by σ1, . . . , σn−1 [1]. We
can define a partial order 4 on Bn, called prefix order, as follows: for α, β ∈ Bn, α 4 β if there
is γ ∈ B+

n such that αγ = β. This partial order endows Bn with a lattice structure, i.e., for
each pair α, β ∈ Bn, their gcd α ∧β and their lcm α ∨β with respect to 4 exist and are unique.
Symmetrically, we can define the suffix order < as follows: for α, β ∈ Bn, β < α if there is
γ ∈ B+

n such that γα = β. We will focus on Bn as a lattice with respect to 4, and we remark
that B+

n is a sublattice of Bn. In 2008, Lee and Lee proved the following:

Theorem 2 ([17, Theorem 4.2]). Given a curve system S in Dn, its set of standardizers

St(S) = {α ∈ B+
n : Sα is standard }

1
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is a sublattice of B+
n . Therefore, St(S) contains a unique 4-minimal element.

The first aim of this paper is to give a direct algorithm to compute the 4-minimal element
of St(S), for a curve system S. The algorithm, explained in Section 4, is inspired by Dynnikov
and Wiest’s algorithm to compute a braid given its curve diagram [10] and the modifications
made in [4].

The second aim of the paper is to solve the analogous problem for Artin–Tits groups of
spherical type.

Definition 3. Let Σ be a finite set of generators and M = (ms,t)s,t∈Σ a symmetric matrix with
ms,s = 1 and ms,t ∈ {2, . . . ,∞} for s 6= t. The Artin–Tits system associated to M is (A,Σ),
where A is a group (called Artin–Tits group) with the following presentation

A = 〈Σ | sts . . .︸ ︷︷ ︸
ms,t elements

= tst . . .︸ ︷︷ ︸
ms,t elements

∀s, t ∈ Σ, s 6= t, ms,t 6=∞〉.

For instance, Bn has the following presentation [1]

Bn =

〈
σ1, . . . , σn−1

σiσj = σjσi, |i− j| > 1
σiσjσi = σjσiσj , |i− j| = 1

〉
.

The Coxeter group W associated to (A,Σ) can be obtained by adding the relations s2 = 1:

W = 〈Σ | s2 = 1∀i ∈ Σ; sts . . .︸ ︷︷ ︸
ms,t elements

= tst . . .︸ ︷︷ ︸
ms,t elements

∀s, t ∈ Σ, s 6= t, ms,t 6=∞〉.

If W is finite, the corresponding Artin–Tits group is said to have spherical type. We will just
consider Artin–Tits groups of spherical type, assuming that a spherical type Artin–Tits system
is fixed. If A cannot be decomposed as direct product of non-trivial Artin–Tits groups, we say
that A is irreducible. Irreducible Artin–Tits groups of spherical type are completely classified
[6].

Let A be an Artin–Tits group of spherical type. A standard parabolic subgroup, AX , is the
subgroup generated by some X ⊆ Σ. A subgroup P is called parabolic if it is conjugate to a
standard parabolic subgroup, that is, P = α−1AY α for some standard parabolic subgroup AY
and some α ∈ A. Notice that we may have P = α−1AY α = β−1AZβ for distinct Y,Z ⊂ Σ and
distinct α, β ∈ A. We will write P = (Y, α) to express that AY and α are known data defining
the parabolic subgroup P .

There is a natural way to associate a parabolic subgroup of Bn to a curve system. Suppose
that A = Bn and let AX be the standard parabolic subgroup generated by {σi, σi+1, . . . , σj} ⊆
{σ1, . . . , σn−1}. Let C be the isotopy class of the circle enclosing the punctures i, . . . , j + 1 in
Dn. Then AX fixes C and we will say that that AX is the parabolic subgroup associated to C.
Suppose that there is some curve system C′, such that C′ = Cα for some α ∈ Bn. Then α−1AXα
fixes it and we say that α−1AXα is its associated parabolic subgroup. The parabolic subgroup
associated to a system of non-nested curves is the direct sum of the subgroups associated to each
curve. Notice that this is a well defined subgroup of Bn, as the involved subgroups commute.
Therefore, we can talk about parabolic subgroups instead talking about curves. Most of the
results for curves on Dn that can be translate in terms of parabolic subgroups can also be extend
to every Artin–Tits group of spherical type. That is why parabolic subgroups play a similar
role, in Artin–Tits groups, to the one played by systems of curves in Bn.

Our second purpose in this paper is to give a fast and simple algorithm to compute the
minimal positive element that conjugates a given parabolic subgroup to a standard parabolic
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subgroup. The central Garside element of a standard parabolic subgroup AX will be denoted
by cX and is to be defined in the next section.

Having a generic parabolic subgroup, P = (X,α), the central Garside element will be
denoted by cP . We also define the minimal standardizer of the parabolic subgroup P = (X,α)
to be the minimal positive element that conjugates P to a standard parabolic subgroup. The
existence and uniqueness of this element will be shown in this paper. Keep in mind that the
pn-normal form of an element is a particular decomposition of the form ab−1, where a and b
are positive and have no common suffix. The main result of this paper is the following:

Theorem 37 Let P = (X,α) be a parabolic subgroup. If cP = ab−1 is in pn-normal form,
then b is the minimal standardizer of P .

Thus, the algorithm will take a parabolic subgroup P = (X,α) and will just compute the
normal form of its central Garside element cP , obtaining immediately the minimal standardizer
of P .

The paper will be structured in the following way: In Section 2 some results and concepts
about Garside theory will be recalled. In Sections 3 and 4 the algorithm for braids will be
explained. In Section 5 the algorithm for Artin–Tits groups will be described and, finally, in
Section 6 we will bound the complexity of both procedures.

2 Preliminaries about Garside theory

Let us briefly recall some concepts from Garside theory (for a general reference, see [9]). A
group G is called a Garside group with Garside structure (G,P,∆) if it admits a submonoid
P of positive elements such that P ∩ P−1 = {1} and a special element ∆ ∈ P, called Garside
element, with the following properties:

• There is a partial order in G, 4, defined by a 4 b ⇔ a−1b ∈ P such that for all a, b ∈ G
it exists a unique gcd a∧ b and a unique lcm a∨ b with respect to 4. This order is called
prefix order and it is invariant under left-multiplication.

