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Abstract—Very few benchmark exists for assessing pattern
detection and recognition in streams in general and for gesture
processing in particular. We propose a dedicated benchmark
based on the construction of isolated gestures and gesture
sequences datasets. This benchmark is associated to a general
assessment methodology for streaming processing which first
consists in labelling the stream according to some heuristics
(that can be optimized on training data) and then aligning
the ground truth labelling with the predicted one. 6 pattern
recognition models (including DTW, KDTW, HMM, HCRF
and SVM) have been accordingly evaluated using this bench-
mark. It turns out that the regularized kernelized version
of DTW measure (KDTW) associated to a SVM is quite
efficient, comparatively to the other models, for detecting and
recognizing continuous gestures in streams.

1. Introduction

This paper aims at presenting a benchmark dedicated
to compare methods for gesture spotting and recognition
in streams using low-cost sensors, such as the Microsoft
Kinect or data gloves. Online human gesture recognition
has a wide range of applications including video surveil-
lance, human computer/robot interaction, sports video
analysis, video retrieval and many other sensor-acquisition
related application. Accurate spotting and recognition of
human gestures in streams is still a quite challenging
task, despite the research efforts in the past decade and
many encouraging advances. We present in this paper
a benchmark procedure that includes two datasets, an
assessment methodology and a case study that involves
beanchmarking pattern detection and recognition models
applicable to stream processing.

The remainder of this paper is organized as follows;
Sec. 2 is dedicated to the state of the art of previous work
in on-line gesture recognition. Sec. 3 describes the data set
considered in the experiments. The technical approach is
presented in Sec. 4. We detail carried out experiments and
discuss obtained results in Sec. 5 before providing some
conclusions and directions for future research.

2. Previous work in on-line gesture recognition

Stream processing requires (explicitly or implicitly)
temporal segmentation of sequences of temporal data.
For human motion it refers to the task of temporally

cutting sequences into segments with different semantic
meanings (gesture/action) which is an important step
in gesture/action analysis and recognition. The existing
approaches proposed to deal with this issue can be clas-
sified into two categories. The first category is about
gesture recognition from color videos and hence is based
on visual features. The second one rely instead on the
features of motion data that describe the human-body-
part movements.

On the one hand, for the video-based methods, it
is a common practice to locate spatio-temporal interest
points like STIP (1), and use the distributions of the local
features like HOF (2) or HOG (3) to represent local spatio-
temporal pattern. Li et al. (4) proposed the Bag of Visual
Words (BoVW) model, which is used by many researchers
for action recognition from color videos. BoVW model
uses histograms as the features for gestures recognition. In
order to count histograms, frames must be segmented first
which makes BoVW model not suitable for online gesture
recognition. Moreover, Song et al. (5) proposed a system
for gesture recognition based on the combination of body
and hand pose information. In their system, the body
pose is estimated by using a multi-hypothesis Bayesian
inference framework with a particle filter (6). A multi-
class SVM classifier (7) is trained off-line based on HOG
descriptors (3) extracted from manually-segmented images
of hands, and is used to classify hand poses. Nevertheless,
this system is not allowing non-segmented continuous
time-series input.

On the other hand, several researchers claim that
the movement of the human skeleton can be used for
distinguishing different human gestures. In this context,
the proposed approaches for gesture recognition are based
on the features of motion data describing a specific human-
body-part motion. Miiller et al.(8) present an approach
to label motion capture (MOCAP) data according to a
given set of motion categories or classes, each specified
by a set of motions. The presented method employs
Motion Template (MT) to segment and label the motion
data. A template is a generic gesture instance used to
match with the data stream for a class of gestures. In
their method, it is represented by a matrix averaging
the training motions expressed by relational features. The
gesture-level motion template approaches have a major
weakness on dealing with intra-class variations which de-
pend on the person performing the gesture. Consequently,
this method is inefficient for dealing with real-time data