• The set of simple elements [1,∆] = {a ∈ G | 1 4 a 4 ∆} generates G.

• ∆−1P∆ = P.

• P is atomic: If we define the set of atoms as the set of elements a ∈ P such that there are
no non-trivial elements b, c ∈ P such that a = bc, then for every x ∈ P there is an upper
bound on the number of atoms in a decomposition of the form x = a1a2 · · · an, where each
ai is an atom.

The conjugate by ∆ of an element x will be denoted τ(x) = x∆ = ∆−1x∆.
In a Garside group, the monoid P also induces a partial order invariant under right-

multiplication, the suffix order <. This order is defined by a < b ⇔ ab−1 ∈ P, and for all
a, b ∈ G there exists a unique gcd (a ∧� b) and a unique lcm (a ∨� b) with respect to <. We say
that a Garside group has finite type if [1,∆] is finite. It is well known that Artin–Tits groups
of spherical type admit a Garside structure of finite type [2, 9]. Moreover:

Definition 4. We define the right complement of a simple element a as ∂(a) = a−1∆ and the
left complement as ∂−1(a) = ∆a−1.

Remark 5. Observe that ∂2 = τ and that, if a is simple, then ∂(a) is also simple, i.e.,
1 4 ∂(a) 4 ∆. Both claims follow from ∂(a)τ(a) = ∂(a)∆−1a∆ = ∆ since ∂(a) and
τ(a) are positive.
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Definition 6. Given two simple elements a, b, the product a · b is said to be in left (resp. right)
normal form if ab ∧∆ = a (resp. ab ∧� ∆ = b). The latter is equivalent to ∂(a) ∧ b = 1 (resp.
a ∧� ∂−1(b) = 1).

We say that x = ∆kx1 · · ·xr is in left normal form if k ∈ Z, xi /∈ {1,∆} is a simple element
for i = 1, . . . , r, and xixi+1 is in left normal form for 0 < i < r.

Analogously, x = x1 · · ·xr∆k is in right normal form if k ∈ Z, xi /∈ {1,∆} is a simple
element for i = 1, . . . , r, and xixi+1 is in right normal form for 0 < i < r.

It is well known that the normal form of an element is unique [9, Corollary 7.5]. Moreover, the
numbers r and k do not depend on the normal form (left or right). We define the infimum, the
canonical length and the supremum of x respectively as inf(x) = k, `(x) = r and sup(x) = k+r.

Let a and b be two simple elements such that a · b is in left normal form. One can write
its inverse as b−1a−1 = ∆−2∂−3(b)∂−1(a). This is in left normal form because ∂−1(b)∂(a) is in
normal form by definition and τ = ∂2 preserves 4. More generally (see [11]), if x = ∆kx1 · · ·xr
is in left normal form, then the left normal form of x−1 is

x−1 = ∆−(k+r)∂−2(k+r−1)−1(xr)∂
−2(k+r−2)−1(xr−1) · · · ∂−2k−1(x1)

For a right normal form, x = x1 · · ·xr∆k, the right normal form of x−1 is:

x−1 = ∂2k+1(xr)∂
2(k+1)+1(xr−1) · · · ∂2(k+r−1)+1(x1)∆−(k+r)

Definition 7 ([5, Theorem 2.6]). Let a, b ∈ P, then x = a−1b is said to be in np-normal form
if a ∧ b = 1. Similarly, we say that x = ab−1 is in pn-normal form if a ∧� b = 1.

Definition 8. Let ∆kx1 · · ·xr with r > 0 be the left normal form of x. We define the initial
and the final factor respectively as ι(x) = τ−k(x1) and ϕ(x) = xr. We will say that x is rigid if
ϕ(x) · ι(x) is in left normal form or if r = 0.

Definition 9 ([11],[15, Definition 8]). Let ∆kx1 · · ·xr with r > 0 be the left normal form of x.
The cycling of x is defined as

c(x) = xι(x) = ∆kx2 · · ·xrι(x).

The decycling of x is d(x) = x(ϕ(x)−1) = ϕ(x)∆kx1 . . . xr−1. We also define the preferred prefix
of x as

p(x) = ι(x) ∧ ι(x−1).

The cyclic sliding of x is defined as the conjugate of x by its preferred prefix:

s(x) = xp(x) = p(x)−1xp(x).

Let G be a Garside group. For x ∈ G, infs(x) and sups(x) denote respectively the maximal
infimum and the minimal supremum in the conjugacy class xG.

• The super summit set [11, 20] of x is

SSS(x) = {y ∈ xG | ` is minimal in xG}
= {y ∈ xG | inf(y) = infs(y) and sup(y) = sups(y)}

• The ultra summit set of x [13, Definition 1.17] is

USS(x) = {y ∈ SSS(x) | cm(y) = y for some m ≥ 1}
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• The set of sliding circuits of x [15, Definition 9] is

SC(x) = {y ∈ xG | sm(y) = y for some m ≥ 1}

These sets are finite if the set of simple elements is finite and their computation is very
useful to solve the conjugacy problem in Garside groups. They satisfy the following inclusions:

SSS(x) ⊇ USS(x) ⊇ SC(x).

2.1 The braid group, Bn

A braid with n strands can be seen as a collection of n disjoint paths in a cylinder, defined up
to isotopy, joining n points at the top with n points at the bottom, running monotonically in
the vertical direction.

Each generator σi represents a crossing between the strands in positions i and i + 1 with
a fixed orientation. The generator σ−1

i represents the crossing of the same strands with the
opposite orientation. When considering a braid as a mapping class of Dn, these crossings are
identified with the swap of two punctures in Dn (See Figure 1).

σ1

σ−1
2

Figure 1: The braid σ1σ
−1
2 and how it acts on a curve in D3.

Remark 10. The standard Garside structure of the braid group Bn is (Bn, B
+
n ,∆n) where

∆n = σ1 ∨ · · · ∨ σn−1 = (σ1σ2 · · ·σn−1)(σ1σ2 · · ·σn−2) · · · (σ1σ2)σ1

The simple elements in this case are also called permutation braids [11], because the set of
simple braids is in one-to-one correspondence with the set of permutations of n elements. Later
we will use the following result:

Lemma 11 ([11, Lemma 2.4]). Let s be a simple braid. Strands j and j + 1 cross in s if and
only if σj 4 s.

3 Detecting bending points

In order to describe a non-degenerate closed curve C in Dn, we will use a notation introduced
in [12]. Recall that Dn has diameter [0, n + 1] and that the punctures of Dn are placed at
1, 2, . . . , n ∈ R. Choose a point on C lying on the real axis and choose an orientation for C. We
will obtain a word W (C) representing C, on the alphabet {^,_, 0, 1, . . . , n}, by running along
the curve, starting and finishing at the chosen point. We write down a symbol ^ for each arc
on the lower half plane, a symbol _ for each arc on the upper half plane, and a number m for
each intersection of C with the real segment (m,m+ 1). An example is provided in Figure 2.
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Figure 2: W (C) = 0 _ 6 ^ 4 _ 2 ^ 1 _ 4 ^ 5 _ 1 ^.

For an isotopy class of curves C, W (C) is the word associated to a reduced representative Cred,
i.e., a curve in C which has minimal intersection with the real axis. Cred is unique up to isotopy
of Dn fixing the real diameter setwise [12], and W (C) is unique up to cyclic permutation and
reversing.

Remark 12. Notice that if a curve C does not have minimal intersection with the real axis,
then W (C) contains a subword, up to reversal and cylic permutation, of the form p ^ p _ or
p _ p ^. Hence, the curve can be isotoped by “pushing” this arc in order not to intersect the
real axis. This is equivalent to removing the subword mentioned before from W (C). In fact, we
will obtain W (C) by removing all subwords of this kind from W (C). The process of removing
p ^ p _ (resp. p _ p ^) from W (C) is called relaxation of the arc p ^ p (resp. p _ p).

Definition 13. Let C be a non-degenerate simple closed curve. We say that there is a bending
point (resp. reversed bending point) of C at j if we can find in W (C), up to cyclic permutation
and reversing, a subword of the form i _ j ^ k (resp. i ^ j _ k) for some 0 ≤ i < j < k ≤ n
(Figure 3).

We say that a curve system has a bending point at j if one of its curves has a bending point
at j.

i+ 1 j j + 1 k

C

Figure 3: A bending point at j in a curve C.

The algorithm we give in Section 4 takes a curve system S and “untangles” it in the shortest
(positive) way. That is, it gives the shortest positive braid α such that Sα is standard, i.e.,
the minimal element in St(S). Bending points are the key ingredient of the algorithm. We
will show that if a curve system S has a bending point at j, then σj is a prefix of the minimal
element in St(S). This will allow to untangle S by looking for bending points and applying the
corresponding σj to the curve until no bending point is found. The aim of this section is to
describe a suitable input for this algorithm and to show the following result.
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Proposition 14. A curve system is standard if and only if its reduced representative has no
bending points.

3.1 Dynnikov coordinates

We have just described a non-degenerate simple closed curve in Dn by means of the word W (C).
There is a different and usually much shorter way to determine a curve system S in Dn: its
Dynnikov coordinates [8, Chapter 12]. The method to establish the coordinates of C is as
follows. Take a triangulation of Dn as in Figure 4 and let xi be the number of times the
curve system S intersects the edge ei. The Dynnikov coordinates of the curve system are given
by the t-uple (x0, x1, . . . , x3n−4). There exists a reduced version of these coordinates, namely
(a0, b0, . . . , an−1, bn−1), where

ai =
x3i−1 − x3i

2
, bi =

x3i−2 − x3i+1

2
, ∀i = 1, ..., n− 2

and a0 = an−1 = 0, b0 = −x0 and bn−1 = x3n−4. See an example in Figure 5.

1 2 3 n− 1 ne0 e3n−4

e2 e5 e3n−7

e1 e3 e4 e6 e3n−6 e3n−5

Figure 4: Triangulation used to define Dynnikov coordinates.

Furthermore, there are formulae determining how these coordinates change when applying
σ±1
j , to the corresponding curve, for 0 < j < n.

Proposition 15 ([7, Proposition 8.5.4]). For c = (a0, b0, . . . , an−1, bn−1), we have

cσ
−1
k = (a′0, b

′
0, . . . , a

′
n−1, b

′
n−1),

with a′j = aj , b
′
j = bj for j 6∈ {k − 1, k}, and

a′k−1 = ak−1 + (δ+ + bk−1)+,

a′k = ak − (δ+ − bk)+,
b′k−1 = bk−1 − (−δ′)+ + δ+,
b′k = bk + (−δ′)+ − δ+,

where δ = ak − ak−1, δ′ = a′k − a′k−1 and x+ = max(0, x).
We also have

cσk = cλσ
−1
k λ

with (a1, b1, . . . , an−1, bn−1)λ = (−a1, b1, . . . ,−an−1, bn−1).

Remark 16. Notice that the use of σ−1
k in the first equation above is due to the orientation of

the strands crossings that we are taking for our braids (see Figure 1), which is the opposite of
the orientation used in [7].
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Figure 5: The Dynnikov coordinates and reduced Dynnikov coordinates of C are, respectively,
(x0, . . . , x8) = (1, 2, 4, 2, 6, 9, 3, 12, 6); (a0, b0, a1, b1, a2, b2, a3, b3) = (0,−1, 1,−2, 3,−3, 0, 6).

Let us see how to detect a bending point of a curve system S with these coordinates. First
of all, notice that there cannot be a bending point at 0 or at n. It is easy to check that there is a
bending point at 1 if and only if x2 < x3 (Figure 6a). Actually, if R is the number of subwords
of type 0 _ 1 ^ k for some 1 < k ≤ n, then x3 = x2 + 2R. Symmetrically, there is a bending
point at n− 1 if and only if x3n−6 < x3n−7.

e0

e2

e1 e3

1 2

(a) A bending point at 1.

i i+ 1

e3i−4 e3i−1

e3ie3i−2e3i−3

(b) A bending point at i.