streams. Additionally, Wang et al.(9) proposed to learn
one subset of human body joints for each action class. The
subset joints are representative of one action compared
to others. However, their approach is only applicable to
the recognition of pre-segmented instances and cannot be
used in online recognition of unsegmented data streams.
Furthermore, Gong et al.(10) proposed an alignment al-
gorithm for action segmentation. The proposed method
called Kernelized Temporal Cut (KTC), is a temporal
extension of Hilbert space embedding of distributions (11)
with kernelized two-sample test (12) and was applied to
sequentially estimate temporal cut points (change points)
in human motion sequences. Since their approach is based
on structure similarity between frames, it is only suitable
for segmenting cyclic actions. Among others, Zhao et al.
(13)(14) proposed a feature which they call Structured
Streaming Skeletons (SSS) in order to represent inherent
human motion characteristics. Each SSS feature vector
consists of a number of attributes represented as distance
values. Each value is a minimum DTW distance between
all the scanned sub-sequences (ending at the current
frame) and a template in the dictionary for the given pair
of joints. Here a template is defined as a one-dimensional
time series representing distance values of two joints of
human body during the time of a gesture instance. The
Jointly Sparse Coding (15) classifier was used to learn
a gesture model from the extracted SSS feature vectors.
Prediction is performed by a linear regression method that
assigns each feature vector with a gesture label based on
the learned gesture model.

In this paper, we tackle gesture recognition through
the tracking of skeleton joint positions. Following (13)(14),
to avoid segmenting streams beforehand, we develop an
approach that simply requires the definition of the gesture
vocabulary in the form of isolated patterns. These patterns
are then used to detect and recognize gestures in streams.
Stream segmentation is a by-product of the detection and
recognition process.

3. Benchmark dataset

The datasets we have designed are complementary to
the one developed by Microsoft Research (MSR Action
Recognition Datasets) (16): they allow to explore the
hand-shape and the upper body movement using 3D
positions of skeletal joints.

To develop our benchmark data dedicated to upper
body movement recognition, we have selected an excerpt
of the Naval Air Training and Operating Procedures Stan-
dardization (NATOPS) dataset presented in (5) which
includes six of the twenty-four body-hand gestures used
when handling aircraft on the deck of an aircraft car-
rier. The dataset includes automatically tracked 3D body
postures and hand shapes using a Vicon high definition
sensor. The body feature includes 3D joint velocities for
left /right elbows and wrists, and is represented as a 12D
input feature vector. The hand feature includes probability
estimates of five predefined hand shapes: opened/closed-
palm,thumb-up/down, and ”no hand”.

#2: All clear

#1: I have command

* A

ﬂ,

#3: Not Clear

H‘

#4: Spread Wings

#5: Fold Wings #6: Lock Wings

i

TABLE 1. The 6 selected gestures from the NATOPS data base;
figures have been extracted from (5)

The simplified version of the NATOPS database we
have produced includes the gesture pair (i.e., #1 — #2,
#3—#4, and #5—#6). As highlighted in (17), the gestures
(#4,#5) and (#2, #3) are very similar and represent the
intricacy of the entire set.

A good simplification of the complexity of the human
body is to estimate only the position of joints since
they apparently provide a sufficient representation of the
human posture (18). In our database, each gesture is
represented by 24-dimensional feature vector, composed
with the 3D-coordinates of hands (HandTips, thumbs and
wrists) and arms (elbows). Figure 1 presents the location
on the skeleton shape of the 3D-coordinates as blue (dark)
dots.

The motion capture has been performed using a Kinect
2 sensor that produces a stream of 30 frames per second.
Each frame consists in a 24 dimensional feature vector.

Isolated gesture dataset!. 20 subjects have been
selected (15 male and 5 female) to perform in front
of the sensor (at a three meters distance) the six se-
lected NATOPS gestures. Each subject repeated each
gesture three times. Hence the isolated gesture dataset
is composed of 360 gesture utterances that have been
manually segmented to a fixed length of 51 frames (1.7
sec. duration).

Gesture sequence dataset'. The same 20 subjects
also performed 3 times the previous mentioned gestures
in a continual mode. The obtained dataset consists of 60
samples of motion data stream.

1. This dataset will be made available for the community at the
earliest feasible opportunity
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Figure 1. Partial skeleton reconstructed from motion data captured
from the Kinect 2 sensor. Blue dots (dark) represent the 3D joint
positions tracked during the capture of the gestures.

4. Methodology

4.1. Models

We hereinafter introduce the general classification
models that we have used to learn and recognize iso-
lated gestures and gestures in stream, namely first near
neighbor with Dynamic time Warping (DTW) measure,
first near neighbor with Kernelized DTW (KDTW), Hid-
den Markov Model (HMM), Hidden Conditional Random
Fields (HCRF), Support Vector Machine (SVM) associ-
ated to DTW and KDTW.

4.1.1. HMM. An HMM (19) models a sequence of ob-
servations X = {z;}1, by assuming that there is an
underlying sequence of states Y = {y;}/_,; drawn from
a finite state set S. To model the joint distribution p(y, x)
tractably, an HMM makes two independence assumptions.
First, it assumes that each state depends only on its
immediate predecessor. Second, an HMM assumes that
each observation variable z; depends only on the current
state y;. With these assumptions, HMM can be specified
using three probability distributions: first, the distribution
p(y1) over initial states; second, the transition distribu-
tion p(y:|y:—1); and finally, the observation distribution
p(2¢|y:). Therefore, the joint probability of a state se-
quence y and an observation sequence x factorizes as :

p(y: ) = [ p@elyi—1)p(ilye), (1)

Each gesture is characterized by an HMM model and for
each HMM, two procedures are required. In the train-
ing phase, the aim is to adjust the model parameters
A = (A,B,n) in order to maximize P(O|)\), where A
is the state transition probability distribution, B is the
observation symbol probability distribution and 7 is the
initial state distribution. No tractable algorithm is known
for solving this problem exactly, but a local maximum
likelihood can be derived efficiently using the Baum-
Welch algorithm (20). The Baum-Welch algorithm finds

a local maximum for 6* = argmaxy P(Y]6) (i.e. the
HMM parameters 6 that maximise the probability of the
observation).

4.1.2. HCRF. The task performed by HCRF (21) is to
predict the class y from the data z, where y is an element
of the set Y of possible gesture labels and x is the set
of vectors of temporal observations © = {x1,Z2, ..., Tm}.
Each local observation z; is represented by a feature
vector ®(z;) € Rd where d is the dimensionality of
the representation. The training set contains a set of
labeled samples (z;,y;), for i = 1..n where y; € Y and
x; = {®i1,Ti2, ., Tim} . For any x; a vector of latent
variables h = {hq, ha, ..., A} is assumed, providing the
state sequence of the data. Each possible value for h; is
member of a finite set H of possible hidden states. HCRF
is defined by a conditional probabilistic model :

W .
exp¥(y, h, x; 0)

hlz,0) = 2
p(y, hlz,0) Zy’ hequp(y/,h’x;o) (2)

Here 0 are the parameters of the model, and ¥(y, h, z;0) €
R is a potential function parameterized by 6. The function
P(y|x,0) is defined by a summation over the h variables
applied to the precedent equation.

P .
- _ _ ep(y,h,z;0)
ploln.0) = 3 ol bl t) = =2y @

Given a new test example x and parameter values 6*
induced from the training set, the label for the example is
taken to be arg max, .y P(y|z,0*). In the training phase,
the following objective function is used for the estimation
of parameter values 6 :

L(0) = Y log Plylais0) = o501 ()

where the first term in (4) is the log-likelihood of the
data. The second term is the log of a Gaussian prior with
variance 2. Under this criterion gradient ascent can be
used to search for the optimal parameter values 6* =
arg maxy L(0).

4.1.3. Support Vector Machine and time elastic kernels.
The Support Vector Machine (SVM) is a state-of-the-art
classification method introduced in 1992 by Boser, Guyon,
and Vapnik (22). An SVM classifies data by finding the
best hyperplane, meaning the largest margin, that sepa-
rates all data points belonging to the first class from those
belonging to the other class. Hence, a Support Vector
Machine seeks a decision function f which is defined in
the space spanned by the kernel basis functions K (z,x;)
of the support vectors z;:

y:f(x):Zwi*K(;v,xi)—i—b. (5)

In 1995, to cope with non-separable cases, (23) suggested a
modified maximum margin idea that allows for mislabeled
examples. If there exists no hyperplane that can split the
"positive” and "negative” examples, the "Soft Margin”



method will choose a hyperplane that splits the examples
as properly as possible, while still maximizing the distance
to the nearest proper split examples. By solving for the
Lagrangian dual of the optimization equivalent problem,
one obtains the simplified problem

Z% 520wk

1=1 j=1
subject to Zaiyi =0, and 0 < oy < C for all 4.
i=1

max L(« (s, 25)yj0;