Figure 6: Detecting bending points with Dynnikov coordinates.

A bending point at i, for 1 < i < n − 1, is detected by comparing the coordinates ai−1

and ai (Figure 6b). Notice that arcs not intersecting e3i−2 affect neither ai−1 nor ai, and arcs
not intersecting the real line do not affect the difference ai−1 − ai. Hence, there is a bending
point of S at i if and only if ai−1 − ai > 0. Using a similar argument we can prove that there
is a reversed bending point of S at i if and only if ai−1 − ai < 0. Moreover, each bending point
(resp. reversed bending point) at i increases (resp. decreases) by 1 the difference ai−1− ai. We
have just shown the following result:

Lemma 17 (Bending point with Dynnikov coordinates). Let S be a curve system on Dn with
reduced Dynnikov coordinates (a0, b0, . . . , an−1, bn−1). For j = 1, . . . , n − 1 there are exactly
R ≥ 0 bending points (resp. reversed bending points) of S at j if and only if aj−1 − aj = R
(resp. aj−1 − aj = −R) .

Lemma 18. Let S be a curve system as above. Then S is symmetric with respect to the real
axis if and only if ai = 0, for 0 < i < n.

Proof. Just notice that a symmetry with respect to the real axis does not affect b-coordinates
and changes the sign of every ai, for 0 < i < n.
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Lemma 19. A curve system is standard if and only if it is symmetric with respect to the real
axis.

Proof. For every m = 0, . . . , n, we can order the finite number of elements in S ∩ (m,m + 1)
from left to right, as real numbers. Given an arc a _ b in W (S), suppose that it joins the i-th
element in S ∩ (a, a+ 1) with the j-th element in S ∩ (b, b+ 1). The symmetry with respect to
the real axis preserves the order of the intersections with the real line, hence the image a ^ b
of the above upper arc will also join the i-th element in S ∩ (a, a + 1) with the j-th element
in S ∩ (b, b + 1). This implies that both arcs a _ b and a ^ b form a single standard curve
a _ b ^. As this can be done for every upper arc in S, it follows that S is standard.

Proof of Proposition 14. If the curve system is standard, then it clearly has no bending
points. Conversely, if it has no bending points, by Lemma 17 the sequence a0, . . . , an−1 is non-
decreasing, starting and ending at 0, so it is constant. By Lemmas 18 and 19, the curve system
is standard.

�

4 Standardizing a curve system

We will now describe an algorithm which takes a curve system S, given in reduced Dynnikov
coordinates, and finds the minimal element in St(S). The algorithm will do the following: Start
with β = 1. Check whether the curve has a bending point at j. If so, multiply β by σj and
restart the process with Sσj . A simple example is provided in Figure 7. The formal way is
described in Algorithm 1.

β = σ2σ1σ1

σ2

σ1

σ1

Figure 7: A simple example of how to find the minimal standardizer of a curve.

The minimality of the output is guaranteed by the following theorem, which shows that σj
is a prefix of the minimal standardizer in St(S), provided S has a bending point at j.

Theorem 20. Let S be a curve system with a bending point at j. Then σj is a prefix of α, for
every positive braid α such that Sα is standard.

To prove the theorem we will need a result from [3].

Definition 21. We will say that a simple braid s is compatible with a bending point at j if the
strands j and j + 1 of s do not cross in s. That is, if σj 64 s (by Lemma 11).
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Algorithm 1: Standardizing a curve system

Input : The reduced coordinates (a0, b0, . . . , an−1, bn−1) of a curve system S on Dn.
Output: The 4-minimal element of St(S).

c = (a0, b0, . . . , an−1, bn−1);
β = 1;
j = 1;
while j < n do

if c[aj ] < c[aj−1] then
c = cσj ; (use Proposition 15)
β = β · σj ;
j = 1;

else
j = j + 1;

return β;

Lemma 22 ([3, Lemma 8]). Let s1 and s2 be two simple braids such that s1s2 is in left normal
form. Let C be a curve with a bending point at j compatible with s1. Then, there exists some
bending point of Cs1 compatible with s2.

Remark 23. The previous lemma holds also for a curve system, with the same proof.

Proof of Theorem 20. Suppose that α ∈ B+
n is such that Sα is standard and σj 64 α.

Let s1 · · · sr be the left normal form of α. Notice that there is no ∆p in the normal form.
Otherwise, σj would be a prefix of α, because it is a prefix of ∆. By Lemma 11, the strands j
and j + 1 of s1 do not cross because σj is not a prefix of α. Thus, s1 is compatible with
a bending point at j and by Lemma 22, Ss1 has a bending point compatible with s2. By
induction, Ss1···sm has a bending point compatible with sm+1, for m = 2, . . . , r, where sr+1 is
chosen to be such that sr · sr+1 is in left normal form. Hence, Sα has a bending point, i.e., it is
not standard, which is a contradiction.

�

In Algorithm 1 we can find the detailed procedure to compute the minimal element in St(S).
Notice that, at every step, either the resulting curve has a bending point, providing a new letter
of the minimal element in St(S), or it is standard and we are done. The process stops as B+

n

has homogeneous relations (actually, atomicity suffices to show that the process stops), so all
positive representatives of the minimal element have the same length, which is precisely the
number of bending points found during the process.

Notice that Theorem 20 guarantees that the output of Algorithm 1 is a prefix of every
standardizer of S. This provides an alternative proof of the existence and uniqueness of a
minimal element in St(S).

5 Standardizing a parabolic subgroup

Now we will give an algorithm to find the minimal standardizer of a parabolic subgroup
P = (X,α) of an Artin–Tits group A of spherical type. The existence and uniqueness of
this element will be shown by construction.