Where C' is a penalty cost associated to the so-called
slack variables. Since the dual minimization problem is a
quadratic function of the «; subject to linear constraints,
it is efficiently solvable by quadratic programming
algorithms. In this paper, the kernel function K(.,.)
refers to the time elastic kernels defined below (K41, and
Krdtw)-

Dynamic Time Warping (DTW), (24), (25
most used elastic measure, is defined as

), by far the

ddtw(XpaY;I) = dJQE( () ( ) (6)

)
ddtw( p—1> ) sup
+ Min<¢ dagw(Xp—1,Y,—1) sub
datw(Xp, Yo ) mns

where dg(x(p),y(q) is the Euclidean distance (or its
square) defined on RF between the two samples in
sequences X and Y taken at times p and ¢ respectively.
Besides the fact that this measure does not respect the
triangle inequality, it does not directly define a positive
definite kernel.

Regularized DTW (KDTW): (26), (27) have success-
fully proposed guidelines to regularize kernels constructed
from time elastic measures such as DTW. KDTW is an
instance of such regularized kernel derived from (27), and
having proved to be quite efficient for isolated gesture
recognition (18), takes the following form, which relies on
two recursive terms :

’CTdt'w(XI)’ KZ) = Krdtw(X Y, ) Kf;tw(Xpa KJ) (7)

K™ (X, Yy) = Lemvdb@®)y(a)
h(p—1,0)K 4, (Xp-1, Yo)

SR hp—1,g— 1)K (Xp—1,Yy-1)
h(p, q- )K:;tw(va qu,1)

rdtw

Kfftw(xpqu) = l
h(p -1, q)Kfc?tw(XP*h Y,)evde@®)u)

228 Bpgh(p, Q)Krdtw(prlﬂYz}*l)e_ud%(w(p)’y(q))
h(p,q— 1)KL, (Xp, Yy 1)e v de@@v@)

(8)
where A, , is the Kronecker’s symbol, v € RT is a
stiffness parameter which weights the local contributions,
i.e. the distances between locally aligned positions, and

dg(.,.) is a distance defined on R¥. h(.,.) € {0,1} is used
to specify a symmetric corridor around the main diagonal
of the alignment matrix, which allows for computational
speed-up. The initialization is simply

KTdtw(X07 YO) K’I:"Etiittw (XO’ }/0) =1

The main idea behind this line of regularization is
to replace the operators min or max (which prevent
symmetrization) by a summation operator (}). This
leads to consider, not only the best possible alignment,
but also all the best (or nearly the best) paths by
summing up their overall cost. The parameter v is
used to tune the local matches, thus penalizing more
or less alignments moving away from the optimal ones.
This parameter can be easily optimized through a
cross-validation.

Time elastic kernels: we consider in this paper only the
exponential kernel (Gaussian or RBF-type) constructed
from the two previous time elastic measures dg;,, and
Krapw, i.e. Kgup(.,.) = e~ %)/ For the regularized
DTW kernel, a data dependent normalization heuristic is

required and the final kernel takes the form K4 (.,.) =
PR arw(5)/7 with

o a=1/log(maz(Kyarw(.,.))/min(Kratw (.,
o B =cap(—a-logmin(Kruw(.,.)))),

where min, max are taken over all the training data pairs.

.))) and

5. Experiment

5.1. Assessing pattern recognition in stream

All recognition models considered in this paper provide
as output a scoring file that contains for each processed
time ¢ a vector of scores (either a distance, a probability
or any similarity or dissimilarity value) < S;(t) >;=1.nc,
where nC' is the number of categories and S;(t) is the
score for the it category at time t. Two meta parameters
are defined to labelled the stream from this vector or
scores: Sg, the similarity threshold value and the minimal
duration value Typ. Given these two thresholds, and sup-
posing the score value has to be maximized, the labelling
algorithm (LA) consists in outputting label C; if and only
it S;(t) > S;(t)Vj # i and for ¢ € [t,,t,11] such that
tny1 — tn > Ty, as depicted in Figure 2 for a binary
classification problem.

The alignment of the ground truth labels with the pre-
dicted labelled stream < S;(t) >;=1. ¢ provides confusion
matrix and conventional assessment measures, namely
the average error rate (ERR), the macro-average pre-
cision (PRE), the macro-average recall (REC) and the
Fy measure (F} = 2 - %{ﬁﬁ) In addition, the
average latency estimation (LAT) and the average match
duration (DUR) are given for the gesture spotting and
recognition in stream task. When a match is detected,
the latency and the duration of the match measures are
defined accordingly to Figure 3. The latency is defined as
the difference of the matched mid-segment time locations.