Proposition 24 ([18]). A parabolic subgroup AX of an Artin–Tits group of spherical type is an
Artin–Tits group of spherical type whose Artin–Tits system is (AX , X).
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Proposition 25 ([2, Lemma 5.1, Theorem 7.1]). Let (AΣ,Σ) be an Artin–Tits system where
AΣ is of spherical type. Then, a Garside element for AΣ is:

∆Σ =
∨
s∈Σ

s =
∨�
s∈Σ

s,

and the submonoid of positive elements is the monoid generated by Σ. Moreover, if AΣ is
irreducible, then (∆Σ)e generates the center of AΣ, for some e ∈ {1, 2}.

Definition 26. Let AX be an Artin–Tits group of spherical type. We define its central Garside
element as cX = (∆X)e, where e is the minimal positive integer such that (∆X)e ∈ Z(AX). We
also define cX,α := αcXα

−1.

Proposition 27 ([16, Proposition 2.1]). Let X,Y ⊆ Σ and g ∈ A. The following conditions
are equivalent,

1. g−1AXg ⊆ AY ;

2. g−1cXg ∈ AY ;

3. g = xy where y ∈ AY and x conjugates X to a subset of Y .

The above proposition is a generalization of [19, Theorem 5.2] and implies, as we will see,
that conjugating standard parabolic subgroups is equivalent to conjugating their central Garside
elements. This will lead us to the definition of the central Garside element for a non-standard
parabolic subgroup as given in Proposition 34. In order to prove the following results, we need
to define an object that generalizes to Artin–Tits groups of spherical type some operations used
in braid theory:

Definition 28. Let X ⊂ Σ, t ∈ Σ. We define

rX,t = ∆X∪{t}∆
−1
X .

Remark 29. In the case t /∈ X, this definition is equivalent to the definition of positive elementary
ribbon [16, Definition 0.4]. Notice that if t ∈ X, rx,t = 1. Otherwise, notice that ∆X∪{t} is
simple, and that a simple element cannot be written as a word with two consecutive repeated
letters [2, Lemma 5.4]. As ∆X can start with any letter of X, it follows that if t /∈ X, the only
possible final letter of rX,t is t. In particular rX,t < t.

Proposition 30. There is a unique Y ⊂ X ∪ {t} such that rX,tX = Y rX,t.

Proof. Given Z ⊂ Σ, conjugation by ∆Z permutes the elements of Z. Let us denote by Y the
image of X under the permutation of X ∪ {t} induced by the conjugation by ∆X∪{t}. Then

rX,tXr
−1
X,t = ∆X∪{t}∆

−1
X X∆X∆−1

X∪{t} = ∆X∪{t}X∆−1
X∪{t} = Y.

Artin–Tits groups of spherical type can be represented by Coxeter graphs. Recall that such
a group, A, is defined by a symmetric matrix M = (mi,j)i,j∈S and the finite set of generators Σ.
The Coxeter graph associated to A is denoted ΓA. The set of vertices of ΓA is Σ, and there is
an edge joining two vertices s, t ∈ Σ if ms,t ≥ 3. The edge will be labelled with ms,t if ms,t ≥ 4.
We say that the group A is indecomposable if ΓA is connected and decomposable otherwise. If
A is decomposable, then there exists a non-trivial partition Σ = X1 t · · · tXk such that A is
isomorphic to AX1 × · · · × AXk

, where each AXj is indecomposable (each Xj is just the set of
vertices of a connected component of ΓX). Each AXj is called an indecomposable component
of A.
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Lemma 31. Let X,Y ⊂ Σ and let X = X1 t · · · tXn and Y = Y1 t · · · t Ym be the partitions
of X and Y , respectively, inducing the indecomposable components of AX and AY . Then, for
every g ∈ A, the following conditions are equivalent:

1. g−1AXg = AY .

2. m = n and g = xy, where y ∈ AY and the parts of Y can be reordered so that we have
x−1Xix = Yi for i = 1, . . . , n.

3. m = n and g = xy, where y ∈ AY and the parts of Y can be reordered so that we have
x−1AXix = AYi for i = 1, . . . , n.

Proof. Suppose that g−1AXg = AY . By Proposition 27, we can decompose g = xy where
y ∈ AY and x conjugates the set X to a subset of the set Y . Since conjugation by y induces an
automorphism of AY , it follows that x conjugates AX isomorphically onto AY , so it conjugates
X to the whole set Y . Since the connected components of ΓX (resp. ΓY ) are determined by
the commutation relations among the letters of X (resp. Y ), it follows that conjugation by x
sends indecomposable components of X onto indecomposable components of Y . Hence m = n
and x−1Xix = Yi for i = 1, . . . , n (reordering the indecomposable components of Y in a suitable
way), as we wanted to show. Thus, statement 1 implies statement 2.

Statement 2 implies 3 trivially and finally the third statement implies the first one as
AX = AX1 × · · · ×AXn and AY = AY1 × · · · ×AYn .

Lemma 32. Let X,Y ⊆ Σ, g ∈ A. Then,

g−1AXg = AY ⇐⇒ g−1cXg = cY .

Proof. Suppose that g−1cXg = cY . Then, by Proposition 27, we have g−1AXg ⊆ AY and also
gAY g

−1 ⊆ AX . As conjugation by g is an isomorphism of A, the last inclusion is equivalent to
AY ⊆ g−1AXg. Thus, g−1AXg = AY , as desired.

Conversely, suppose that g−1AXg = AY . By using Lemma 31, we can decompose g = xy
where y ∈ AY and x is such that x−1AXix = AYi , where AXi and AYi are the indecomposable
components of AX and AY for i = 1, . . . , n. As the conjugation by x defines an isomorphism
between AXi and AYi , we have that x−1Z(AXi)x = Z(AYi). Hence, we have x−1cXix = ∆k

Yi
for some k ∈ Z, because the center of irreducible Artin–Tits groups of spherical type is cyclic
(Proposition 25). Let cXi = ∆ε1

Xi
and cYi = ∆ε2

Yi
. As AXi and AYi are isomorphic, ε1 = ε2.

Also notice that in an Artin–Tits group of spherical type the relations are homogeneous and so
k = ε1 = ε2, having x−1cXix = cYi . Let

ε = max{εi | cXi = ∆εi
Xi
} = max{εi | cYi = ∆εi

Yi
},

and denote dXi = ∆ε
Xi

and dYi = ∆ε
Yi

for i = 1, . . . , n. Notice that dXi is equal to either cXi

or (cXi)
2, and the same happens for each dYi , hence x−1dXix = dYi for i = 1, . . . , n. Then,

as cX =
∏n
i=1 dXi and cY =

∏n
i=1 dYi , it follows that x−1cXx = cY . Therefore, g−1cXg =

y−1(x−1cXx)y = y−1cY y = cY .

Lemma 33. Let P = (X,α) be a parabolic subgroup and AY be a standard parabolic subgroup
of an Artin–Tits group A of spherical type. Then we have

g−1Pg = AY ⇐⇒ g−1cX,αg = cY .

Proof. If P = (X,α), it follows that g−1Pg = AY if and only if g−1αAXα
−1g = AY . By

Lemma 32, this is equivalent to g−1αcXα
−1g = cY , i.e., g−1cX,αg = cY .
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Proposition 34. Let P = (X,α) = (Y, β) be a parabolic subgroup of an Artin–Tits group of
spherical type. Then cX,α = cY,β and we can define cP := cX,α to be the central Garside element
of P .

Proof. Suppose that g is a standardizer of P such that g−1Pg = AZ . By using Lemma 33, we
have that cZ = g−1cX,αg = g−1cY,βg. Thus, cX,α = cY,β.

By Lemma 33, a positive standardizer of a parabolic subgroup P = (X,α) is a positive
element conjugating cP to some cY . Let

C+
AΣ

(cP ) = {s ∈ P | s = u−1cPu, u ∈ AΣ}

be the set of positive elements conjugate to cP (which coincides with the positive elements
conjugate to cX). The strategy to find de minimal standardizer of P will be to compute the
minimal conjugator from cP to C+

AΣ
(cP ). That is, the shortest positive element u such that

u−1cX,αu ∈ P.

Proposition 35. If x = ab−1 is in pn-normal form and x is conjugate to a positive element,
then b is a prefix of every positive element conjugating x to C+

AΣ
(x).

Proof. Suppose that ρ is a positive element such that ρ−1xρ is positive. Then 1 4 ρ−1xρ.
Multiplying from the left by x−1ρ we obtain x−1ρ 4 ρ and, since ρ is positive, x−1 4 x−1ρ 4 ρ.
Hence x−1 4 ρ or, in other words ba−1 4 ρ. On the other hand, by the definition of pn-normal
form, we have a ∧� b = 1, which is equivalent to a−1 ∨ b−1 = 1 [14, Lemma 1.3]. Multiplying
from the left by b, we obtain ba−1 ∨ 1 = b.

Finally, notice that ba−1 4 ρ and also 1 4 ρ. Hence b = ba−1 ∨ 1 4 ρ. Since b is a prefix
of ρ for every positive ρ conjugating x to a positive element, the result follows.

Lemma 36. Let AX be a standard parabolic subgroup and t ∈ Σ. If α∆k
X < t, then α < rX,t,

for every k > 0.

Proof. Since the result is obvious for t ∈ X (rX,t = 1), suppose t /∈ X. Trivially, α∆k
X < ∆X . As

α∆k
X < t, we have that α∆k

X < ∆X ∨� t. By definition, ∆X ∨� t = ∆X∪{t} = rX,t∆X . Thus,

α∆k
X < rX,t∆X and then α∆k−1 < rX,t, because < is invariant under right-multiplication. As

rX,t < t (see Remark 29), the result follows by induction.

Theorem 37. Let P = (X,α) be a parabolic subgroup. If cP = ab−1 is in pn-normal form,
then b is the 4-minimal standardizer of P .

Proof. We know from Proposition 35 that b is a prefix of any positive element conjugating cP
to a positive element, which guarantees its 4- minimality. We also know from Lemma 33 that
any standardizer of P must conjugate cP to a positive element, namely to the central Garside
element of some standard parabolic subgroup. So we only have to prove that b itself conjugates
cP to the central Garside element of some standard parabolic subgroup. We assume α to be
positive, because there is always some k ∈ N such that ∆2kα is positive and, as ∆2 lies in the
center of A, P = (X,α) = (X,∆2kα).

The pn-normal form of cP = αcXα
−1 is obtained by cancelling the greatest common suffix

of αcX and α. Suppose that t ∈ Σ is such that α < t and αcX < t.
If t /∈ X, then rX,t 6= 1 and by Lemma 36 we have that α < rX,t, i.e., α = α1rX,t for some

α1 ∈ AΣ. Hence,
αcXα

−1 = α1rX,tcXr
−1
X,tα

−1
1 = α1cX1α

−1
1
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for some X1 ⊂ Σ. In this case, we reduce the length of the conjugator (by the length of rX,t).
If t ∈ X, t commutes with cX , which means that

αcXα
−1 = α1tcXt

−1α−1
1 = α1cX1α

−1
1 ,

where α1 is one letter shorter than α and X1 = X.
We can repeat the same procedure for αicXiα

−1
i , where Xi ⊂ Σ, ti ∈ Σ such that αi < ti

and αicXi < ti. As the length of the conjugator decreases at each step, the procedure must
stop, having as a result the pn-normal form of cP , which will have the form:

cP = (αkcXk
)α−1

k , for k ∈ N, Xk ⊂ Σ.

Then, αk = b clearly conjugates cP to cXk
, which is the central Garside element of a standard

parabolic subgroup, so b is the 4-minimal standardizer of P .

We end this section with a result concerning the conjugacy classes of elements of the form cP .
As all the elements of the form cZ , Z ⊆ X, are rigid (Definition 8), using the next theorem we
can prove that the set of sliding circuits of cP is equal to its set of positive conjugates.

Theorem 38 ([15, Theorem 1]). Let G be a Garside group of finite type. If x ∈ G is conjugate
to a rigid element, then SC(x) is the set of rigid conjugates of x.

Corollary 39. Let P = (X,α) be a parabolic subgroup of an Artin–Tits group of spherical type.
Then

C+
AΣ

(cP ) = SSS(cP ) = USS(cP ) = SC(cP )

= {cY |Y ∈ Σ, cY conjugate to cX}.