Similarity score (S_(t) and S (t))

Labelled stream

Figure 2. Stream labelling for a two categories (Ct and C~) problem

Match latency (LAT)
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Match duration (DUR)

Figure 3. Matching process between ground truth and predicted
labels

5.2. Experimental conditions and Results

For the HMM and HCRF models, following an heuris-
tic approach, the maximal number of iterations relating
to the training process was set to 300 and the number of
hidden states was initialized to 6, which is adequate for
the complexity of the gestures that we consider. The SVM
implementation that we have used is a modified version of
libsvm (28) able to cope with stream processing. To eval-
uate comparatively the proposed classification methods,
we have performed a subject cross validation experiment
consisting in 100 tests: for each test, 10 subjects have been
randomly drawn for training and the remaining 10 subjects
have been retained for testing. Only the isolated gesture
dataset is used for training the classifier. The v parameter
of the KDTW kernel as well as the SVM meta parameter
(RBF bandwidth ¢ and C) are optimized using a leave one
subject out cross-validation on the train isolated gesture
dataset. Nevertheless, the gesture sequence dataset is used
also for deriving the Ty and Sy meta parameters required,
for all models, to complete the stream recognition task.
To that end, we have carried out, for each test, a 10-folds
cross validation scheme such that the classification error
rate is minimized on the sequences belonging to the test
fold. Note that once T and Sy have been set up during
training, the labelling algorithm (LA) can be performed
on-line during testing.

Tables 2 and 3 give, for the six tested recognition
methods and the two considered tasks, the average,
evaluated on the 100 tests, of the assessment measures
presented above. These results show that the kerneliza-
tion of DTW (KDTW) associated to a SVM classifier
significantly outperforms for the both tasks all the other
models. Furthermore KDTW-SVM is quite robust and
adapted to the streaming task, with only 3% error rate
loss comparatively to the isolated gesture recognition

TABLE 2. Isolated gestures recognition assessment measures

Method ERR PRE | REC | F1
mean || std

INN DTW 134 || .012 .869 .866 0.867
INN KDTW 128 || .016 876 972 874
HMM 318 || .049 776 727 .750
HCRF 128 || .039 .898 .891 .894
SVM DTW .146 || .015 871 .854 .862
SVM KDTW | .051 || .015 1952 .949 951

TABLE 3. Gestures spotting and recognition in stream assessment

measures
Method ERR PRE | REC | F1 LAT | DUR
mean || std
INN DTW .204 || .015 .868 .799 832 | 20.9 39.9
INN KDTW .189 || .016 878 817 .846 | 20.9 39.7
HMM 404 || .024 721 .600 654 | 4.8 42.4
HCRF .244 || .043 .840 757 796 | 16.8 50.8
SVM DTW .291 || .086 783 714 741 21.0 50.5
SVM KDTW 107 || .021 .947 .893 920 | 254 41.6

task. It also outperforms others state-of-the-art methods
(13)(14) (29) applied to similar skeleton-based data sets
and treating the motion data as undivided whole set. The
main limitation of this model, comparatively to the others,
is its latency. As already reported in the literature (see
for instance (18) for isolated gesture recognition) DTW
does not couple well with SVM (the likely cause being its
indefiniteness). HCRF performs quite well on the isolated
gesture task but is outperformed by the 1NN classifiers
on the streaming task. The HMM is the poorer model on
the two considered tasks, although its latency is minimal.

6. Conclusion

We have proposed a framework dedicated to the assess-
ment of gesture spotting and recognition in stream. De-
spite its dedicated nature, we believe that this framework
is quite general purpose and can be used to benchmark
continuous pattern detection and recognition in stream.
The case study we have carried out using this benchmark
consolidate earlier results obtained on isolated gesture
(18) recognition and extend them to stream processing
condition. Results show that the regularized kernelized
version of the DTW measure (KDTW) is particularly
efficient on the tested stream data comparatively to the
other experimented recognition models (DTW, HMM,
HCRF). As a perspective we plan to enhance our excerpt
of the NATOPS dataset in the near future to complete
the 24 gesture vocabulary.
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