Proof. By Theorem 38, it suffices to prove that C+
AΣ

(cP ) is composed only of rigid elements

of the form cZ . Let P ′ = (X,β) and suppose that cP ′ ∈ C+
AΣ

(cP ). Let b be the minimal
standardizer of cP ′ . By Proposition 35, Theorem 37 and Lemma 33, b is the minimal positive
element conjugating cP ′ to C+

AΣ
(cP ), which implies that b = 1, so P ′ is standard. Hence, all

positive conjugates of cP ′ are equal to cY for some Y , therefore they are rigid.

Corollary 40. Let P = (X,α) be a parabolic subgroup of an Artin–Tits group of spherical type.
Then the set of positive standardizers of P ,

St(P ) = {α ∈ A+
Σ , | c

α
P = cY , for some Y ⊆ Σ},

is a sublattice of A+
Σ.

Proof. Let s1 and s2 be two positive standardizers of P and let α := s1 ∧ s2 and β := s1 ∨ s2.
By Corollary 39 and, for example, [15, Proposition 7, Corollary 7 & 8], we have that cαP = cY
and cβP = cZ for some Y, Z ⊆ Σ. Hence α, β ∈ St(P ), as we wanted to show.

6 Complexity

In this section we will describe the computational complexity of the algorithms which compute
minimal standardizers of curves and parabolic subgroups. Let us start with Algorithm 1, which
computes the minimal standardizer of a curve system.

The complexity of Algorithm 1 will depend on the length of the output, which is the number
of steps of the algorithm. To bound this length, we will compute a positive braid which belongs
to St(S). This will bound the length of the minimal standardizer of S.
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The usual way to describe the length (or the complexity) of a curve system consists in
counting the number of intersections with the real axis, i.e., `(S) = #(S ∩ R). For integers
0 ≤ i < j < k ≤ n, we define the following braid (see Figure 8):

s(i, j, k) = (σjσj−1 · · ·σi+1)(σj+1σj · · ·σi+2) · · · (σk−1σk−2 · · ·σi+k−j)

C

1 2 3

4 5 6

Figure 8: Applying s(0, 3, 6).

Lemma 41. Applying s = s(i, j, k) to a curve system S, when i _ j ^ k is a bending point,
decreases the length of the curve system at least by two.

Proof. We will describe the arcs of the curves of S in a new way, by associating a real number
cp ∈ (0, n+ 1) to each of the intersections of S with the real axis, where p is the position of the
intersection with respect to the other intersections: c1 is the leftmost intersection and c`(S) is
the rightmost one. We will obtain a set of words representing the curves of S, on the alphabet
{`,a, c1, . . . , c`(S)}, by running along each curve, starting and finishing at the same point. As
before, we write down a symbol ` for each arc on the lower half plane, and a symbol a for each
arc on the upper half plane. We also define the following function that sends this alphabet to
the former one:

L : {`,a, c1, . . . , c`(S)} −→ {^,_, 0, . . . , n}

L(`) =^, L(a) =_, L(cp) = bcpc.

Take a disk D such that its boundary ∂(D) intersects the real axis at two points, x2 and x3,
which are not punctures and do not belong to S. Consider another point x1, which should not
be a puncture or belong to S, on the real axis such that L(x1) < L(x2). Suppose that there
are no arcs of S on the upper-half plane intersecting the arc x1 a x2 and there are no arcs of
S on the lower-half plane intersecting the arc x2 ` x3. We denote I1 = (0, x1), I2 = (x1, x2),
I3 = (x2, x3) and I4 = (x3, n + 1) and define |It| as the number of punctures that lie in the
interval It.

We consider an automorphism of Dn, called d = d(x1, x2, x3), which is the final position of
an isotopy that takes D and moves it trough the upper half-plane to a disk of radius ε centered
at x1, which contains no point cp and no puncture, followed by an automorphism which fixes
the real line as a set and takes the punctures back to the positions 1, . . . , n. This corresponds to
“placing the interval I3 between the intervals I1 and I2”. Firstly, we can see in Figure 9 that the
only modifications that the arcs of S can suffer is the shifting of their endpoints. By hypothesis,
there are no arcs in the upper half-plane joining I2 with Ij for j 6= 2, and there are no arcs in
the lower half-plane joining I3 with Ij for j 6= 3. Any other possible arc is transformed by d
into a single arc, so every arc is transformed in this way. Algebraically, take an arc of S, ca a cb
(resp. ca ` cb ), such that L(ca) = ã and L(cb) = b̃. Then, its image under d is c′a a c′b (resp.
c′a ` c

′
b ) where
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I1 I2 I3 I4

I1 I2I3 I4

x1 x2 x3

(a) d acting on the arcs in the upper half plane

I1 I2 I3 I4

I1 I2I3 I4

x1 x2 x3

(b) d acting on the arcs in the lower half plane

Figure 9: How the automorphism d(x1, x2, x3) acts on the arcs of C.

L(c′p) =


p̃ if cp ∈ I1, I4,
p̃+ |I3| if cp ∈ I2,
p̃− |I2| if cp ∈ I3,

for p = a, b.

After applying this automorphism, the curve could fail to be reduced, in which case relax-
ation of unnecessary arcs could be done, reducing the complexity of S.

Now, given a bending point i _ j ^ k of S, consider the set

B = {cp a cq ` cr |L(cp) < L(cq) < L(cr) and L(cq) = j}

and choose the element of B with greatest sub-index q, which is also the one with lowest p and
r. Define x1, x2 and x3 such that x1 ∈ (cp−1, cp) ∩ (L(cp), L(cp) + 1), x2 ∈ (cq, cq+1) ∩ (j, j + 1)
and x3 ∈ (cr−1, cr) ∩ (L(cr), L(cr) + 1). Then, the braid s(L(cp), j, L(cr)) is represented by the
automorphism d(x1, x2, x3) (see Figure 10). Notice that the choice of the bending point from
B guarantees the non-existence of arcs of C intersecting x1 a x2 or x2 ` x3. After the swap of
I2 and I3, the arc cq ` cr will be transformed into c′q ^ c′r, where L(c′q) = L(c′r) = L(cr), and
then relaxed, reducing the length of S at least by two.

i j k

I1 I2 I3 I4

Figure 10: Applying s(i, j, k) to a curve is equivalent to permute their intersections with the
real axis and then make the curve tight.

The automorphism s = s(i, j, k) involves at most (k− j) · (j− i) generators and this number
is bounded by 1

4n
2, because (k − j) + (j − i) ≤ n and (u+ v)2 ≤ 4uv for every u, v ≤ 1. Then,

the output of our algorithm has at most 1
8`(S)n2 letters, because we have proven that s reduces

the length of the curve system at each step. Let us bound this number in terms of the input of
the algorithm, i.e., in terms of reduced Dynnikov coordinates.

Definition 42. We say that there is a left hairpin (resp. a right hairpin) of C at j if we can
find in W (C), up to cyclic permutation and reversing, a subword of the form i _ j − 1 ^ k
(resp. i _ j ^ k) for some i, k > j − 1 (resp. i, k < j) (see Figure 11).
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Proposition 43. Let S be a curve system on Dn represented by the reduced Dynnikov coordi-
nates (a0, b0, . . . , an−1, bn−1). Then `(S) ≤

∑n−1
i=0 (2|ai|+ |bi|).

Proof. Notice that each intersection of a curve C with the real axis corresponds to a subword
of W (C) of the form i _ j ^ k or i ^ j _ k. If i < j < k the subword corresponds to a
bending point or a reversed bending point respectively. If i, k > j, there is a left hairpin at
j + 1. Similarly, if i, k < j, there is a right hairpin at j.

j

e3j−4

e3j−5 e3j−3 e3j−2

(a) Two left hairpins

j

e3j−3 e3j−2e3j−5

e3j−4

(b) A right hairpin

Figure 11: Detecting hairpins with Dynnikov coordinates.

Recall that Lemma 17 already establishes how to detect bending points with reduced Dyn-
nikov coordinates. In fact, there are exactly R bending points (including reversed ones) at i
if and only if |ai−1 − ai| = R. We want to detect also hairpins in order to determine `(S).
Observe in Figure 11 that the only types of arcs that can appear in the region between the lines
e3j−5 and e3j−2 are left or right hairpins and arcs intersecting both e3j−5 and e3j−2. The arcs
intersecting both e3j−5 and e3j−2 do not affect the difference x3j−5 − x3j−2 whereas each left
hairpin decreases it by 2 and each right hairpin increases it by 2. Notice that in the mentioned
region there cannot be left and right hairpins at the same time. Then, there are exactly R left
(resp. right) hairpins at j if and only if bj−1 = −R (resp. bj−1 = R). Hence, as a0 = an−1 = 0,
we have:

`(S) =
n−1∑
i=1

|ai−1 − ai|+
n−1∑
j=0

|bj | ≤
n−1∑
i=1

(|ai−1|+ |ai|) +
n−1∑
j=0

|bj | =
n−1∑
i=0

(2|ai|+ |bi|).

Corollary 44. Let S be a curve system on Dn represented by the reduced Dynnikov coordinates
(a0, b0, . . . , an−1, bn−1). Then, the length of the minimal standardizer of S is at most

1

8

n−1∑
i=0

(2|ai|+ |bi|) · n2.

Proof. By Lemma 41, the length of the minimal standardizer of S is at most 1
8`(S)n2. Consider

the bound for `(S) given in Proposition 43 and the result will follow.

Remark 45. To check that this bound is computationally optimal we need to find a case where
at each step we can only remove a single bending point, i.e., we want to find a family of curve
systems {Sk}k>0 such that the length of the minimal standardizer of Sk is quadratic on n and
linear on `(S). Let n = 2t+ 1, t ∈ N. Consider the following curve system on Dn,

S0 = {t ^ n _}
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and the braid α = s(0, t, n−1). Now define Sk = (S0)α
−k

. The curve Sk is called a spiral with k
half-twists (see Figure 12) and is such that `(Sk) = 2(k+1). Using Algorithm 1, we obtain that
the minimal standardizer of this curve is αk, which has k · t2 factors. Therefore, the number of
factors of the minimal standardizer of Sk is of order O(`(Sk) · n2).

t n

Figure 12: The curve S5.

Corollary 46. Let S be a curve system on Dn represented by the reduced Dynnikov coordinates
(a0, b0, . . . , an−1, bn−1). Let m =

∑n−1
i=0 (|ai| + |bi|). Then, the complexity of computing the

minimal standardizer of S is O(n2m log(m)).

Proof. First notice that

`(S) ≤
n−1∑
i=0

(2|ai|+ |bi|) ≤ 2
n−1∑
i=0

(|ai|+ |bi|) = 2m,

and that the transformation described in Proposition 15 involves a finite number of basic op-
erations (addition and max). Applying σj to the Dynnikov coordinates modifies only four such
coordinates, and each maximum or addition between two numbers is linear on the number of
digits of its arguments. This means that applying σj to the curve has a cost of O(log(M)), where
M = max{|ai|, |bi| | i = 0, . . . , n − 1}. By Corollary 44, the number of iterations performed by
the algorithm is O(n2m). Hence, as M ≤ m, computing the minimal standardizer of S has
complexity O(n2m log(m)).

To find the complexity of the algorithm which computes the minimal standardizer of a
parabolic subgroup P = (X,α) of an Artin–Tits group A, we only need to know the cost of
computing the pn-normal form of cP . If xr · · ·x1∆−p with p > 0 is the right normal form of cP ,
then its pn-normal form is (xr · · ·xp+1)(xp · · ·x1∆−p). Hence, we just have to compute the right
normal form of cP in order to compute the minimal standardizer. It is well known that this
computation has quadratic complexity (for a proof, see [9, Lemma 3.9 & Section 6 ]). Thus, we
have the following:

Proposition 47. Let P = (X,α) be a parabolic subgroup of an Artin–Tits group of spherical
type, and let ` = `(α) be the canonical length of α. Computing the minimal standardizer of P
has a cost of O(`2).
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